
boolean expressions:  represent anything that comes in two kinds

represent statements about the world (natural or constructed, real or imaginary)

represent digital circuits

represent human behavior

theorems:  represent one kind

represent true statements

represent circuits with high voltage output

represent innocent behavior

antitheorems:  represent the other kind

represent false statements

represent circuits with low voltage output

represent guilty behavior
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0 operands T ⊥⊥⊥⊥

1 operand ¬x

2 operands x∧y    x∨y    x⇒y    x⇐y    x=y    x y

3 operands if x then y else z

precedence and parentheses

associative operators:   ∧   ∨   =   

x ∧ y ∧ z  means either  (x ∧ y) ∧ z  or  x ∧ (y ∧ z)

x ∨ y ∨ z  means either  (x ∨ y) ∨ z  or  x ∨ (y ∨ z)

continuing operators:   ⇒  ⇐  =  

x = y = z  means  x = y  ∧  y = z

x ⇒ y ⇒ z  means  (x ⇒ y)  ∧  (y ⇒ z)

big operators:   =   ⇒  ⇐

same as   =  ⇒  ⇐   but later precedence

x = y ⇒ z  means  (x = y)  ∧  (y ⇒ z)
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truth tables

T ⊥⊥⊥⊥
¬ ⎪ ⊥⊥⊥⊥ T

T T T⊥⊥⊥⊥ ⊥⊥⊥⊥T ⊥⊥⊥⊥    ⊥⊥⊥⊥
∧ ⎪ T ⊥⊥⊥⊥ ⊥⊥⊥⊥ ⊥⊥⊥⊥
∨ ⎪ T T T ⊥⊥⊥⊥
⇒ ⎪ T ⊥⊥⊥⊥ T T
⇐ ⎪ T T ⊥⊥⊥⊥ T
= ⎪ T ⊥⊥⊥⊥ ⊥⊥⊥⊥ T

⎪ ⊥⊥⊥⊥ T T ⊥⊥⊥⊥

T T T T T⊥⊥⊥⊥ T⊥⊥⊥⊥T T⊥⊥⊥⊥    ⊥⊥⊥⊥ ⊥⊥⊥⊥T T ⊥⊥⊥⊥T⊥⊥⊥⊥ ⊥⊥⊥⊥    ⊥⊥⊥⊥T ⊥⊥⊥⊥    ⊥⊥⊥⊥    ⊥⊥⊥⊥
  if then else ⎪ T T ⊥⊥⊥⊥ ⊥⊥⊥⊥ T ⊥⊥⊥⊥ T ⊥⊥⊥⊥
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variables are for substitution (instantiation)

•  add parentheses to maintain precedence

in  x ∧ y  replace  x  by  ⊥⊥⊥⊥  and  y  by  ⊥⊥⊥⊥∨T result:  ⊥⊥⊥⊥ ∧ (⊥⊥⊥⊥∨T)

•  every occurrence of a variable must be replaced by the same expression

in  x ∧ x  replace  x  by  ⊥⊥⊥⊥ result:  ⊥⊥⊥⊥ ∧ ⊥⊥⊥⊥

•  different variables can be replaced by the same expression or different expressions

in  x ∧ y  replace  x  by  ⊥⊥⊥⊥  and  y  by  ⊥⊥⊥⊥ result:  ⊥⊥⊥⊥ ∧ ⊥⊥⊥⊥

in  x ∧ y  replace  x  by  T  and  y  by  ⊥⊥⊥⊥ result:  T ∧ ⊥⊥⊥⊥
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new boolean expressions

(the grass is green)

(the sky is green)

(there is life elsewhere in the universe)

(intelligent messages are coming from space)

1 + 1 = 2

0 / 0 = 5

———————————————————————————

consistent:  no boolean expression is both a theorem and an antitheorem

(no overclassified expressions)

complete:  every fully instantiated boolean expression is either a theorem or an antitheorem 

(no unclassified expressions)
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Proof Rules

Axiom Rule  If a boolean expression is an axiom, then it is a theorem.

      If a boolean expression is an antiaxiom, then it is an antitheorem.

axiom: T

antiaxiom: ⊥⊥⊥⊥

axiom: (the grass is green)

antiaxiom: (the sky is green)

axiom:  (intelligent messages are coming from space)

⇒ (there is life elsewhere in the universe)

Evaluation Rule  If all the boolean subexpressions of a boolean expression are classified,

      then it is classified according to the truth tables.
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Proof Rules

Completion Rule  If a boolean expression contains unclassified boolean subexpressions,

and all ways of classifying them place it in the same class, then it is in that class.

theorem: (there is life elsewhere in the universe) ∨ T

theorem: (there is life elsewhere in the universe)

∨ ¬(there is life elsewhere in the universe)

antitheorem: (there is life elsewhere in the universe)

∧ ¬(there is life elsewhere in the universe)
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Proof Rules

Consistency Rule  If a classified boolean expression contains boolean subexpressions, and 

only one way of classifying them is consistent, then they are classified that way.

We are given that  x  and  x⇒y  are theorems.  What is  y ?

If  y were an antitheorem, then by the Evaluation Rule,  x⇒y  would be an antitheorem.

That would be inconsistent.  So  y  is a theorem.

We are given that  ¬x  is a theorem.  What is  x ?

If  x  were a theorem, then by the Evaluation Rule,  ¬x  would be an antitheorem.

That would be inconsistent.  So  x  is an antitheorem.

No need to talk about antiaxioms and antitheorems.
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Proof Rules

Instance Rule  If a boolean expression is classified,

  then all its instances have that same classification.

axiom: x = x

theorem: x = x

theorem: T = ⊥⊥⊥⊥ ∨ ⊥⊥⊥⊥  =   T = ⊥⊥⊥⊥ ∨ ⊥⊥⊥⊥

theorem:   (intelligent messages are coming from space)

  = (intelligent messages are coming from space)

Classical Logic: all five rules

Constructive Logic: not Completion Rule

Evaluation Logic: neither Consistency Rule nor Completion Rule
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Expression and Proof Format

a∧b  ∨  c             NOT   a  ∧  b∨c

( first part

∧ second part    )

C and Java convention

while (something) {

various lines

in the body

of the loop

}
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Expression and Proof Format

a∧b  ∨  c             NOT   a  ∧  b∨c

( first part

∧ second part    )

first part

= second part

expression0 expression0=expression1

= expression1 means ∧ expression1=expression2

= expression2 ∧ expression2=expression3

= expression3
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Expression and Proof Format

a∧b  ∨  c             NOT   a  ∧  b∨c

( first part

∧ second part    )

first part

= second part

expression0 hint0

= expression1 hint1

= expression2 hint2

= expression3
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Expression and Proof Format

Prove   a ∧ b ⇒ c   =   a ⇒ (b ⇒ c)

a ∧ b ⇒ c Material Implication

= ¬(a ∧ b) ∨ c Duality

= ¬a ∨ ¬b ∨ c Material Implication

= a ⇒ ¬b ∨ c Material Implication

= a ⇒ (b ⇒ c)

Material Implication: a ⇒ b =  ¬ a ∨ b

Instance of Material Implication: a ∧ b ⇒ c =  ¬(a ∧ b) ∨ c
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Expression and Proof Format

Prove   a ∧ b ⇒ c   =   a ⇒ (b ⇒ c)

a ∧ b ⇒ c Material Implication

= ¬(a ∧ b) ∨ c Duality

= ¬a ∨ ¬b ∨ c Material Implication

= a ⇒ ¬b ∨ c Material Implication

= a ⇒ (b ⇒ c)

(a ∧ b ⇒ c  =  a ⇒ (b ⇒ c)) Material Implication 3 times

= (¬(a ∧ b) ∨ c  =  ¬a ∨ (¬b ∨ c)) Duality

= (¬a ∨ ¬b ∨ c  =  ¬a ∨ ¬b ∨ c) Reflexivity of  =

= T

14/23



Monotonicity and Antimonotonicity
covariance and contravariance

varies directly as and varies inversely as

nondecreasing and nonincreasing

sorted and sorted backwards

                       x≤y  ⇒   f x ≤ f y                                     x≤y  ⇒   f x ≥ f y

           x

 f x

                x

 f x
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Monotonicity and Antimonotonicity

numbers: x≤y x  is less than or equal to  y

booleans: x⇒y x  implies  y             x  is falser than or equal to  y
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Monotonicity and Antimonotonicity

numbers: x≤y x  is less than or equal to  y

 –∞ ≤ +∞     0 ≤ 1 smaller ≤ larger

x≤y  ⇒  f x ≤ f y f  is monotonic

as  x  gets larger,  f x  gets larger (or equal)

x≤y  ⇒  f x ≥ f y f  is antimonotonic

as  x  gets larger,  f x  gets smaller (or equal)

booleans: x⇒y x  implies  y             x  is stronger than or equal to  y

⊥⊥⊥⊥ ⇒ T stronger ⇒ weaker

x⇒y  ⇒  f x ⇒ f y f  is monotonic

as  x  gets weaker,  f x  gets weaker (or equal)

x⇒y  ⇒  f x ⇐ f y f  is antimonotonic

as  x  gets weaker,  f x  gets stronger (or equal)
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Monotonicity and Antimonotonicity

¬a antimonotonic in  a

a∧b monotonic in  a monotonic in  b

a∨b monotonic in  a monotonic in  b

a⇒b antimonotonic in  a monotonic in  b

a⇐b monotonic in  a antimonotonic in  b

if a then b else c monotonic in  b monotonic in  c

¬(a ∧ ¬(a∨b)) use the Law of Generalization  a ⇒ a∨b

⇐ ¬(a ∧ ¬a) now use the Law of Noncontradiction

= T
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Context

In  a ∧ b , when changing  a , we can assume  b .

a ∧ b
              ↓↓↓↓
= c ∧ b

If  b  is  T , we have assumed correctly.

If  b  is  ⊥⊥⊥⊥ , then  a ∧ b  and  c ∧ b  are both  ⊥⊥⊥⊥ , so the equation is  T  anyway.
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Context

In  a ∧ b , when changing  a , we can assume  b .

In  a ∧ b , when changing  b , we can assume  a .

¬(a ∧ ¬(a∨b)) assume  a  to simplify  ¬(a∨b)
         

= ¬(a ∧ ¬(T∨b)) Symmetry Law and Base Law for  ∨

= ¬(a ∧ ¬T) Truth Table for  ¬

= ¬(a ∧ ⊥⊥⊥⊥) Base Law for  ∧

= ¬⊥⊥⊥⊥ Boolean Axiom, or Truth Table for  ¬

= T
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Context

In  a ∧ b , when changing  a , we can assume  b .

In  a ∧ b , when changing  b , we can assume  a .

In  a ∨ b , when changing  a , we can assume  ¬b .

In  a ∨ b , when changing  b , we can assume  ¬a .

In  a ⇒ b , when changing  a , we can assume  ¬b .

In  a ⇒ b , when changing  b , we can assume  a .

In  a ⇐ b , when changing  a , we can assume  b .

In  a ⇐ b , when changing  b , we can assume  ¬a .

In  if a then b else c , when changing  a , we can assume  b c .

In  if a then b else c , when changing  b , we can assume  a .

In  if a then b else c , when changing  c , we can assume  ¬a .
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Number Theory

number expressions represent quantity

number expressions

0     1     2     597     1.2     1e10     ∞

–x     x+y     x–y     x×y     x/y     xy

if a then x else y

boolean expressions

x=y     x y     x<y     x>y     x≤y     x≥y
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Character Theory

"A"            "a"              " "                 """"

succ           pred            if then else

=          <     >     ≤     ≥
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