boolean expressions: represent anything that comes in two kinds

represent statements about the world (natural or constructed, real or imaginary) represent digital circuits represent human behavior

theorems: represent one kind

represent true statements represent circuits with high voltage output represent innocent behavior

antitheorems: represent the other kind

represent false statements

represent circuits with low voltage output

represent guilty behavior

0 operands T \perp 1 operand $\neg x$ 2 operands $x \land y \ x \lor y \ x \Rightarrow y \ x \leftarrow y \ x = y \ x \neq y$ 3 operands if x then y else z precedence and parentheses associative operators: $\land \lor = \neq$ $x \land y \land z$ means either $(x \land y) \land z$ or $x \land (y \land z)$

 $x \lor y \lor z$ means either $(x \lor y) \lor z$ or $x \lor (y \lor z)$

continuing operators: $\Rightarrow \Leftarrow = \pm$

x = y = z means $x = y \land y = z$

 $x \Rightarrow y \Rightarrow z$ means $(x \Rightarrow y) \land (y \Rightarrow z)$

big operators: = $\Rightarrow \Leftarrow$

same as $\Rightarrow \Leftarrow$ but later precedence

 $x = y \Longrightarrow z$ means $(x = y) \land (y \Longrightarrow z)$

truth tables

variables are for substitution (instantiation)

• add parentheses to maintain precedence

in $x \land y$ replace x by \bot and y by $\bot \lor T$ result: $\bot \land (\bot \lor T)$

• every occurrence of a variable must be replaced by the same expression

in $x \wedge x$ replace x by \bot result: $\bot \wedge \bot$

• different variables can be replaced by the same expression or different expressions

in $x \wedge y$ replace x by \bot and y by \bot	result: ⊥∧⊥
in $x \wedge y$ replace x by T and y by \bot	result: T ∧ ⊥

new boolean expressions

(the grass is green)

(the sky is green)

(there is life elsewhere in the universe)

(intelligent messages are coming from space)

1 + 1 = 20 / 0 = 5

consistent: no boolean expression is both a theorem and an antitheorem

(no overclassified expressions)

complete: every fully instantiated boolean expression is either a theorem or an antitheorem (no unclassified expressions)

Axiom Rule If a boolean expression is an axiom, then it is a theorem.

If a boolean expression is an antiaxiom, then it is an antitheorem.

- axiom: T
- antiaxiom: **L**
- axiom: (the grass is green)
- antiaxiom: (the sky is green)

axiom: (intelligent messages are coming from space)

 \Rightarrow (there is life elsewhere in the universe)

Evaluation Rule If all the boolean subexpressions of a boolean expression are classified, then it is classified according to the truth tables.

Completion Rule If a boolean expression contains unclassified boolean subexpressions,

and all ways of classifying them place it in the same class, then it is in that class.

theorem: (there is life elsewhere in the universe) $\vee T$

theorem: (there is life elsewhere in the universe)

 \vee \neg (there is life elsewhere in the universe)

antitheorem: (there is life elsewhere in the universe)

 \wedge \neg (there is life elsewhere in the universe)

Consistency Rule If a classified boolean expression contains boolean subexpressions, and only one way of classifying them is consistent, then they are classified that way.

We are given that x and $x \Rightarrow y$ are theorems. What is y?

If y were an antitheorem, then by the Evaluation Rule, $x \Rightarrow y$ would be an antitheorem. That would be inconsistent. So y is a theorem.

We are given that $\neg x$ is a theorem. What is x?

If x were a theorem, then by the Evaluation Rule, $\neg x$ would be an antitheorem.

That would be inconsistent. So x is an antitheorem.

No need to talk about antiaxioms and antitheorems.

Instance Rule If a boolean expression is classified,

then all its instances have that same classification.

axiom: x = xtheorem: x = xtheorem: $T = \bot \lor \bot = T = \bot \lor \bot$ theorem: (intelligent messages are coming from space)= (intelligent messages are coming from space)

Classical Logic:all five rulesConstructive Logic:not Completion RuleEvaluation Logic:neither Consistency Rule nor Completion Rule

 $a \wedge b \vee c$ **NOT** $a \wedge b \vee c$

(first part

 \land second part)

C and Java convention

while (something) {
various lines
in the body
of the loop

}

 $a \wedge b \vee c$ **NOT** $a \wedge b \vee c$

- (first part
- \wedge second part)

first part

= second part

expression0

- = *expression1* means
- = *expression2*
- *= expression3*

expression0=expression1

- ∧ *expression1=expression2*
- ∧ expression2=expression3

 $a \wedge b \vee c$ **NOT** $a \wedge b \vee c$

(first part

 \land second part)

first part

= second part

expression0

= *expression1*

= *expression2*

= *expression3*

hint0 hint1 hint2

Prove $a \land b \Rightarrow c = a \Rightarrow (b \Rightarrow c)$

	$a \land b \Rightarrow c$	Material Implication
=	$\neg(a \land b) \lor c$	Duality
=	$\neg a \lor \neg b \lor c$	Material Implication
=	$a \Rightarrow \neg b \lor c$	Material Implication

 $= \qquad a \Rightarrow (b \Rightarrow c)$

Material Implication: $a \Rightarrow b = \neg a \lor b$ $a \lor b$ Instance of Material Implication: $a \land b \Rightarrow c = \neg(a \land b) \lor c$

Prove $a \land b \Rightarrow c = a \Rightarrow (b \Rightarrow c)$

	$a \land b \Rightarrow c$	Material Implication
=	$\neg(a \land b) \lor c$	Duality
=	$\neg a \lor \neg b \lor c$	Material Implication
=	$a \Rightarrow \neg b \lor c$	Material Implication

$$= a \Rightarrow (b \Rightarrow c)$$

$$(a \land b \Rightarrow c = a \Rightarrow (b \Rightarrow c))$$
$$(\neg (a \land b) \lor c = \neg a \lor (\neg b \lor c))$$
$$(\neg a \lor \neg b \lor c = \neg a \lor \neg b \lor c)$$

Material Implication 3 times Duality Reflexivity of =

= T

=

 \equiv

covariance	and	contravariance
varies directly as	and	varies inversely as
nondecreasing	and	nonincreasing
sorted	and	sorted backwards

> x

 $x \leq y \implies f x \leq f y$

fx

numbers: $x \le y$

x is less than or equal to y

booleans: $x \Rightarrow y$

x implies y x is falser than or equal to y

numbers:	$x \leq y$	x is less than or equal to y
	$-\infty \le +\infty$ $0 \le 1$	smaller ≤ larger
	$x {\leq} y \implies f x {\leq} f y$	f is monotonic
		as x gets larger, fx gets larger (or equal)
	$x {\leq} y \implies f x {\geq} f y$	f is antimonotonic
		as x gets larger, fx gets smaller (or equal)
booleans:	$x \Rightarrow y$	x implies y x is stronger than or equal to y
	$\bot \Rightarrow T$	stronger \Rightarrow weaker
	$x \Rightarrow y \implies f x \Rightarrow f y$	f is monotonic
		as x gets weaker, fx gets weaker (or equal)
	$x \Rightarrow y \implies f x \Leftarrow f y$	f is antimonotonic
		as x gets weaker, fx gets stronger (or equal)

$\neg a$	antimonotonic in a	
$a \wedge b$	monotonic in a	monotonic in b
$a \lor b$	monotonic in a	monotonic in b
$a \Rightarrow b$	antimonotonic in a	monotonic in b
a⇐b	monotonic in a	antimonotonic in b
if a then b else c	monotonic in b	monotonic in c

	$\neg(a \land \neg(a \lor b))$	use the Law of Generalization $a \Rightarrow a \lor b$
:	$\neg(a \land \neg a)$	now use the Law of Noncontradiction
	Т	

 \Leftarrow

=

Context

In $a \wedge b$, when changing a, we can assume b.

- If b is T, we have assumed correctly.
- If b is \bot , then $a \land b$ and $c \land b$ are both \bot , so the equation is T anyway.

Context

In $a \wedge b$, when changing a, we can assume b.

In $a \wedge b$, when changing b, we can assume a.

	$\neg(a \land \neg(a \lor b))$	assume a to simplify $\neg(a \lor b)$
=	$\neg(a \land \neg(T \lor b))$	Symmetry Law and Base Law for v
=	$\neg(a \land \neg T)$	Truth Table for \neg
=	$\neg(a \land \bot)$	Base Law for \wedge
=	$\neg \bot$	Boolean Axiom, or Truth Table for \neg
=	Т	

Context

In $a \wedge b$, when changing a, we can assume b.

In $a \wedge b$, when changing b, we can assume a.

In $a \lor b$, when changing a, we can assume $\neg b$.

In $a \lor b$, when changing b, we can assume $\neg a$.

In $a \Rightarrow b$, when changing a, we can assume $\neg b$.

In $a \Rightarrow b$, when changing b, we can assume a.

In $a \leftarrow b$, when changing a, we can assume b.

In $a \leftarrow b$, when changing b, we can assume $\neg a$.

In if a then b else c, when changing a, we can assume $b \neq c$.

In if a then b else c, when changing b, we can assume a.

In if a then b else c, when changing c, we can assume $\neg a$.

Number Theory

number expressions represent quantity

number expressions

0 1 2 597 1.2 1e10 ∞

-x x+y x-y $x \times y$ x/y xy

if *a* then *x* else *y*

boolean expressions

x=y $x\neq y$ x<y x>y $x\leq y$ $x\geq y$

Character Theory

"A" "a" "" """

succ pred if then else

= = < > < >