
Independent Composition
Dependent Composition    P.Q  (sequential execution)

P  and  Q  must have exactly the same state variables

Independent Composition    P||Q  (parallel execution)

P  and  Q  must have completely different state variables

and the state variables of the composition are those of both  P  and  Q

Ignoring time and space variables

P||Q   =   P∧Q
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Independent Composition
example  in integer variables  x , y , and  z

x:= x+1 || y:= y+2 partition the variables:

put  x  in left part, put  y  and  z  in right part

= x′ = x+1  ||  y′ = y+2  ∧  z′=z

= x′ = x+1  ∧  y′ = y+2  ∧  z′=z

reasonable partition rule

If either  x′  or  x:=  appears in a process specification, then  x  belongs to that process

(then neither  x′  nor  x:=  can appear in the other process specification).

If neither  x′  nor  x:=  appears at all, then  x  can be placed on either side of the partition.
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Independent Composition
example  in variables  x , y , and  z

x:= y || y:= x partition:  put  x  in left,  y  in right,  z  in either

= x′=y ∧ y′=x ∧ z′=z

implementation of a process makes a private copy of the initial value of a variable belonging 

to the other process if the other process contains an assignment to that variable
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Independent Composition
example  in boolean variable  b  and integer variable  x

b:= x=x  ||  x:= x+1 replace  x=x  by  T

= b:= T  ||  x:= x+1

example  in integer variables  x  and  y

(x:= x+1.  x:= x–1)  ||  y:= x

= ok || y:= x

= y:= x
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Independent Composition
(x:= x+y.  x:= x×y)   ||   (y:= x–y.  y:= x/y)
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Independent Composition
(x:= x+y.  x:= x×y)   ||   (y:= x–y.  y:= x/y)

You should have written

(x:= x+y  ||  y:= x–y).  (x:= x×y  ||  y:= x/y)
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Independent Composition
P||Q   =   ∃tP, tQ·     (substitute  tP  for  t′  in  P )

∧  (substitute  tQ  for  t′  in  Q )

∧  t′ = max tP tQ

laws
(x:= e || y:= f).  P   =   (for  x  substitute  e  and independently for  y  substitute  f  in  P )

P || Q  =  Q || P symmetry

P || (Q || R)  =  (P || Q) || R associativity

P || ok  =  ok || P  =  P identity

P || Q∨R  =  (P || Q) ∨ (P || R) distributivity

P || if b then Q else R  =  if b then (P || Q) else (P || R) distributivity

if b then (P||Q) else (R||S)  =  if b then P else R || if b then Q else S distributivity
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List Concurrency
Li:= e     =     L′i=e  ∧  (∀j: 0,..#L· j i ⇒ L′j=Lj)  ∧  x′=x  ∧  y′=y  ∧ ...

Li:= e     =     L′i=e  ∧  (∀j: (this part)· j i ⇒ L′j=Lj)  ∧  x′=x  ∧ ...

example  find the maximum item in a nonempty list

findmax 0 (#L)  where

findmax   =   〈i, j → i<j ⇒ L′ i = MAX L [i;..j]〉

findmax i j   ⇐ if j–i = 1 then ok

else ( (findmax i (div (i+j) 2)  ||  findmax (div (i+j) 2) j).

L i := max (L i) (L (div (i+j) 2)) )

recursive time  =  ceil (log (j–i))
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Sequential to Parallel Transformation

x:= y.  x:= x+1.  z:= y

= x:= y.  (x:= x+1  ||  z:= y)

= (x:= y.  x:= x+1)  ||  z:= y

start x:= y x:= x+1 z:= y finish

start finishx:= y 

z:= y 

x:= x+1

x:= x+1

start

x:= y 

z:= y 

finish
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Sequential to Parallel Transformation

rules

Whenever two programs occur in sequence, and neither assigns to a variable appearing in the 

other, they can be placed in parallel.

example     x:= z.  y:= z     becomes     x:= z  ||  y:= z

Whenever two programs occur in sequence, and neither assigns to a variable assigned in the 

other, and no variable assigned in the first appears in the second, they can be placed in 

parallel;  a copy must be made of the initial value of any variable appearing in the first and 

assigned in the second.

example     x:= y.  y:= z     becomes     c:= y.  (x:= c  ||  y:= z)
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Buffer

produce   =   ········b:= e········

consume   =   ········x:= b········

control   =   produce.  consume.  control

P C P C P C P C
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Buffer

produce   =   ········b:= e········

consume   =   ········x:= b········

control   =   produce.  newcontrol

newcontrol   =   consume.  produce.  newcontrol
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Buffer

produce   =   ········b:= e········

consume   =   ········x:= b········

control   =   produce.  newcontrol

newcontrol   =   (consume || produce).  newcontrol
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Buffer

produce   =   ········b:= e········

consume   =   ········x:= c········

control   =   produce.  newcontrol

newcontrol   =   c:= b.  (consume || produce).  newcontrol
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Buffer

produce   =   ········b w:= e.  w:= w+1········

consume   =   ········x:= b r.  r:= r+1········

control   =   w:= 0.  r:= 0.  newcontrol

newcontrol   =   produce.  consume.  newcontrol

P P P P P P P P P P

CC C C C C C C C
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Buffer

produce   =   ········b w:= e.  w:= mod (w+1) n········

consume   =   ········x:= b r.  r:= mod (r+1) n········

control   =   w:= 0.  r:= 0.  newcontrol

newcontrol   =   produce.  consume.  newcontrol

P P P P P P P P P P 

C C C C C C C C C
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Insertion Sort

define

sort   =   〈n → ∀i, j: 0,..n· i≤j ⇒ L i ≤ L j〉

swap   =   〈i, j: 0,..#L → L i:= L j || L j:= L i〉

sort′ (#L)   ⇐  sort 0 ⇒ sort′ (#L)

sort 0 ⇒ sort′ (#L)   ⇐   for n:= 0;..#L do sort n ⇒ sort′ (n+1)

sort n ⇒ sort′ (n+1)   ⇐

if n=0 then ok

else if L (n–1) ≤ L n then ok

else (swap (n–1) n.   sort (n–1) ⇒ sort′ n)

                                 
[ L 0 ; L 1 ; L 2 ; L 3 ; L 4 ]
0 1 2 3 4 5
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Insertion Sort

C 1      S  1

C 2      S  2      C 1      S 1

C 3      S 3      C 2      S  2      C 1      S 1

C 4      S 4      C 3      S  3      C 2      S 2      C 1      S 1

If  abs (i–j) > 1  then  S i  and  S j  in parallel

If  abs (i–j) > 1  then  S i  and  C j  in parallel

C i  and  C j  in parallel

C 1      S  1                             C 1      S  1                             C 1      S  1                             C 1      S 1
C 2      S 2                             C 2      S  2                             C 2      S 2

C 3      S  3                             C 3      S 3
C 4      S  4
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Dining Philosophers
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Dining Philosophers

life = (P 0 ∨ P 1 ∨ P 2 ∨ P 3 ∨ P 4).  life

P i = up i.  up(i+1).  eat i.  down i.  down(i+1)

up i = chopstick i:= T

down i = chopstick i:= ⊥

eat i = ······chopstick i······chopstick(i+1)······

If  i j ,  (up i. up j)  becomes  (up i || up j) .
If  i j ,  (up i. down j)  becomes  (up i || down j) .
If  i j ,  (down i. up j)  becomes  (down i || up j) .
If  i j ,  (down i. down j)  becomes  (down i || down j) .
If  i j ∧ i+1 j ,  (eat i. up j)  becomes  (eat i || up j) .
If  i j ∧ i j+1 ,  (up i. eat j)  becomes  (up i || eat j) .
If  i j ∧ i+1 j ,  (eat i. down j)  becomes  (eat i || down j) .
If  i j ∧ i j+1 ,  (down i. eat j)  becomes  (down i || eat j) .
If  i j ∧ i+1 j ∧ i j+1 ,  (eat i. eat j)  becomes  (eat i || eat j) .
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Dining Philosophers

life = (P 0 ∨ P 1 ∨ P 2 ∨ P 3 ∨ P 4).  life

P i = up i.  up(i+1).  eat i.  down i.  down(i+1)

up i = chopstick i:= T

down i = chopstick i:= ⊥

eat i = ······chopstick i······chopstick(i+1)······

life = P 0 || P 1 || P 2 || P 3 || P 4

P i = (up i || up(i+1)).  eat i.  (down i || down(i+1)).  P i
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