Independent Composition

Dependent Composition $P . Q$ (sequential execution)
P and Q must have exactly the same state variables

Independent Composition $P \| Q$ (parallel execution)
P and Q must have completely different state variables
and the state variables of the composition are those of both P and Q

Ignoring time and space variables

$$
P \| Q=P \wedge Q
$$

Independent Composition

example in integer variables x, y, and z

$$
x:=x+1 \| y:=y+2
$$

partition the variables:
put x in left part, put y and z in right part
$\begin{array}{ll}= & x^{\prime}=x+1 \| y^{\prime}=y+2 \wedge z^{\prime}=z \\ = & x^{\prime}=x+1 \wedge y^{\prime}=y+2 \wedge z^{\prime}=z\end{array}$

reasonable partition rule

If either x^{\prime} or $x:=$ appears in a process specification, then x belongs to that process
(then neither x^{\prime} nor $x:=$ can appear in the other process specification).
If neither x^{\prime} nor $x:=$ appears at all, then x can be placed on either side of the partition.

Independent Composition

example in variables x, y, and z

$$
\begin{aligned}
& x:=y \| y:=x \\
& =\quad x^{\prime}=y \wedge y^{\prime}=x \wedge z^{\prime}=z
\end{aligned}
$$

implementation of a process makes a private copy of the initial value of a variable belonging to the other process if the other process contains an assignment to that variable

Independent Composition

example in boolean variable b and integer variable x

$$
\begin{array}{ll}
b:=x=x \| x:=x+1 & \text { replace } x=x \text { by } \mathrm{T} \\
= & b:=\mathrm{T} \| x:=x+1
\end{array}
$$

example in integer variables x and y

$$
\begin{array}{ll}
& (x:=x+1 . x:=x-1) \| y:=x \\
= & o k \| y:=x \\
= & y:=x
\end{array}
$$

Independent Composition

$$
(x:=x+y . \quad x:=x \times y) \quad \| \quad(y:=x-y . y:=x / y)
$$

Independent Composition

$$
(x:=x+y, x:=x \times y) \quad \| \quad(y:=x-y, y:=x / y)
$$

You should have written

$$
(x:=x+y \| y:=x-y) .(x:=x \times y \| y:=x / y)
$$

Independent Composition

$$
\begin{aligned}
P \| Q=\exists t P, t Q \cdot & \left(\text { substitute } t P \text { for } t^{\prime} \text { in } P\right) \\
& \wedge\left(\text { substitute } t Q \text { for } t^{\prime} \text { in } Q\right) \\
& \wedge t^{\prime}=\max t P t Q
\end{aligned}
$$

laws

$(x:=e \| y:=f) . P=($ for x substitute e and independently for y substitute f in P)
$P\|Q=Q\| P$
symmetry
$P\|(Q \| R)=(P \| Q)\| R \quad$ associativity
$P\|o k=o k\| P=P \quad$ identity
$P \| Q \vee R=(P \| Q) \vee(P \| R)$
distributivity
$P \|$ if b then Q else $R=$ if b then $(P \| Q)$ else $(P \| R) \quad$ distributivity
if b then $(P \| Q)$ else $(R \| S)=$ if b then P else $R \|$ if b then Q else $S \quad$ distributivity

List Concurrency

$$
\begin{aligned}
& L i:=e=L^{\prime} i=e \wedge\left(\forall j: 0, . . \# L^{\cdot} j \neq i \Rightarrow L^{\prime} j=L j\right) \wedge x^{\prime}=x \wedge y^{\prime}=y \wedge \ldots \\
& L i:=e=L^{\prime} i=e \wedge\left(\forall j: \text { (this part) } \cdot j \neq i \Rightarrow L^{\prime} j=L j\right) \wedge x^{\prime}=x \wedge \ldots
\end{aligned}
$$

example find the maximum item in a nonempty list
findmax $0(\# L)$ where
findmax $=\left\langle i, j \rightarrow i<j \Rightarrow L^{\prime} i=\operatorname{MAX} L[i ; . . j]\right\rangle$
findmax $i j \Leftarrow \quad$ if $j-i=1$ then $o k$
else ($(f i n d m a x ~ i(d i v(i+j) 2) \| f i n d m a x ~(d i v(i+j) 2) j)$.

$$
L i:=\max (L i)(L(d i v(i+j) 2)))
$$

recursive time $=\operatorname{ceil}(\log (j-i))$

Sequential to Parallel Transformation

$$
\begin{array}{ll}
& x:=y \cdot x:=x+1 . z:=y \\
= & x:=y \cdot(x:=x+1 \| z:=y) \\
= & (x:=y \cdot x:=x+1) \| z:=y
\end{array}
$$

start $\longrightarrow x:=y \longrightarrow x:=x+1 \longrightarrow z:=y \longrightarrow$ finish

Sequential to Parallel Transformation

rules

Whenever two programs occur in sequence, and neither assigns to a variable appearing in the other, they can be placed in parallel.
example $\quad x:=z . y:=z \quad$ becomes $\quad x:=z \| y:=z$

Whenever two programs occur in sequence, and neither assigns to a variable assigned in the other, and no variable assigned in the first appears in the second, they can be placed in parallel; a copy must be made of the initial value of any variable appearing in the first and assigned in the second.
example $\quad x:=y . y:=z \quad$ becomes $\quad c:=y .(x:=c \| y:=z)$

Buffer

```
produce = \cdots.....b:= e.......
consume = ......x:= b}\cdots\cdots
control = produce. consume. control
```

$P \longrightarrow C \longrightarrow P \longrightarrow C \longrightarrow P \longrightarrow C \longrightarrow C$

Buffer

```
produce = \cdots.....b:= e......
consume = ......x:= b*.....
control = produce. newcontrol
```

newcontrol $=$ consume. produce. newcontrol

Buffer

```
produce = \cdots.....b:= e......
consume = ......x:= b*.....
control = produce. newcontrol
```

newcontrol $=($ consume $\|$ produce $)$. newcontrol

Buffer

```
produce = \cdots\cdots\cdots\cdotb:= e\cdots\cdots\cdots
consume = \cdots\cdots\cdots\cdotsx:= c.\cdots\cdots..
control = produce. newcontrol
newcontrol = c:=b.(consume |produce). newcontrol
```


Buffer

```
produce = ......bw:=e.w:=w+1\cdots.....
consume = \cdots\cdots.\cdots.x:= b r.r:=r+1\cdots.\cdots..
control = w:=0.r:=0.newcontrol
newcontrol = produce. consume. newcontrol
```


Buffer

$$
\begin{aligned}
& \text { produce }=\cdots \cdots \cdots \cdot b w:=e . w:=\bmod (w+1) n \cdots \cdots . . . \\
& \text { consume }=\cdots \cdots \cdots \cdot x:=b r . r:=\bmod (r+1) n \cdots \cdots \cdots \\
& \text { control }=w:=0 . r:=0 . \text { newcontrol } \\
& \text { newcontrol }=\text { produce. consume. newcontrol }
\end{aligned}
$$

Insertion Sort

define

```
sort = \n->\foralli,j:0,..n\cdoti\leqj=>Li\leqLj\rangle
swap = <i,j:0,..#L->Li:=Lj|Lj:=Li\rangle
sort'}(#L) \Leftarrow sort 0 = sort' (#L
sort 0=> sort' (#L) \Leftarrow for }n:=0;..#L do sort n m sort' ( n+1
sort n mort' (n+1) \Leftarrow
    if }n=0\mathrm{ then ok
        else if L(n-1)\leqLn then ok
        else (swap (n-1)n. sort (n-1) # sort' n)
[[L 0; L 1 ; L 2 ; L 3 ; L 4 ]
```


Insertion Sort

$$
\begin{gathered}
C 1 \rightarrow S 1 \rightarrow \\
\rightarrow C 2 \rightarrow S 2 \rightarrow C 1 \rightarrow S 1-C 3 \rightarrow S 3 \rightarrow C 2 \rightarrow S 2 \rightarrow C 1 \rightarrow S 1 \rightarrow \\
\rightarrow C 4 \rightarrow S 4 \rightarrow C 3 \rightarrow S 3 \rightarrow C 2 \rightarrow S 2 \rightarrow C 1 \rightarrow S 1
\end{gathered}
$$

If $a b s(i-j)>1$ then $S i$ and $S j$ in parallel
If $a b s(i-j)>1$ then $S i$ and $C j$ in parallel
$C i$ and $C j$ in parallel

Dining Philosophers

Dining Philosophers

```
life = (P0\veeP1\veeP2\veeP3\veeP4). life
Pi= upi.up(i+1). eati.down i.down(i+1)
upi = chopstick i:= T
down i = chopstick i:= \perp
eat i = \cdots...chopstick i\cdots....chopstick(i+1)\cdots...
```

If $i \neq j$, (up i.up j) becomes (up $i \| u p j)$.
If $i \neq j$, (up i.down j) becomes (up $i \|$ down j).
If $i \neq j$, (down i.up j) becomes (down $i \| u p j$).
If $i \neq j$, (down i.down j) becomes (down $i \| d o w n j$).
If $i \neq j \wedge i+1 \neq j$, (eat $i . u p j)$ becomes (eat $i \| u p j$).
If $i \neq j \wedge i \neq j+1$, (up i.eat j) becomes (up $i \| e a t j)$.
If $i \neq j \wedge i+1 \neq j$, (eat $i . d o w n j$) becomes (eat $i \| d o w n j$).
If $i \neq j \wedge i \neq j+1$, (down $i . e a t j)$ becomes (down $i \| e a t j)$.
If $i \neq j \wedge i+1 \neq j \wedge i \neq j+1$, (eat i. eat j) becomes (eat $i \|$ eat j).

Dining Philosophers

$$
\begin{aligned}
& \text { life }=(P 0 \vee P 1 \vee P 2 \vee P 3 \vee P 4) . \text { life } \\
& P i=\text { upi.up(i+1). eat i.down i.down }(i+1) \\
& \text { up } i=\text { chopstick } i:=\mathrm{T} \\
& \text { down } i=\text { chopstick } i:=\perp \\
& \text { eat } i=\text {.....chopstick } i \cdots \cdots . c h o p s t i c k(i+1) \cdots . . . \\
& \text { life }=P 0\|P 1\| P 2\|P 3\| P 4 \\
& P i=(u p i \| u p(i+1)) . \text { eat } i .(\text { down } i \| \operatorname{down}(i+1)) . P i
\end{aligned}
$$

