
boolean expressions: represent anything that comes in two kinds

represent statements about the world (natural or constructed, real or imaginary)

represent digital circuits

represent human behavior

theorems: represent one kind

represent true statements

represent circuits with high voltage output

represent innocent behavior

antitheorems: represent the other kind

represent false statements

represent circuits with low voltage output

represent guilty behavior

1/23

0 operands T ⊥⊥⊥⊥

1 operand ¬x

2 operands x∧y x∨y x⇒y x⇐y x=y x y

3 operands if x then y else z

precedence and parentheses

associative operators: ∧ ∨ =

x ∧ y ∧ z means either (x ∧ y) ∧ z or x ∧ (y ∧ z)

x ∨ y ∨ z means either (x ∨ y) ∨ z or x ∨ (y ∨ z)

continuing operators: ⇒ ⇐ =

x = y = z means x = y ∧ y = z

x ⇒ y ⇒ z means (x ⇒ y) ∧ (y ⇒ z)

big operators: = ⇒ ⇐

same as = ⇒ ⇐ but later precedence

x = y ⇒ z means (x = y) ∧ (y ⇒ z)
2/23

truth tables

T ⊥⊥⊥⊥
¬ ⎪ ⊥⊥⊥⊥ T

T T T⊥⊥⊥⊥ ⊥⊥⊥⊥T ⊥⊥⊥⊥ ⊥⊥⊥⊥
∧ ⎪ T ⊥⊥⊥⊥ ⊥⊥⊥⊥ ⊥⊥⊥⊥
∨ ⎪ T T T ⊥⊥⊥⊥
⇒ ⎪ T ⊥⊥⊥⊥ T T
⇐ ⎪ T T ⊥⊥⊥⊥ T
= ⎪ T ⊥⊥⊥⊥ ⊥⊥⊥⊥ T

⎪ ⊥⊥⊥⊥ T T ⊥⊥⊥⊥

T T T T T⊥⊥⊥⊥ T⊥⊥⊥⊥T T⊥⊥⊥⊥ ⊥⊥⊥⊥ ⊥⊥⊥⊥T T ⊥⊥⊥⊥T⊥⊥⊥⊥ ⊥⊥⊥⊥ ⊥⊥⊥⊥T ⊥⊥⊥⊥ ⊥⊥⊥⊥ ⊥⊥⊥⊥
 if then else ⎪ T T ⊥⊥⊥⊥ ⊥⊥⊥⊥ T ⊥⊥⊥⊥ T ⊥⊥⊥⊥

3/23

variables are for substitution (instantiation)

• add parentheses to maintain precedence

in x ∧ y replace x by ⊥⊥⊥⊥ and y by ⊥⊥⊥⊥∨T result: ⊥⊥⊥⊥ ∧ (⊥⊥⊥⊥∨T)

• every occurrence of a variable must be replaced by the same expression

in x ∧ x replace x by ⊥⊥⊥⊥ result: ⊥⊥⊥⊥ ∧ ⊥⊥⊥⊥

• different variables can be replaced by the same expression or different expressions

in x ∧ y replace x by ⊥⊥⊥⊥ and y by ⊥⊥⊥⊥ result: ⊥⊥⊥⊥ ∧ ⊥⊥⊥⊥

in x ∧ y replace x by T and y by ⊥⊥⊥⊥ result: T ∧ ⊥⊥⊥⊥

4/23

new boolean expressions

(the grass is green)

(the sky is green)

(there is life elsewhere in the universe)

(intelligent messages are coming from space)

1 + 1 = 2

0 / 0 = 5

———————————————————————————

consistent: no boolean expression is both a theorem and an antitheorem

(no overclassified expressions)

complete: every fully instantiated boolean expression is either a theorem or an antitheorem

(no unclassified expressions)
5/23

Proof Rules

Axiom Rule If a boolean expression is an axiom, then it is a theorem.

 If a boolean expression is an antiaxiom, then it is an antitheorem.

axiom: T

antiaxiom: ⊥⊥⊥⊥

axiom: (the grass is green)

antiaxiom: (the sky is green)

axiom: (intelligent messages are coming from space)

⇒ (there is life elsewhere in the universe)

Evaluation Rule If all the boolean subexpressions of a boolean expression are classified,

 then it is classified according to the truth tables.

6/23

Proof Rules

Completion Rule If a boolean expression contains unclassified boolean subexpressions,

and all ways of classifying them place it in the same class, then it is in that class.

theorem: (there is life elsewhere in the universe) ∨ T

theorem: (there is life elsewhere in the universe)

∨ ¬(there is life elsewhere in the universe)

antitheorem: (there is life elsewhere in the universe)

∧ ¬(there is life elsewhere in the universe)

7/23

Proof Rules

Consistency Rule If a classified boolean expression contains boolean subexpressions, and

only one way of classifying them is consistent, then they are classified that way.

We are given that x and x⇒y are theorems. What is y ?

If y were an antitheorem, then by the Evaluation Rule, x⇒y would be an antitheorem.

That would be inconsistent. So y is a theorem.

We are given that ¬x is a theorem. What is x ?

If x were a theorem, then by the Evaluation Rule, ¬x would be an antitheorem.

That would be inconsistent. So x is an antitheorem.

No need to talk about antiaxioms and antitheorems.

8/23

Proof Rules

Instance Rule If a boolean expression is classified,

 then all its instances have that same classification.

axiom: x = x

theorem: x = x

theorem: T = ⊥⊥⊥⊥ ∨ ⊥⊥⊥⊥ = T = ⊥⊥⊥⊥ ∨ ⊥⊥⊥⊥

theorem: (intelligent messages are coming from space)

 = (intelligent messages are coming from space)

Classical Logic: all five rules

Constructive Logic: not Completion Rule

Evaluation Logic: neither Consistency Rule nor Completion Rule

9/23

Expression and Proof Format

a∧b ∨ c NOT a ∧ b∨c

(first part

∧ second part)

C and Java convention

while (something) {

various lines

in the body

of the loop

}

10/23

Expression and Proof Format

a∧b ∨ c NOT a ∧ b∨c

(first part

∧ second part)

first part

= second part

expression0 expression0=expression1

= expression1 means ∧ expression1=expression2

= expression2 ∧ expression2=expression3

= expression3

11/23

Expression and Proof Format

a∧b ∨ c NOT a ∧ b∨c

(first part

∧ second part)

first part

= second part

expression0 hint0

= expression1 hint1

= expression2 hint2

= expression3

12/23

Expression and Proof Format

Prove a ∧ b ⇒ c = a ⇒ (b ⇒ c)

a ∧ b ⇒ c Material Implication

= ¬(a ∧ b) ∨ c Duality

= ¬a ∨ ¬b ∨ c Material Implication

= a ⇒ ¬b ∨ c Material Implication

= a ⇒ (b ⇒ c)

Material Implication: a ⇒ b = ¬ a ∨ b

Instance of Material Implication: a ∧ b ⇒ c = ¬(a ∧ b) ∨ c

13/23

Expression and Proof Format

Prove a ∧ b ⇒ c = a ⇒ (b ⇒ c)

a ∧ b ⇒ c Material Implication

= ¬(a ∧ b) ∨ c Duality

= ¬a ∨ ¬b ∨ c Material Implication

= a ⇒ ¬b ∨ c Material Implication

= a ⇒ (b ⇒ c)

(a ∧ b ⇒ c = a ⇒ (b ⇒ c)) Material Implication 3 times

= (¬(a ∧ b) ∨ c = ¬a ∨ (¬b ∨ c)) Duality

= (¬a ∨ ¬b ∨ c = ¬a ∨ ¬b ∨ c) Reflexivity of =

= T

14/23

Monotonicity and Antimonotonicity
covariance and contravariance

varies directly as and varies inversely as

nondecreasing and nonincreasing

sorted and sorted backwards

 x≤y ⇒ f x ≤ f y x≤y ⇒ f x ≥ f y

 x

 f x

 x

 f x

15/23

Monotonicity and Antimonotonicity

numbers: x≤y x is less than or equal to y

booleans: x⇒y x implies y x is falser than or equal to y

16/23

Monotonicity and Antimonotonicity

numbers: x≤y x is less than or equal to y

 –∞ ≤ +∞ 0 ≤ 1 smaller ≤ larger

x≤y ⇒ f x ≤ f y f is monotonic

as x gets larger, f x gets larger (or equal)

x≤y ⇒ f x ≥ f y f is antimonotonic

as x gets larger, f x gets smaller (or equal)

booleans: x⇒y x implies y x is stronger than or equal to y

⊥⊥⊥⊥ ⇒ T stronger ⇒ weaker

x⇒y ⇒ f x ⇒ f y f is monotonic

as x gets weaker, f x gets weaker (or equal)

x⇒y ⇒ f x ⇐ f y f is antimonotonic

as x gets weaker, f x gets stronger (or equal)
17/23

Monotonicity and Antimonotonicity

¬a antimonotonic in a

a∧b monotonic in a monotonic in b

a∨b monotonic in a monotonic in b

a⇒b antimonotonic in a monotonic in b

a⇐b monotonic in a antimonotonic in b

if a then b else c monotonic in b monotonic in c

¬(a ∧ ¬(a∨b)) use the Law of Generalization a ⇒ a∨b

⇐ ¬(a ∧ ¬a) now use the Law of Noncontradiction

= T

18/23

Context

In a ∧ b , when changing a , we can assume b .

a ∧ b
 ↓↓↓↓
= c ∧ b

If b is T , we have assumed correctly.

If b is ⊥⊥⊥⊥ , then a ∧ b and c ∧ b are both ⊥⊥⊥⊥ , so the equation is T anyway.

19/23

Context

In a ∧ b , when changing a , we can assume b .

In a ∧ b , when changing b , we can assume a .

¬(a ∧ ¬(a∨b)) assume a to simplify ¬(a∨b)

= ¬(a ∧ ¬(T∨b)) Symmetry Law and Base Law for ∨

= ¬(a ∧ ¬T) Truth Table for ¬

= ¬(a ∧ ⊥⊥⊥⊥) Base Law for ∧

= ¬⊥⊥⊥⊥ Boolean Axiom, or Truth Table for ¬

= T

20/23

Context

In a ∧ b , when changing a , we can assume b .

In a ∧ b , when changing b , we can assume a .

In a ∨ b , when changing a , we can assume ¬b .

In a ∨ b , when changing b , we can assume ¬a .

In a ⇒ b , when changing a , we can assume ¬b .

In a ⇒ b , when changing b , we can assume a .

In a ⇐ b , when changing a , we can assume b .

In a ⇐ b , when changing b , we can assume ¬a .

In if a then b else c , when changing a , we can assume b c .

In if a then b else c , when changing b , we can assume a .

In if a then b else c , when changing c , we can assume ¬a .

21/23

Number Theory

number expressions represent quantity

number expressions

0 1 2 597 1.2 1e10 ∞

–x x+y x–y x×y x/y xy

if a then x else y

boolean expressions

x=y x y x<y x>y x≤y x≥y

22/23

Character Theory

"A" "a" " " """"

succ pred if then else

= < > ≤ ≥

23/23

