
Independent Composition
Dependent Composition P.Q (sequential execution)

P and Q must have exactly the same state variables

Independent Composition P||Q (parallel execution)

P and Q must have completely different state variables

and the state variables of the composition are those of both P and Q

Ignoring time and space variables

P||Q = P∧Q

1/21

Independent Composition
example in integer variables x , y , and z

x:= x+1 || y:= y+2 partition the variables:

put x in left part, put y and z in right part

= x′ = x+1 || y′ = y+2 ∧ z′=z

= x′ = x+1 ∧ y′ = y+2 ∧ z′=z

reasonable partition rule

If either x′ or x:= appears in a process specification, then x belongs to that process

(then neither x′ nor x:= can appear in the other process specification).

If neither x′ nor x:= appears at all, then x can be placed on either side of the partition.

2/21

Independent Composition
example in variables x , y , and z

x:= y || y:= x partition: put x in left, y in right, z in either

= x′=y ∧ y′=x ∧ z′=z

implementation of a process makes a private copy of the initial value of a variable belonging

to the other process if the other process contains an assignment to that variable

3/21

Independent Composition
example in boolean variable b and integer variable x

b:= x=x || x:= x+1 replace x=x by T

= b:= T || x:= x+1

example in integer variables x and y

(x:= x+1. x:= x–1) || y:= x

= ok || y:= x

= y:= x

4/21

Independent Composition
(x:= x+y. x:= x×y) || (y:= x–y. y:= x/y)

5/21

Independent Composition
(x:= x+y. x:= x×y) || (y:= x–y. y:= x/y)

You should have written

(x:= x+y || y:= x–y). (x:= x×y || y:= x/y)

6/21

Independent Composition
P||Q = ∃tP, tQ· (substitute tP for t′ in P)

∧ (substitute tQ for t′ in Q)

∧ t′ = max tP tQ

laws
(x:= e || y:= f). P = (for x substitute e and independently for y substitute f in P)

P || Q = Q || P symmetry

P || (Q || R) = (P || Q) || R associativity

P || ok = ok || P = P identity

P || Q∨R = (P || Q) ∨ (P || R) distributivity

P || if b then Q else R = if b then (P || Q) else (P || R) distributivity

if b then (P||Q) else (R||S) = if b then P else R || if b then Q else S distributivity

7/21

List Concurrency
Li:= e = L′i=e ∧ (∀j: 0,..#L· j i ⇒ L′j=Lj) ∧ x′=x ∧ y′=y ∧ ...

Li:= e = L′i=e ∧ (∀j: (this part)· j i ⇒ L′j=Lj) ∧ x′=x ∧ ...

example find the maximum item in a nonempty list

findmax 0 (#L) where

findmax = 〈i, j → i<j ⇒ L′ i = MAX L [i;..j]〉

findmax i j ⇐ if j–i = 1 then ok

else ((findmax i (div (i+j) 2) || findmax (div (i+j) 2) j).

L i := max (L i) (L (div (i+j) 2)))

recursive time = ceil (log (j–i))

8/21

Sequential to Parallel Transformation

x:= y. x:= x+1. z:= y

= x:= y. (x:= x+1 || z:= y)

= (x:= y. x:= x+1) || z:= y

start x:= y x:= x+1 z:= y finish

start finishx:= y

z:= y

x:= x+1

x:= x+1

start

x:= y

z:= y

finish

9/21

Sequential to Parallel Transformation

rules

Whenever two programs occur in sequence, and neither assigns to a variable appearing in the

other, they can be placed in parallel.

example x:= z. y:= z becomes x:= z || y:= z

Whenever two programs occur in sequence, and neither assigns to a variable assigned in the

other, and no variable assigned in the first appears in the second, they can be placed in

parallel; a copy must be made of the initial value of any variable appearing in the first and

assigned in the second.

example x:= y. y:= z becomes c:= y. (x:= c || y:= z)
10/21

Buffer

produce = ········b:= e········

consume = ········x:= b········

control = produce. consume. control

P C P C P C P C

11/21

Buffer

produce = ········b:= e········

consume = ········x:= b········

control = produce. newcontrol

newcontrol = consume. produce. newcontrol

12/21

Buffer

produce = ········b:= e········

consume = ········x:= b········

control = produce. newcontrol

newcontrol = (consume || produce). newcontrol

13/21

Buffer

produce = ········b:= e········

consume = ········x:= c········

control = produce. newcontrol

newcontrol = c:= b. (consume || produce). newcontrol

P

 B

P

 B

C

P

 B

C

P

 B

C

P

 B

C

P

 B

C

P

 B

C C

14/21

Buffer

produce = ········b w:= e. w:= w+1········

consume = ········x:= b r. r:= r+1········

control = w:= 0. r:= 0. newcontrol

newcontrol = produce. consume. newcontrol

P P P P P P P P P P

CC C C C C C C C

15/21

Buffer

produce = ········b w:= e. w:= mod (w+1) n········

consume = ········x:= b r. r:= mod (r+1) n········

control = w:= 0. r:= 0. newcontrol

newcontrol = produce. consume. newcontrol

P P P P P P P P P P

C C C C C C C C C

16/21

Insertion Sort

define

sort = 〈n → ∀i, j: 0,..n· i≤j ⇒ L i ≤ L j〉

swap = 〈i, j: 0,..#L → L i:= L j || L j:= L i〉

sort′ (#L) ⇐ sort 0 ⇒ sort′ (#L)

sort 0 ⇒ sort′ (#L) ⇐ for n:= 0;..#L do sort n ⇒ sort′ (n+1)

sort n ⇒ sort′ (n+1) ⇐

if n=0 then ok

else if L (n–1) ≤ L n then ok

else (swap (n–1) n. sort (n–1) ⇒ sort′ n)

[L 0 ; L 1 ; L 2 ; L 3 ; L 4]
0 1 2 3 4 5

17/21

Insertion Sort

C 1 S 1

C 2 S 2 C 1 S 1

C 3 S 3 C 2 S 2 C 1 S 1

C 4 S 4 C 3 S 3 C 2 S 2 C 1 S 1

If abs (i–j) > 1 then S i and S j in parallel

If abs (i–j) > 1 then S i and C j in parallel

C i and C j in parallel

C 1 S 1 C 1 S 1 C 1 S 1 C 1 S 1
C 2 S 2 C 2 S 2 C 2 S 2

C 3 S 3 C 3 S 3
C 4 S 4

18/21

Dining Philosophers

19/21

Dining Philosophers

life = (P 0 ∨ P 1 ∨ P 2 ∨ P 3 ∨ P 4). life

P i = up i. up(i+1). eat i. down i. down(i+1)

up i = chopstick i:= T

down i = chopstick i:= ⊥

eat i = ······chopstick i······chopstick(i+1)······

If i j , (up i. up j) becomes (up i || up j) .
If i j , (up i. down j) becomes (up i || down j) .
If i j , (down i. up j) becomes (down i || up j) .
If i j , (down i. down j) becomes (down i || down j) .
If i j ∧ i+1 j , (eat i. up j) becomes (eat i || up j) .
If i j ∧ i j+1 , (up i. eat j) becomes (up i || eat j) .
If i j ∧ i+1 j , (eat i. down j) becomes (eat i || down j) .
If i j ∧ i j+1 , (down i. eat j) becomes (down i || eat j) .
If i j ∧ i+1 j ∧ i j+1 , (eat i. eat j) becomes (eat i || eat j) .

20/21

Dining Philosophers

life = (P 0 ∨ P 1 ∨ P 2 ∨ P 3 ∨ P 4). life

P i = up i. up(i+1). eat i. down i. down(i+1)

up i = chopstick i:= T

down i = chopstick i:= ⊥

eat i = ······chopstick i······chopstick(i+1)······

life = P 0 || P 1 || P 2 || P 3 || P 4

P i = (up i || up(i+1)). eat i. (down i || down(i+1)). P i

21/21

