Independent Composition

Dependent Composition P.Q (sequential execution)

P and Q must have exactly the same state variables

Independent Composition P||Q (parallel execution)
P and Q must have completely different state variables

and the state variables of the composition are those of both P and Q

Ignoring time and space variables

P[0 = PAQ

1/21

Independent Composition

example in integer variables x ,y ,and z
xi=x+1 || yi=y+2 partition the variables:
put x in left part, put y and z in right part
= X'=x+l || Y =y+2 A Z'=2

= X'=x+1 A Y =y+2 A 7=z
reasonable partition rule

If either X' or x:= appears in a process specification, then x belongs to that process
(then neither x' nor x:= can appear in the other process specification).

If neither x' nor x:= appears at all, then x can be placed on either side of the partition.

2/21

Independent Composition

example in variables x ,y ,and z

x=yly=x partition: put x inleft, y inright, z in either

X'=y Ay'=x A=z

implementation of a process makes a private copy of the initial value of a variable belonging

to the other process if the other process contains an assignment to that variable

3/21

Independent Composition

example in boolean variable » and integer variable x

b:=x=x || x:=x+1 replace x=x by T

b=T | x:=x+1

example in integer variables x and y
(c=x+1. xi=x-1) || y:i=x
= ok || y:=x

= yi=X

4/21

Independent Composition

(= x+y. x:i=xxy) || (= x-y. yi=xly)

5/21

Independent Composition

(= x+y. x:i=xxy) || (= x-y. yi=xly)

You should have written

(=x+y || yi=x-y). (e=xxy || yi=xly)

6/21

Independent Composition

P|Q = 3P, Q- (substitute tP for ¢ in P)
A (substitute tQ for ¢ in Q)

A t'=max tP tQ

laws

(x:=el||y:=f). P = (for x substitute e and independently for y substitute f in P)

PllQ =0Q]|P symmetry
Pll@|R = ®P|OI|R associativity
Pl|lok = ok|P =P identity
P||QvR = (P||Q) Vv (P| R distributivity
P || if b then Q else R = if b then (P || Q) else (P || R) distributivity

if b then (P||Q) else (R||S) = if b then P else R || if b then Q else S distributivity

7/21

List Concurrency

Li=e = Lize n (VJ:0,.#L j¥i= L'j=Lj) A x'=x A y'=y A ...

Li:=e¢

L'i=e A (Vj: (this part): j+i = L'j=Lj) A x'=x A ...
example find the maximum item in a nonempty list
findmax 0 (#L) where

findmax = (i,j—i<j= L' i=MAXL [i.Jj])

findmaxij < if j—i =1 then ok

else ((findmax i (div (i+)) 2) || findmax (div (i+j) 2) j).

Li:=max (Li) (L (div (i+)) 2)))

recursive time = ceil (log (j—i))

8/21

Sequential to Parallel Transformation

x=y. xi=x+1l. zi=y

= x=y. (x=x+1 || z=y)

(x:=y. xi=x+1) || z=y

start ——> xi=y ——>xi=x+1—> z:=y ———> finish

start ——> x:i=y / \ finish

start

9/21

Sequential to Parallel Transformation
rules

Whenever two programs occur in sequence, and neither assigns to a variable appearing in the

other, they can be placed in parallel.
example x=z y=z becomes x=z]| y=z

Whenever two programs occur in sequence, and neither assigns to a variable assigned in the
other, and no variable assigned in the first appears in the second, they can be placed in
parallel; a copy must be made of the initial value of any variable appearing in the first and

assigned in the second.

example x=y. y:=z becomes ci=y. (xi=c | y:=2)
10/21

Buffer

produce = <o D= @reeeees
COnSume = """"" x:: b --------
control = produce. consume. control

~o
N
A
NZ
~o
N
)
NZ
~
%
)
y
~
y
)
\Z

11/21

Buffer

produce = <o D= @reeeees
COnSume = """"" x:: b --------
control = produce. newcontrol

newcontrol = consume. produce. newcontrol

12/21

Buffer

produce = <o D= @reeeees
COnSume = """"" x:: b --------
control = produce. newcontrol

newcontrol = (consume || produce). newcontrol

13/21

Buffer

produce — reeeens b= eeeeeees

CONSUNIE = ++overes X e

control = produce. newcontrol

newcontrol = c¢:=b. (consume || produce). newcontrol

\/\/\/\/\/\/\/
\/\/\/\/\/\/\/

14/21

produce = - bw=-e. wi=w+l:
consume = e xi=br. ri=r+l-

control = w:=0. r:=0. newcontrol
newcontrol = produce. consume. newcontrol

P >p P >P P >P P P P P
N N N N N N N N
c —>C >C >C >C >C >C———>C—>C

15/21

Buffer

produce = oo bw:=e. w:=mod (W+1) n-++++
consume = ‘e x=br. rr=mod (r+1) n--
control = w:=0. r:=0. newcontrol
newcontrol = produce. consume. newcontrol

\X/NNNNN \i\

16/21

Insertion Sort

define
sort = (n—=>Vi,j:0,.nisj=Li<Lj)

swap = (i,j:0,.#L— Li:=Lj| Lj:=L1)

sort' (#L) <= sort 0 = sort’ (#L)

sort 0 = sort’ (#L) < for n:=0;.#L do sort n = sort’ (n+1)

sort n = sort' (n+l) <=
if n=0 then ok
else if L (n—1) < L n then ok

else (swap (n—1) n. sort (n—1) = sort' n)

[LO ;L1 ;L2 ;L3 ;L4]

0 1 2 3 4 5
17/21

Insertion Sort

<>C2 S2—>Cl1 Sl>

<>C3 §3->C2>852>C1

S1
-
<>C4 §4>C3>83>C2>§2>C1>§1

If abs (i—j)>1 then Si and S/ in parallel
If abs (i—j)>1 then Si and Cj in parallel

Ci and Cj in parallel

Cl—=>S§1 /CI%SI Cl—>S§1 Cl—=>S1
cC2—>S82 C2—>S2 C2—>S2
C3—>S53 C3—>S83
N A
C4—>S54

18/21

Dining Philosophers

{0}

O O

19/21

Dining Philosophers

life = POvP1IvP2vP3vP4. lfe

Pi = upi. up(i+l). eati. down i. down(i+1)
up i = chopstick i:=T

downi = chopsticki:=1

eat i = e chopstick i---++-chopstick(i+1)-

If i+j, (upi.up j) becomes (up i upj) .

If i+j, (up i.down j) becomes (up i|| down j) .

If i+j, (downi.up j) becomes (downi| upj).

If i#j, (down i.down j) becomes (down i|| down j) .

If i+j A i+1+j, (eati.up j) becomes (eati| upj) .

If i+j A i+j+1, (upi.eatj) becomes (up il eatj) .

If i+j A i+1%j, (eat i. down j) becomes (eat i || down j) .
If i#j A i£j+1, (down i.eat j) becomes (down i || eatj) .

If i#j A i+1F] A i+j+1 , (eat i. eat j) becomes (eat i || eat j) .

20/21

life
Pi

up i

down i

eat i

life
Pi

Dining Philosophers

(POvP1IvP2vP3vP4). life

up i. up(i+1). eati. downi. down(i+1)
= chopstick i:=T

= chopstick i:= 1L

PO|P1|P2|P3|P4

(up i || up(i+1)). eati. (down i|| down(i+1)). P i

21/21

