boolean expressions: represent anything that comes in two kinds
represent statements about the world (natural or constructed, real or imaginary) represent digital circuits represent human behavior
theorems: represent one kind represent true statements represent circuits with high voltage output represent innocent behavior
antitheorems: represent the other kind represent false statements
represent circuits with low voltage output represent guilty behavior
0 operands \quad T \perp
1 operand $\neg x$

2 operands $\quad x \wedge y \quad x \vee y \quad x \Rightarrow y \quad x \Leftarrow y \quad x=y \quad x \neq y$
3 operands if x then y else z
precedence and parentheses
associative operators: $\wedge ~ \vee ~=~=$

```
x\wedgey^z means either (x\wedge y)^z or }x\wedge(y\wedgez
x\vee y\veez means either ( }x\veey)\veez\mathrm{ or }x\vee(y\veez
```

continuing operators: $\Rightarrow \Leftarrow=\neq$

$$
\begin{aligned}
& x=y=z \text { means } x=y \wedge y=z \\
& x \Rightarrow y \Rightarrow z \text { means }(x \Rightarrow y) \wedge(y \Rightarrow z)
\end{aligned}
$$

big operators: $=\Rightarrow \Leftarrow$

$$
\text { same as }=\Rightarrow \Leftarrow \text { but later precedence }
$$

$$
x=y \Rightarrow z \text { means }(x=y) \wedge(y \Rightarrow z)
$$

truth tables

$$
\begin{aligned}
& \rightarrow \begin{array}{c}
\mathrm{T} \\
\hline \\
\hline
\end{array} \\
&
\end{aligned}
$$

variables are for substitution (instantiation)

- add parentheses to maintain precedence

$$
\text { in } x \wedge y \text { replace } x \text { by } \perp \text { and } y \text { by } \perp \vee T \quad \text { result: } \perp \wedge(\perp \vee T)
$$

- every occurrence of a variable must be replaced by the same expression in $x \wedge x$ replace x by $\perp \quad$ result: $\perp \wedge \perp$
- different variables can be replaced by the same expression or different expressions

```
in x}\wedgey\mathrm{ replace }x\mathrm{ by }\perp\mathrm{ and }y\mathrm{ by }\perp\quad\mathrm{ result: }\perp\wedge
in }x\wedgey\mathrm{ replace }x\mathrm{ by T and y by }\perp\quad\mathrm{ result: T }\wedge
```


new boolean expressions

(the grass is green)
(the sky is green)
(there is life elsewhere in the universe)
(intelligent messages are coming from space)
$1+1=2$
$0 / 0=5$
consistent: no boolean expression is both a theorem and an antitheorem (no overclassified expressions)
complete: every fully instantiated boolean expression is either a theorem or an antitheorem (no unclassified expressions)

Proof Rules

Axiom Rule If a boolean expression is an axiom, then it is a theorem.
If a boolean expression is an antiaxiom, then it is an antitheorem.
axiom: $\quad \mathrm{T}$
antiaxiom: \perp
axiom: (the grass is green)
antiaxiom: (the sky is green)
axiom: (intelligent messages are coming from space)
$\Rightarrow \quad$ (there is life elsewhere in the universe)

Evaluation Rule If all the boolean subexpressions of a boolean expression are classified, then it is classified according to the truth tables.

Proof Rules

Completion Rule If a boolean expression contains unclassified boolean subexpressions, and all ways of classifying them place it in the same class, then it is in that class.
theorem: (there is life elsewhere in the universe) $\vee \mathrm{T}$
theorem: (there is life elsewhere in the universe)
$\vee \quad \neg$ (there is life elsewhere in the universe)
antitheorem: (there is life elsewhere in the universe)
$\wedge \quad \neg$ (there is life elsewhere in the universe)

Proof Rules

Consistency Rule If a classified boolean expression contains boolean subexpressions, and only one way of classifying them is consistent, then they are classified that way.

We are given that x and $x \Rightarrow y$ are theorems. What is y ?
If y were an antitheorem, then by the Evaluation Rule, $x \Rightarrow y$ would be an antitheorem.
That would be inconsistent. So y is a theorem.

We are given that $\neg x$ is a theorem. What is x ?
If x were a theorem, then by the Evaluation Rule, $\neg x$ would be an antitheorem.
That would be inconsistent. So x is an antitheorem.

No need to talk about antiaxioms and antitheorems.

Proof Rules

```
Instance Rule If a boolean expression is classified, then all its instances have that same classification.
axiom: \(\quad x=x\)
theorem: \(\quad x=x\)
theorem: \(\quad \mathrm{T}=\perp \vee \perp=\mathrm{T}=\perp \vee \perp\)
theorem: (intelligent messages are coming from space)
\(=(\) intelligent messages are coming from space \()\)
Classical Logic: all five rules
Constructive Logic: not Completion Rule
Evaluation Logic: neither Consistency Rule nor Completion Rule
```


Expression and Proof Format

$a \wedge b \vee c \quad$ NOT $a \wedge b v c$

(first part
\wedge second part)

C and Java convention

```
while (something) {
    various lines
    in the body
    of the loop
}
```


Expression and Proof Format

$a \wedge b \vee c \quad$ NOT $a \wedge b \vee c$
(first part
\wedge second part)
first part
$=$ second part

	expression0		expression $0=$ expression 1
$=$	expression 1	$\wedge \quad$ expression $1=$ expression 2	

Expression and Proof Format

$a \wedge b \vee c \quad$ NOT $a \wedge b v c$
(first part
\wedge second part)
first part
$=$ second part

	expression0
$=$	expression 1
$=$	expression 2
$=$	expression 3

Expression and Proof Format

	$a \wedge b \Rightarrow c$	Material Implication
$=$	$\neg(a \wedge b) \vee c$	Duality
$=$	$\neg a \vee \neg b \vee c$	Material Implication
$=$	$a \Rightarrow \neg b \vee c$	Material Implication
$=$	$a \Rightarrow(b \Rightarrow c)$	

Material Implication:
Instance of Material Implication: $\overline{a \wedge b} \Rightarrow \frac{1}{c}=\neg \overline{(a \wedge b)} \vee \frac{1}{c}$

Expression and Proof Format

	$a \wedge b \Rightarrow c$	Material Implication
=	$\neg(a \wedge b) \vee c$	Duality
=	$\neg a \vee \neg b \vee c$	Material Implication
=	$a \Rightarrow \neg b \vee c$	Material Implication
$=$	$a \Rightarrow(b \Rightarrow c)$	
	$(a \wedge b \Rightarrow c=a \Rightarrow(b \Rightarrow c))$	Material Implication 3 times
$=$	$(\neg(a \wedge b) \vee c=\neg a \vee(\neg b \vee c))$	Duality
	$(\neg a \vee \neg b \vee c=\neg a \vee \neg b \vee c)$	Reflexivity of $=$
$=$	T	

Monotonicity and Antimonotonicity

covariance	and	contravariance
varies directly as	and	varies inversely as
nondecreasing	and	nonincreasing
sorted	and	sorted backwards

$$
x \leq y \Rightarrow f x \leq f y
$$

$$
x \leq y \Rightarrow f x \geq f y
$$

Monotonicity and Antimonotonicity

numbers: $\quad x \leq y$
x is less than or equal to y
booleans: $\quad x \Rightarrow y$
x implies y
x is falser than or equal to y

Monotonicity and Antimonotonicity

n

$x \leq y$	x is less than or equal to y
$-\infty \leq+\infty \quad 0 \leq 1$	smaller \leq larger
$x \leq y \Rightarrow f x \leq f y$	f is monotonic

as x gets larger, $f x$ gets larger (or equal)
$x \leq y \Rightarrow f x \geq f y \quad f$ is antimonotonic
as x gets larger, $f x$ gets smaller (or equal)
booleans: $\quad x \Rightarrow y$
$\perp \Rightarrow T$
x implies $y \quad x$ is stronger than or equal to y
$x \Rightarrow y \Rightarrow f x \Rightarrow f y \quad f$ is monotonic
as x gets weaker, $f x$ gets weaker (or equal)
$x \Rightarrow y \Longrightarrow f x \Leftarrow f y \quad f$ is antimonotonic
as x gets weaker, $f x$ gets stronger (or equal)

Monotonicity and Antimonotonicity

$\neg a$
$a \wedge b$
$a \vee b$
$a \Rightarrow b$
$a \Leftarrow b$
if a then b else c
$\neg(a \wedge \neg(a \vee b))$
$\Leftarrow \quad \neg(a \wedge \neg a)$
$=\quad \mathrm{T}$
antimonotonic in a monotonic in a monotonic in a
antimonotonic in a monotonic in a monotonic in b
use the Law of Generalization $a \Rightarrow a \vee b$ now use the Law of Noncontradiction

Context

In $a \wedge b$, when changing a, we can assume b.
$a \wedge b$
\downarrow
\downarrow
$c \wedge b$

If b is T , we have assumed correctly.
If b is \perp, then $a \wedge b$ and $c \wedge b$ are both \perp, so the equation is T anyway.

Context

In $a \wedge b$, when changing a, we can assume b.
In $a \wedge b$, when changing b, we can assume a.

$$
\begin{array}{ll}
& \neg(a \wedge \neg(a \vee b)) \\
= & \neg(a \wedge \neg(\mathrm{~T} \vee b)) \\
= & \neg(a \wedge \neg \mathrm{~T}) \\
= & \neg(a \wedge \perp) \\
= & \neg \perp \\
= & \mathrm{T}
\end{array}
$$

Context

In $a \wedge b$, when changing a, we can assume b.
In $a \wedge b$, when changing b, we can assume a.
In $a \vee b$, when changing a, we can assume $\neg b$.
In $a \vee b$, when changing b, we can assume $\neg a$.
In $a \Rightarrow b$, when changing a, we can assume $\neg b$.
In $a \Rightarrow b$, when changing b, we can assume a.
In $a \Leftarrow b$, when changing a, we can assume b.
In $a \Leftarrow b$, when changing b, we can assume $\neg a$.
In if a then b else c, when changing a, we can assume $b \neq c$.
In if a then b else c, when changing b, we can assume a.
In if a then b else c, when changing c, we can assume $\neg a$.

Number Theory

number expressions represent quantity
number expressions

$$
\begin{array}{lllllll}
0 & 1 & 2 & 597 & 1.2 & 1 \mathrm{e} 10 & \infty \\
-x & x+y & x-y & x \times y & x / y & x y
\end{array}
$$

if a then x else y
boolean expressions

```
x=y x}=y\quadx<y\quadx>y\quadx\leqy x\geqy
```


Character Theory

"A"	"a"	" "
succ	pred	if then else

