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9  Interaction
We have been describing computation according to the initial values and final values of state 
variables.  A state variable declaration

var x: T· S   =   ∃x, x′: T· S
says that a state variable is really two mathematical variables, one for the initial value and one for the 
final value.  Within the scope of the declaration,  x  and  x′  are available for use in specification  S .  
There are intermediate values whenever there is a dependent (sequential) composition, but these 
intermediate values are local to the definition of dependent composition.

P. Q   =   ∃x′′, y′′, ...·  〈x′, y′, ...→P〉 x′′ y′′ ...  ∧  〈x, y, ...→Q〉 x′′ y′′ ...
Consider  (P. Q) || R .  The intermediate values between  P  and  Q  are hidden in the dependent 
composition, and are not visible to  R , so they cannot be used for process interaction.

A variable whose value is visible only initially and finally is called a boundary variable, and a 
variable whose value is visible all the time is called an interactive variable.  So far our variables have 
all been boundary variables.  Now we introduce interactive variables whose intermediate values are 
visible to parallel processes.  These variables can be used to describe and reason about interactions 
between people and computers, and between processes, during the course of a computation.

9.0  Interactive Variables

Let the notation  ivar x: T· S  declare  x  to be an interactive variable of type  T  and scope  S .  It is 
defined as follows.

ivar x: T· S   =   ∃x: time→T· S
where  time  is the domain of time, usually either the extended integers or the extended reals.  An 
interactive variable is a function of time.  The value of variable  x  at time  t  is  x t .

Suppose  a  and  b  are boundary variables,  x  and  y  are interactive variables, and  t  is time.  For 
independent composition we partition all the state variables, boundary and interactive.  Suppose  a  
and  x  belong to  P , and  b  and  y  belong to  Q .

P||Q =   ∃tP, tQ·     〈t′→P〉 tP  ∧  (∀t′′· tP≤t′′≤t′ ⇒ xt′′=x(tP))
∧  〈t′→Q〉 tQ  ∧  (∀t′′· tQ≤t′′≤t′ ⇒ yt′′=y(tQ))
∧  t′ = max tP tQ

The new part says that when the shorter process is finished, its interactive variables remain 
unchanged while the longer process is finishing.

Using the same processes and variables as in the previous paragraph, the assignment  x:= a+b+x+y  
in process  P  assigns to variable  x  the sum of four values.  Since  a  and  x  are variables of 
process  P , their values are the latest ones assigned to them by process  P , or their initial values if 
process  P  has not assigned to them.  Since  b  is a boundary variable of process  Q , its value, as 
seen in  P , is its initial value, regardless of whether  Q  has assigned to it.  Since  y  is an interactive 
variable of process  Q , its value, as seen in  P , is the latest one assigned to it by process  Q , or its 
initial value if  Q  has not assigned to it, or unknown if  Q  is in the middle of assigning to it.  Since  
x  is an interactive variable, its new value can be seen in all parallel processes.  The expression  
a+b+x+y  is an abuse of notation, since  a  and  b  are numbers and  x  and  y  are functions from 
time to numbers;  the value being assigned is actually  a+b+xt+yt , but we omit the argument  t  
when the context makes it clear.  We will similarly write  x′  to mean  xt′ , and  x′′  to mean  xt′′ .



The definition of  ok  says that the boundary variables and time are unchanged.  So in process  P  of 
the previous two paragraphs,

ok   =   a′=a  ∧  t′=t
There is no need to say  x′=x , which means  xt′=xt , since  t′=t .  We do not mention  b  and  y  
because they are not variables of process  P .

Assignment to an interactive variable cannot be instantaneous because it is time that distinguishes its 
values.  In a process where the boundary variables are  a  and  b , and the interactive variables are  x  
and  y ,

x:= e   = a′=a  ∧  b′=b  ∧  x′=e  ∧  (∀t′′· t≤t′′≤t′ ⇒ y′′=y)
∧ t′ = t+(the time required to evaluate and store  e )

interactive variable  y  remains unchanged throughout the duration of the assignment to  x .  Nothing 
is said about the value of  x  during the assignment.

Assignment to a boundary variable can be instantaneous if we wish.  If we choose to account for its 
time, we must say that all interactive variables remain unchanged during the assignment.

Dependent composition hides the intermediate values of the boundary and time variables, leaving 
the intermediate values of the interactive variables visible.  In boundary variables  a  and  b , and 
interactive variables  x  and  y , and time  t , we define

P. Q   =   ∃a′′, b′′, t′′·  〈a′, b′, t′→P〉 a′′ b′′ t′′  ∧  〈a, b, t→Q〉 a′′ b′′ t′′

Most of the specification laws and refinement laws survive the addition of interactive variables, but 
sadly, the Substitution Law no longer works.

If processes  P  and  Q  are in parallel, they have different variables.  Suppose again that boundary 
variable  a  and interactive variable  x  are the variables of process  P , and that boundary variable  b  
and interactive variable  y  are the variables of process  Q .  In specification  P , the inputs are  a , b , 
xt , and  yt′′  for  t≤t′′<t′ .  In specification  P , the outputs are  a′ , and  xt′′  for  t<t′′≤t′ .  
Specification  P  is implementable when

∀a, b, X, y, t· ∃a′, x, t′·  P  ∧  t≤t′  ∧  ∀t′′· t<t′′≤t′  ∨  x t′′=X t′′
As before,  P  must be satisfiable with nondecreasing time;  the new part says that  P  must not 
constrain its interactive variables outside the interval from  t  to  t′ .  We do not need to know the 
context of a process specification to check its implementability;  variables  b  and  y  appear only in 
the outside universal quantification.

Exercise 385 is an example in the same variables  a ,  b ,  x ,  y , and  t .  Suppose that time is an 
extended integer, and that each assignment takes time  1 .

(x:= 2.  x:= x+y.  x:= x+y) || (y:= 3.  y:= x+y) Clearly,  x  is a variable in the left
process and  y  is a variable in the right process.

Let's put  a  in the left process and  b  in the right process.
=    (a′=a ∧ xt′=2 ∧ t′=t+1. a′=a ∧ xt′= xt+yt ∧ t′=t+1. a′=a ∧ xt′= xt+yt ∧ t′=t+1)

||  (b′=b ∧ yt′=3 ∧ t′=t+1.  b′=b ∧ yt′= xt+yt ∧ t′=t+1)
=    (a′=a ∧ x(t+1)=2 ∧ x(t+2)= x(t+1)+y(t+1) ∧ x(t+3)= x(t+2)+y(t+2) ∧ t′=t+3)

||  (b′=b ∧ y(t+1)=3 ∧ y(t+2)= x(t+1)+y(t+1) ∧ t′=t+2)
=     a′=a ∧ x(t+1)=2 ∧ x(t+2)= x(t+1)+y(t+1) ∧ x(t+3)= x(t+2)+y(t+2)

∧  b′=b ∧ y(t+1)=3 ∧ y(t+2)= x(t+1)+y(t+1) ∧ y(t+3)=y(t+2) ∧ t′=t+3
=     a′=a ∧ x(t+1)=2 ∧ x(t+2)=5 ∧ x(t+3)=10

∧  b′=b ∧ y(t+1)=3 ∧ y(t+2)=y(t+3)=5 ∧  t′=t+3
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The example gives the appearance of lock-step synchrony only because we took each assignment 
time to be  1 .  More realistically, different assignments take different times, perhaps specified 
nondeterministically with lower and upper bounds.  Whatever timing policy we decide on, whether 
deterministic or nondeterministic, whether discrete or continuous, the definitions and theory remain 
unchanged.  Of course, complicated timing leads quickly to very complicated expressions that 
describe all possible interactions.  If we want to know only something, not everything, about the 
possible behaviors, we can proceed by implications instead of equations, weakening for the purpose 
of simplifying.  Programming goes the other way:  we start with a specification of desired behavior, 
and strengthen as necessary to obtain a program.

9.0.0  Thermostat

Exercise 388:  specify a thermostat for a gas burner.  The thermostat operates in parallel with other 
processes

thermometer || control || thermostat || burner
The thermometer and the control are typically located together, but they are logically distinct.  The 
inputs to the thermostat are:
• real  temperature , which comes from the thermometer and indicates the actual temperature.
• real  desired , which comes from the control and indicates the desired temperature.
• boolean  flame , which comes from a flame sensor in the burner and indicates whether there is 

a flame.
These three variables must be interactive variables because their values may be changed at any time 
by another process and the thermostat must react to their current values.  These three variables do 
not belong to the thermostat, and cannot be assigned values by the thermostat.  The outputs of the 
thermostat are:
• boolean  gas ;  assigning it  T  turns the gas on and  ⊥⊥⊥⊥  turns the gas off.
• boolean  spark ;  assigning it  T  causes sparks for the purpose of igniting the gas.
Variables  gas  and  spark  belong to the thermostat process.  They must also be interactive 
variables;  the burner needs their current values.

Heat is wanted when the actual temperature falls  ε  below the desired temperature, and not wanted 
when the actual temperature rises  ε  above the desired temperature, where  ε  is small enough to be 
unnoticeable, but large enough to prevent rapid oscillation.  To obtain heat, the spark should be 
applied to the gas for at least  1  second to give it a chance to ignite and to allow the flame to 
become stable.  But a safety regulation states that the gas must not remain on and unlit for more 
than  3  seconds.  Another regulation says that when the gas is shut off, it must not be turned on 
again for at least  20  seconds to allow any accumulated gas to clear.  And finally, the gas burner 
must respond to its inputs within  1  second.

Here is a specification:
thermostat = (gas:= ⊥⊥⊥⊥ || spark:= ⊥⊥⊥⊥).  GasIsOff

GasIsOff = if temperature < desired – ε
then ((gas:= T || spark:= T || t+1 ≤ t′ ≤ t+3).  spark:= ⊥⊥⊥⊥.  GasIsOn)
else (((frame gas, spark· ok) || t < t′ ≤ t+1).  GasIsOff)

GasIsOn = if temperature < desired + ε  ∧  flame
then (((frame gas, spark· ok) || t < t′ ≤ t+1).  GasIsOn)
else ((gas:= ⊥⊥⊥⊥ || (frame spark· ok) || t+20 ≤ t′ ≤ t+21).  GasIsOff)
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We are using the time variable to represent real time in seconds.  The specification  t+1 ≤ t′ ≤ t+3  
represents the passage of at least  1  second but not more than  3  seconds.  The specification  
t+20 ≤ t′ ≤ t+21  is similar.  A specification that a computation be slow enough is always easy to 
satisfy.  A specification that it be fast enough requires us to build fast enough hardware;  in this 
case it is easy since instruction times are microseconds and the time bounds are seconds.

One can always argue about whether a formal specification captures the intent of an informal 
specification.  For example, if the gas is off, and heat becomes wanted, and the ignition sequence 
begins, and then heat is no longer wanted, this last input may not be noticed for up to  3  seconds.  
It may be argued that this is not responding to an input within  1  second, or it may be argued that 
the entire ignition sequence is the response to the first input, and until its completion no response to 
further inputs is required.  At least the formal specification is unambiguous.
                                                                                                                                     End of Thermostat

9.0.1  Space

The main purpose of interactive variables is to provide a means for processes to interact.  In this 
subsection, we show another use.  We make the space variable  s  into an interactive variable in 
order to look at the space occupied during the course of a computation.  As an example, Exercise 
389 is contrived to be as simple as possible while including time and space calculations in an 
infinite computation.

Suppose  alloc  allocates  1  unit of memory space and takes time  1  to do so.  Then the following 
computation slowly allocates memory.

GrowSlow   ⇐   if t=2×x then (alloc || x:= t) else t:= t+1.  GrowSlow
If the time is equal to  2×x , then one space is allocated, and in parallel  x  becomes the time stamp of 
the allocation;  otherwise the clock ticks.  The process is repeated forever.  Prove that if the space is 
initially less than the logarithm of the time, and  x  is suitably initialized, then at all times the space is 
less than the logarithm of the time.

It is not clear what initialization is suitable for  x , so leaving that aside for a moment, we define  
GrowSlow  to be the desired specification.

GrowSlow   =   s < log t   ⇒   (∀t′′·  t′′≥t  ⇒  s′′ < log t′′)
where  s  is an interactive variable, so  s  is really  s t  and  s′′  is really  s t′′ .  We are just interested 
in the space calculation and not in actually allocating space, so we can take  alloc  to be  s:= s+1 .  
There is no need for  x  to be interactive, so let's make it a boundary variable.  To make the proof 
easier, we let all variables be extended naturals, although the result we are proving holds also for real 
time.

Now we have to prove the refinement, and to do that it helps to break it into pieces.  The body of the 
loop can be written as a disjunction.

if t=2×x then (s:= s+1 || x:= t) else t:= t+1
= t=2×x ∧ s′=s+1 ∧ x′=t ∧ t′=t+1  ∨  t 2×x ∧ s′=s ∧ x′=x ∧ t′=t+1

Now the refinement has the form
(A⇒B   ⇐   C∨D. A⇒B) .  distributes over  ∨

= (A⇒B   ⇐   (C. A⇒B) ∨ (D. A⇒B)) antidistributive law
= (A⇒B   ⇐   (C. A⇒B)) ∧ (A⇒B   ⇐   (D. A⇒B)) portation twice
= (B   ⇐   A ∧ (C. A⇒B)) ∧ (B   ⇐   A ∧ (D. A⇒B))

So we can break the proof into two cases:
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B   ⇐   A ∧ (C. A⇒B)
B   ⇐   A ∧ (D. A⇒B)

starting each time with the right side (antecedent) and working toward the left side (consequent).  
First case:

s < log t  ∧  ( t=2×x ∧ s′=s+1 ∧ x′=t ∧ t′=t+1.
s < log t  ⇒  ∀t′′·  t′′≥t  ⇒  s′′ < log t′′)

remove dependent composition, remembering that  s  is interactive
= s < log t  ∧  (∃x′′, t′′′·     t=2×x ∧ s′′′=s+1 ∧ x′′=t ∧ t′′′=t+1

∧  (s′′′ < log t′′′  ⇒  ∀t′′·  t′′≥t′′′  ⇒  s′′ < log t′′))
Use  s′′′=s+1  and drop it.  Use one-point to eliminate  ∃x′′, t′′′ .

⇒ s < log t  ∧  t=2×x  ∧  (s+1 < log(t+1)  ⇒  ∀t′′· t′′≥t+1 ⇒  s′′ < log t′′)
The next step should be discharge.  We need

s < log t  ∧  t=2×x  ⇒  s+1 < log(t+1)
= 2s < t = 2×x  ⇒  2s+1 < t+1
= 2s < t = 2×x  ⇒  2s+1 ≤ t
= 2s < t = 2×x  ⇒  2s+1 ≤ 2×x
= 2s < t = 2×x  ⇒  2s ≤ x
⇐ 2s ≤ x

This is the missing initialization of  x .  So we go back and redefine  GrowSlow .
GrowSlow   =   s < log t  ∧  x≥2s   ⇒   (∀t′′·  t′′≥t  ⇒  s′′ < log t′′)

Now we redo the proof.  First case:
s < log t  ∧  x≥2s  ∧  ( t=2×x ∧ s′=s+1 ∧ x′=t ∧ t′=t+1.

s < log t  ∧  x≥2s  ⇒  ∀t′′·  t′′≥t  ⇒  s′′ < log t′′)
remove dependent composition, remembering that  s  is interactive

=     s < log t  ∧  x≥2s

∧  (∃x′′, t′′′·      t=2×x ∧ s′′′=s+1 ∧ x′′=t ∧ t′′′=t+1
                    ∧  (s′′′ < log t′′′  ∧  x′′≥2s′′′  ⇒  ∀t′′·  t′′≥t′′′  ⇒  s′′ < log t′′))

Use  s′′′=s+1  and drop it.  Use one-point to eliminate  ∃x′′, t′′′ .
⇒     s < log t  ∧  x≥2s  ∧  t=2×x

∧  (s+1 < log(t+1)  ∧  t≥2s+1   ⇒   ∀t′′· t′′≥t+1 ⇒  s′′ < log t′′)
discharge, as calculated earlier

= s < log t  ∧  x≥2s  ∧  t=2×x  ∧  ∀t′′· t′′≥t+1 ⇒  s′′ < log t′′
when  t′′=t , then  s′′=s  and since  s < log t , the domain of  t′′  can be increased

⇒ ∀t′′·  t′′≥t  ⇒  s′′ < log t′′

The second case is easier than the first.
s < log t  ∧  x≥2s  ∧  ( t 2×x ∧ s′=s ∧ x′=x ∧ t′=t+1.

s < log t  ∧  x≥2s  ⇒  ∀t′′·  t′′≥t  ⇒  s′′ < log t′′)
remove dependent composition, remembering that  s  is interactive

=     s < log t  ∧  x≥2s

∧  (∃x′′, t′′′·      t 2×x ∧ s′′′=s ∧ x′′=x ∧ t′′′=t+1
                    ∧  (s′′′ < log t′′′  ∧  x′′≥2s′′′  ⇒  ∀t′′·  t′′≥t′′′  ⇒  s′′ < log t′′))

Use  s′′′=s  and drop it.  Use one-point to eliminate  ∃x′′, t′′′ .
⇒     s < log t  ∧  x≥2s  ∧  t 2×x

∧  (s < log t  ∧  x≥2s   ⇒   ∀t′′· t′′≥t+1 ⇒  s′′ < log t′′) discharge
= s < log t  ∧  x≥2s  ∧  t 2×x  ∧  ∀t′′· t′′≥t+1 ⇒  s′′ < log t′′

when  t′′=t , then  s′′=s  and since  s < log t , the domain of  t′′  can be increased
⇒ ∀t′′·  t′′≥t  ⇒  s′′ < log t′′

                                                                                                                                            End of Space

                                                                                                                         End of Interactive Variables
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A shared variable is a variable that can be written and read by any process.  Shared variables are 
popular for process interaction, but they present enormous problems for people who wish to reason 
about their programs, and for those who must build the hardware and software to implement them.  
For their trouble, there is no benefit.  Interactive variables are not fully shared;  all processes can 
read an interactive variable, but only one process can write it.  Interactive variables are easier to 
reason about and implement than fully shared variables.  Even boundary variables are shared a little:  
their initial values are visible to all processes.  They are easiest to reason about and implement, but 
they provide the least interaction.

Although interactive variables are tamer than shared variables, there are still two problems with 
them.  The first is that they provide too much information.  Usually, a process does not need the 
values of all interactive variables at all times;  each process needs only something about the values 
(an expression in interactive variables), and only at certain times.  The other problem is that 
processes may be executed on different processors, and the rates of execution may not be identical.  
This makes it hard to know exactly when to read the value of an interactive variable;  it certainly 
should not be read while its owner process is in the middle of writing to it.

We now turn to a form of communication between processes that does not have these problems:  it 
provides just the right information, and mediates the timing between the processes.  And, 
paradoxically, it provides the means for fully sharing variables safely.

9.1  Communication

This section introduces named communication channels through which a computation 
communicates with its environment, which may be people or other computations running in parallel.  
For each channel, only one process (person or computation) writes to it, but all processes can read 
all the messages, each at its own speed.  For two-way communication, use two channels.  We start 
the section by considering only one reading process, which may be the same process that writes, or 
may be a different process.  We consider multiple reading processes later when we come to 
Subsection 9.1.9 on broadcast.

Communication on channel  c  is described by two infinite strings  Mc  and  Tc  called the message 
script and the time script, and two extended natural variables  rc  and  wc  called the read cursor and 
the write cursor.  The message script is the string of all messages, past, present, and future, that pass 
along the channel.  The time script is the corresponding string of times that the messages were or 
are or will be sent.  The scripts are state constants, not state variables.  The read cursor is a state 
variable saying how many messages have been read, or input, on the channel.  The write cursor is a 
state variable saying how many messages have been written, or output, on the channel.  If there is 
only one channel, or if the channel is known from context, we may leave out the channel name, 
abbreviating the names of the scripts and cursors to  M , T ,  w , and  r .

During execution, the read and write cursors increase as inputs and outputs occur;  more and more 
of the script items are seen, but the scripts do not vary.  At any time, the future messages and the 
times they are sent on a channel may be unknown, but they can be referred to as items in the scripts.  
For example, after  2  more reads the next input on channel  c  will be  Mc rc+2 , and after  5  more 
writes the next output will be  Mc wc+5  and it will occur at time  Tc wc+5 .  Omitting the channel 
name from the script and cursor names, after  2  more reads the next input will be  Mr+2 , and after  
5  more writes the next output will be  Mw+5  at time  Tw+5 .
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M =    6 ;  4 ;  7 ;  1 ;  0 ;  3 ;  8 ;  9 ;  2 ;  5 ; ... 
T =    3 ;  5 ;  5 ; 20 ; 25 ; 28 ; 31 ; 31 ; 45 ; 48 ; ... 

↑ ↑
r w

The scripts and the cursors are not programming notations, but they allow us to specify any desired 
communications.  Here is an example specification.  It says that if the next input on channel  c  is 
even, then the next output on channel  d  will be  T , and otherwise it will be  ⊥⊥⊥⊥ .  Formally, we may 
write

if even (Mc rc) then Md wd = T else Md wd = ⊥⊥⊥⊥
or, more briefly,

Md wd   =  even (Mc rc)

If there are only a finite number of communications on a channel, then after the last message, the 
time script items are all  ∞ , and the message script items are of no interest.

9.1.0  Implementability

Consider computations involving two memory variables  x  and  y , a time variable  t , and 
communications on a single channel.  The state of a computation consists of the values of the 
memory variables, the time variable, and the cursor variables.  During a computation, the memory 
variables can change value in any direction, but time and the cursors can only increase.  Once an 
input has been read, it cannot be unread;  once an output has been written, it cannot be unwritten.  
Every computation satisfies

t′≥t  ∧  r′≥r  ∧  w′≥w

An implementable specification can say what the scripts are in the segment written by a 
computation, that is the segment  Mw;..w′  and  Tw;..w′  between the initial and final values of the 
write cursor, but it cannot specify the scripts outside this segment.  Furthermore, the time script 
must be monotonic, and all its values in this segment must be in the range from  t  to  t′ .

A specification  S  (in initial state  σ , final state  σ′ , message script  M , and time script  T  ) is 
implementable if and only if

∀σ, M′′, T′′· ∃σ′, M, T·      S  ∧  t′ ≥ t  ∧  r′ ≥ r  ∧  w′ ≥ w
∧  M(0;..w); (w′;..∞) = M′′(0;..w); (w′;..∞)
∧  T(0;..w); (w′;..∞) = T′′(0;..w); (w′;..∞)
∧  ∀i, j: w,..w′· i≤j ⇒ t ≤ Ti ≤ Tj ≤ t′

If we have many channels, we need similar conjuncts for each.  If we have no channels, 
implementability reduces to the definition given in Chapter 4.

To implement communication channels, it is not necessary to build two infinite strings.  At any 
given time, only those messages that have been written and not yet read need to be stored.  The time 
script is only for specification and proof, and does not need to be stored at all.
                                                                                                                             End of Implementability
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9.1.1  Input and Output

Here are five programming notations for communication.  Let  c  be a channel.  The notation  c! e  
describes a computation that writes the output message  e  on channel  c .  The notation  c!  
describes a computation that sends a signal on channel  c  (no message;  the act of signalling is the 
only information).  The notation  c?  describes a computation that reads one input on channel  c .  
We use the channel name  c  to denote the message that was last previously read on the channel.  
And  √c  is a boolean expression meaning “there is unread input available on channel  c ”.  Here 
are the formal definitions.

c! e =   Mw = e  ∧  Tw = t  ∧  (w:= w+1) “ c  output  e ”
c! =   Tw = t  ∧  (w:= w+1) “ c  signal”
c? =   r:= r+1 “ c  input”
c =   Mr–1
√c =   Tr ≤ t “check  c ”

Suppose the input channel from a keyboard is named  key , and the output channel to a screen is 
named  screen .  Then execution of the program

if √key
then (key?. if key="y" then screen! "If you wish." else screen! "Not if you don't want.")
else screen! "Well?"

tests if a character of input is available, and if so, reads it and prints some output, which depends on 
the character read, and if not, prints other output.

Let us refine the specification   Md wd = even (Mc rc)  given earlier.
Md wd = even (Mc rc)   ⇐   c?.  d! even c

To prove the refinement, we can rewrite the solution as follows:
c?.  d! even c

= rc:= rc+1.  Md wd = even (Mc rc–1)  ∧  Td wd = t  ∧ (wd:= wd+1)
= Mdwd = even (Mcrc)  ∧  Tdwd = t  ∧  rc′=rc+1  ∧  wc′=wc  ∧  rd′=rd  ∧  wd′=wd+1

which implies the problem.

A problem specification should be written as clearly, as understandably, as possible.  A programmer 
refines the problem specification to obtain a solution program, which a computer can execute.  In 
our example, the solution seems more understandable than the problem!  Whenever that is the case, 
we should consider using the program as the problem specification, and then there is no need for 
refinement.

Our next problem is to read numbers from channel  c , and write their doubles on channel  d .  
Ignoring time, the specification can be written

S   =   ∀n: nat· Md wd+n = 2 × Mc rc+n
We cannot assume that the input and output are the first input and output ever on channels  c  and  
d .  We can only ask that from now on, starting at the initial read cursor  rc  and initial write cursor  
wd , the outputs will be double the inputs.  This specification can be refined as follows.

S   ⇐   c?.  d! 2×c.  S
The proof is:

c?.  d! 2×c.  S
= rc:= rc+1.  Md wd = 2 × Mc rc–1  ∧ (wd:= wd+1).  S
= Md wd = 2 × Mc rc  ∧  ∀n: nat· Md wd+1+n = 2 × Mc rc+1+n
= ∀n: nat· Md wd+n = 2 × Mc rc+n
= S

                                                                                                                              End of Input and Output
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9.1.2  Communication Timing

In the real time measure, we need to know how long output takes, how long communication transit 
takes, and how long input takes, and we place time increments appropriately.  To be independent of 
these implementation details, we can use the transit time measure, in which we suppose that the acts 
of input and output take no time at all, and that communication transit takes  1  time unit.

The message to be read next on channel  c  is  Mc rc .  This message was or is or will be sent at time  
Tc rc .  Its arrival time, according to the transit time measure, is  Tc rc + 1 .  So input becomes

t:= max t (Tc rc + 1).  c?
If the input has already arrived,  Tc rc + 1 ≤ t , and no time is spent waiting for input;  otherwise 
execution of  c?  is delayed until the input arrives.  And the input check  √c  becomes

√c   =   Tc rc + 1 ≤ t

In some applications (called “batch processing”), all inputs are available at the start of execution; 
for these applications, we may as well leave out the time assignments for input, and we have no need 
for the input check.  In other applications (called “process control”), inputs are provided at regular 
intervals by a physical sampling device;  the time script (but not the message script) is known in 
advance.  In still other applications (called “interactive computing”), a human provides inputs at 
irregular intervals, and we have no way of saying what the time script is.  In this case, we have to 
leave out the waiting times, and just attach a note to our calculation saying that execution time will 
be increased by any time spent waiting for input.

Exercise 407(a):  Let  W  be “wait for input on channel  c  and then read it”.  Formally,
W   =   t:= max t (Tr + 1).  c?

Prove  W   ⇐   if √c then c? else (t:= t+1.  W)  assuming time is an extended integer.  The 
significance of this exercise is that input is often implemented in just this way, with a test to see if 
input is available, and a loop if it is not.  Proof:

if √c then c? else (t:= t+1.  W) replace  √c  and  W
= if Tr + 1 ≤ t then c? else (t:= t+1.  t:= max t (Tr + 1).  c?)
= if Tr + 1 ≤ t then (t:= t.  c?) else (t:= max (t+1) (Tr + 1).  c?)

If  Tr + 1 ≤ t , then  t = max t (Tr + 1) .
If Tr + 1 > t  then  max (t+1) (Tr + 1)  =  Tr + 1  =  max t (Tr + 1) .

= if Tr + 1 ≤ t then (t:= max t (Tr + 1).  c?) else (t:= max t (Tr + 1).  c?)
= W

                                                                                                                     End of Communication Timing

9.1.3  Recursive Communication optional; requires Chapter 6

Define  dbl  by the fixed-point construction (including recursive time but ignoring input waits)
dbl   =   c?.  d! 2×c.  t:= t+1.  dbl

Regarding  dbl  as the unknown, this equation has several solutions.  The weakest is
∀n: nat· Md wd+n = 2 × Mc rc+n  ∧  Td wd+n = t+n

A strongest implementable solution is
     (∀n: nat· Md wd+n = 2 × Mc rc+n  ∧  Td wd+n = t+n)
∧  rc′=wd′=t′=∞  ∧  wc′=wc  ∧  rd′=rd

The strongest solution is  ⊥⊥⊥⊥ .  If this fixed-point construction is all we know about  dbl , then we 
cannot say that it is equal to a particular one of the solutions.  But we can say this:  it refines the 
weakest solution

∀n: nat· Md wd+n = 2 × Mc rc+n  ∧  Td wd+n = t+n   ⇐   dbl
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and it is refined by the right side of the fixed-point construction
dbl   ⇐   c?.  d! 2×c.  t:= t+1.  dbl

Thus we can use it to solve problems, and we can execute it.

If we begin recursive construction with
dbl0  =  T

we find
dbl1 = c?.  d! 2×c.  t:= t+1.  dbl0

= rc:= rc+1.  Md wd = 2 × Mc rc–1  ∧  Td wd = t  ∧ (wd:= wd+1).  t:= t+1.  T
= Md wd = 2 × Mc rc  ∧  Td wd = t

dbl2 = c?.  d! 2×c.  t:= t+1.  dbl1
= rc:= rc+1.  Md wd = 2 × Mc rc–1  ∧  Td wd = t  ∧ (wd:= wd+1).

t:= t+1.  Md wd = 2 × Mc rc  ∧  Td wd = t
= Md wd = 2 × Mc rc  ∧  Td wd = t  ∧  Md wd+1 = 2×Mc rc+1  ∧  Td wd+1 = t+1

and so on.  The result of the construction
dbl∞ = ∀n: nat· Md wd+n = 2 × Mc rc+n  ∧  Td wd+n = t+n

is the weakest solution of the  dbl  fixed-point construction.  If we begin recursive construction with  
t′≥t  ∧  rc′≥rc  ∧  wc′≥wc  ∧  rd′≥rd  ∧  wd′≥wd  we get a strongest implementable solution.
                                                                                                                  End of Recursive Communication

9.1.4  Merge

Merging means reading repeatedly from two or more input channels and writing those inputs onto 
another channel.  The output is an interleaving of the messages from the input channels.  The output 
must be all and only the messages read from the inputs, and it must preserve the order in which they 
were read on each channel.  Infinite merging can be specified formally as follows.  Let the input 
channels be  c  and  d , and the output channel be  e .  Then

merge   =   (c?.  e! c) ∨ (d?.  e! d).  merge
This specification does not state any criterion for choosing between the input channels at each step.  
To write a merge program, we must decide on a criterion for choosing.  We might choose between 
the input channels based on the value of the inputs or on their arrival times.

Exercise 411(a) (time merge) asks us to choose the first available input at each step.  If input is 
already available on both channels  c  and  d , take either one;  if input is available on just one 
channel, take that one;  if input is available on neither channel, wait for the first one and take it (in 
case of a tie, take either one).  Here is the specification.

timemerge    =      (√c  ∨  Tc rc ≤ Td rd)  ∧  (c?.  e! c)
∨ (√d  ∨  Tc rc ≥ Td rd)  ∧  (d?.  e! d).
timemerge

To account for the time spent waiting for input, we should insert  t:= max t (Tr + 1)  just before 
each input operation, and for recursive time we should insert  t:= t+1  before the recursive call.

In Subsection 9.1.2 on Communication Timing we proved that waiting for input can be 
implemented recursively.  Using the same reasoning, we implement  timemerge  as follows.

timemerge   ⇐ if √c then (c?.  e! c) else ok.
if √d then (d?.  e! d) else ok.
t:= t+1.  timemerge

assuming time is an extended integer.
                                                                                                                                           End of Merge
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9.1.5  Monitor

To obtain the effect of a fully shared variable, we create a process called a monitor that resolves 
conflicting uses of the variable.  A monitor for variable  x  receives on channels  x0in ,  x1in , ...  data 
from other processes to be written to the variable, whereupon it sends an acknowledgement back to 
the writing process on one of the channels  x0ack ,  x1ack , ... .  It receives on channels  x0req ,  
x1req , ...  requests from other processes to read the variable, whereupon it sends the value of the 
variable back to the requesting process on one of the channels  x0out ,  x1out , ... .

x0in
x0ack

x1in
x1ack

x0req
x0out

x1req
x1out

x

A monitor for variable  x  with two writing processes and two reading processes can be defined as 
follows.  Let  m  be the minimum of the times  Tx0in rx0in ,  Tx1in rx1in ,  Tx0req rx0req , and  
Tx1req rx1req  of the next input on each of the input channels.  Then

monitor   = (√x0in  ∨  Tx0in rx0in = m)  ∧  (x0in?.  x:= x0in.  x0ack!)
∨ (√x1in  ∨  Tx1in rx1in = m)  ∧  (x1in?.  x:= x1in.  x1ack!)
∨ (√x0req  ∨  Tx0req rx0req = m)  ∧  (x0req?.  x0out! x)
∨ (√x1req  ∨  Tx1req rx1req = m)  ∧  (x1req?.  x1out! x).
monitor

Just like  timemerge , a monitor takes the first available input and responds to it.  A monitor for 
several variables, for several writing processes, and for several reading processes, is similar.  When 
more than one input is available, an implementation must make a choice.  Here's one way to 
implement a monitor, assuming time is an extended integer:

monitor   ⇐ if √x0in then (x0in?.  x:= x0in.  x0ack!) else ok.
if √x1in then (x1in?.  x:= x1in.  x1ack!) else ok.
if √x0req then (x0req?.  x0out! x) else ok.
if √x1req then (x1req?.  x1out! x) else ok.
t:= t+1.  monitor

We earlier solved Exercise 388 to specify a thermostat for a gas burner using interactive variables  
gas ,  temperature ,  desired ,  flame , and  spark , as follows.

thermostat = (gas:= ⊥⊥⊥⊥ || spark:= ⊥⊥⊥⊥).  GasIsOff

GasIsOff = if temperature < desired – ε
then ((gas:= T || spark:= T || t+1 ≤ t′ ≤ t+3).  spark:= ⊥⊥⊥⊥.  GasIsOn)
else (((frame gas, spark· ok) || t < t′ ≤ t+1).  GasIsOff)

GasIsOn = if temperature < desired + ε  ∧  flame
then (((frame gas, spark· ok) || t < t′ ≤ t+1).  GasIsOn)
else ((gas:= ⊥⊥⊥⊥ || (frame spark· ok) || t+20 ≤ t′ ≤ t+21).  GasIsOff)

If we use communication channels instead of interactive variables, we have to build a monitor for 
these variables, and rewrite our thermostat specification.  Here is the result.
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thermostat = ((gasin! ⊥⊥⊥⊥.  gasack?) || (sparkin! ⊥⊥⊥⊥.  sparkack?)).  GasIsOff

GasIsOff = ((temperaturereq!.  temperature?) || (desiredreq!.  desired?)).
if temperature < desired – ε
then ( ((gasin! T.  gasack?) || (sparkin! T.  sparkack?) || t+1 ≤ t′ ≤ t+3).
           sparkin! ⊥⊥⊥⊥.  sparkack?.  GasIsOn )
else (t < t′ ≤ t+1.  GasIsOff)

GasIsOn = ( (temperaturereq!.  temperature?) || (desiredreq!.  desired?)
|| (flamereq!.  flame?) ).
if temperature < desired + ε  ∧  flame
then (t < t′ ≤ t+1.  GasIsOn)
else (((gasin! ⊥⊥⊥⊥.  gasack?) || t+20 ≤ t′ ≤ t+21).  GasIsOff)

                                                                                                                                        End of Monitor

The calculation of space requirements when there is concurrency may sometimes require a monitor 
for the space variable, so that any process can request an update, and the updates can be 
communicated to all processes.  The monitor for the space variable is also the arbiter between 
competing space allocation requests.

9.1.6  Reaction Controller

Many kinds of reactions are controlled by a feedback loop, as shown in the following picture.

sensors                           digitizer

motors                          controller

plant                              digital  data

analog
data

control
signals

The “plant” could be a chemical reactor, or a nuclear reactor, or even just an assembly plant.  The 
sensors detect concentrations or temperatures or positions in the form of analog data, and feed them 
to a digitizer.  The digitizer converts these data to digital form suitable for the controller.  The 
controller computes what should happen next to control the plant;  perhaps some rods should be 
pushed in farther, or some valves should be opened, or a robot arm should move in some direction.  
The controller sends signals to the plant to cause the appropriate change.

Here's the problem.  The sensors send their data continuously to the digitizer.  The digitizer is fast 
and uniform, sending digital data rapidly to the controller.  The time required by the controller to 
compute its output signals varies according to the input messages;  sometimes the computation is 
trivial and it can keep up with the input;  sometimes the computation is more complex and it falls 
behind.  When several inputs have piled up, the controller should not continue to read them and 
compute outputs in the hope of catching up.  Instead, we want all but the latest input to be 
discarded.  It is not essential that control signals be produced as rapidly as digital data.  But it is 
essential that each control signal be based on the latest available data.  How can we achieve this?  
The solution is to place a synchronizer between the digitizer and controller, as in the following 
picture.
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control
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plant                               synchronizer

motors                          controller

digital  data

request        reply

The synchronizer's job is as simple and uniform as the digitizer's;  it can easily keep up.  It 
repeatedly reads the data from the digitizer, always keeping only the latest.  Whenever the controller 
requests some data, the synchronizer sends the latest.  This is exactly the function of a monitor, and 
we could implement the synchronizer that way.  But a synchronizer is simpler than a monitor in two 
respects:  first, there is only one writing process and one reading process;  second, the writing 
process is uniformly faster than the reading process.  Here is its definition.

synchronizer   = digitaldata?.
if √request then (request?  ||  reply! digitaldata) else ok.
synchronizer

If we were using interactive variables instead of channels, there would be no problem of reading old 
data;  reading an interactive variable always reads its latest value, even if the variable is written more 
often than it is read.  But there would be the problem of how to make sure that the interactive 
variable is not read while it is being written.
                                                                                                                          End of Reaction Controller

9.1.7  Channel Declaration

The next input on a channel is not necessarily the one that was last previously written on that 
channel.  In one variable  x  and one channel  c  (ignoring time),

c! 2.  c?.  x:= c
= Mw = 2  ∧  w′ = w+1  ∧  r′ = r+1  ∧  x′ = Mr

We do not know that initially  w=r , so we cannot conclude that finally  x′=2 .  That's because there 
may have been a previous write that hasn't been read yet.  For example,

c! 1.  c! 2.  c?.  x:= c
The next input on a channel is always the first one on that channel that has not yet been read.  The 
same is true in a parallel composition.

c! 2  ||  (c?.  x:= c)
= Mw = 2  ∧  w′ = w+1  ∧  r′ = r+1  ∧  x′ = Mr

Again we cannot say  x′=2  because there may be a previous unread output
c! 1.  (c! 2  ||  (c?.  x:= c)).  c?

and the final value of  x  may be the  1  from the earlier output, with the  2  going to the later input.  
In order to achieve useful communication between processes, we have to introduce a local channel.

Channel declaration is similar to variable declaration;  it defines a new channel within some local 
portion of a program or specification.  A channel declaration applies to what follows it, according to 
the precedence table on the final page of this book.  Here is a syntax and equivalent specification.

chan c: T· P     =     ∃Mc: ∞*T· ∃Tc: ∞*xreal· var rc , wc: xnat := 0·  P
The type  T  says what communications are possible on this new channel.  The declaration 
introduces two scripts, which are infinite strings;  they are not state variables, but state constants of 
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unknown value (mathematical variables).  We have let time be extended real, but we could let it be 
extended integer.  The channel declaration also introduces a read cursor  rc  with initial value  0  to 
say that initially there has been no input on this channel, and a write cursor  wc  with initial value  0  
to say that initially there has been no output on this channel.

A local channel can be used without concurrency as a queue, or buffer.  For example,
chan c: int·  c! 3.  c! 4.  c?.  x:= c.  c?.  x:= x+c

assigns  7  to  x .  Here is the proof, including time.
chan c: int· c! 3. c! 4. t:= max t (Tr + 1). c?. x:= c. t:= max t (Tr + 1). c?. x:= x+c

= ∃M: ∞*int· ∃T: ∞*xint·  var r, w: xnat := 0· 
Mw = 3  ∧  Tw = t  ∧  (w:= w+1).
Mw = 4  ∧  Tw = t  ∧  (w:= w+1).
t:= max t (Tr + 1).  r:= r+1.
x:= Mr–1.
t:= max t (Tr + 1).  r:= r+1.
x:= x + Mr–1

now use the Substitution Law several times
= ∃M: ∞*int· ∃T: ∞*xint· ∃r, r′, w, w′: xnat· 

M0 = 3  ∧  T0 = t  ∧  M1 = 4  ∧  T1 = t  ∧  r′ = 2  ∧  w′ = 2  ∧  x′ = M0 + M1
∧ t′ = max (max t (T0 + 1)) (T1 + 1)  ∧  (other variables unchanged)

= x′=7  ∧  t′ = t+1  ∧  (other variables unchanged)

Here are two processes with a communication between them.  Ignoring time,
chan c: int· c! 2  ||  (c?.  x:= c) Use the definition of local channel declaration,

and use the previous result for the independent composition
= ∃M: ∞*int· var r, w: xnat := 0· 

Mw = 2  ∧  w′ = w+1  ∧  r′:= r+1  ∧  x′ = Mr  ∧  (other variables unchanged)
Now apply the initialization  r:= 0  and  w:= 0  using the Substitution Law

= ∃M: ∞*int· var r, w: xnat· 
M0 = 2  ∧  w′=1  ∧  r′=1  ∧  x′ = M0  ∧  (other variables unchanged)

= x′=2  ∧  (other variables unchanged)
= x:= 2

Replacing  2  by an arbitrary expression, we have a general theorem equating communication on a 
local channel with assignment.  If we had included time, the result would have been

x′=2  ∧  t′ = t+1  ∧  (other variables unchanged)
= x:= 2.  t:= t+1

                                                                                                                         End of Channel Declaration

9.1.8  Deadlock

In the previous subsection we saw that a local channel can be used as a buffer.  Let's see what 
happens if we try to read first and write after.  Inserting the input wait into

chan c: int·  c?.  c! 5
gives us
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chan c: int·  t:= max t (Tr + 1).  c?.  c! 5

= ∃M: ∞*int· ∃T: ∞*xint·  var r, w: xnat := 0· 
t:= max t (Tr + 1).  r:= r+1.  Mw = 5  ∧  Tw = t  ∧ (w:= w+1)

We'll do this one slowly.  First, expand  var  and  w:= w+1 ,
taking  r ,  w ,  x , and  t  as the state variables.

= ∃M: ∞*int· ∃T: ∞*xint· ∃r, r′, w, w′: xnat· 
r:= 0.  w:= 0.  t:= max t (Tr + 1).  r:= r+1.
Mw = 5  ∧  Tw = t  ∧  r′=r  ∧  w′ = w+1  ∧  x′=x  ∧  t′=t

Now use the Substitution Law four times.
= ∃M: ∞*int· ∃T: ∞*xint· ∃r, r′, w, w′: xnat· 

M0 = 5  ∧  T0 = max t (T0 + 1)  ∧  r′=1  ∧  w′=1 ∧ x′=x  ∧ t′ = max t (T0 + 1)
Look at the conjunct  T0 = max t (T0 + 1) .  For any start time  t > –∞  it says  T0 = ∞ .

= x′=x  ∧  t′=∞
The theory tells us that execution takes forever because the wait for input is infinite.

The word “deadlock” is usually used to mean that several processes are waiting on each other, as 
in the dining philosophers example of Chapter 8.  But it might also be used to mean that a single 
sequential computation is waiting on itself, as in the previous paragraph.  Here's the more traditional 
example with two processes.

chan c, d: int·  (c?.  d! 6)  ||  (d?.  c! 7)
Inserting the input waits, we get

chan c, d: int·  (t:= max t (Tc rc + 1).  c?.  d! 6)  ||  (t:= max t (Td rd + 1).  d?.  c! 7)
after a little work, we obtain

= ∃Mc, Md: ∞*int· ∃Tc, Td: ∞*xint· ∃rc, rc′, wc, wc′, rd, rd′, wd, wd′: xnat· 
Md 0 = 6  ∧  Td 0 = max t (Tc 0 + 1)  ∧  Mc 0 = 7  ∧  Tc 0 = max t (Td 0 + 1)

∧ rc′=wc′=rd′=wd′=1 ∧ x′=x  ∧  t′ = max (max t (Tc 0 + 1)) (max t (Td 0 + 1))
Once again, for start time  t > –∞ , the conjuncts

Td 0 = max t (Tc 0 + 1)  ∧  Tc 0 = max t (Td 0 + 1)  tell us that  Td 0 = Tc 0 = ∞ .
= x′=x  ∧  t′=∞

To prove that a computation is free from deadlock, prove that all message times are finite.
                                                                                                                                       End of Deadlock

9.1.9  Broadcast

A channel consists of a message script, a time script, a read cursor, and a write cursor.  Whenever a 
computation splits into parallel processes, the state variables must be partitioned among the 
processes.  The scripts are not state variables;  they do not belong to any process.  The cursors are 
state variables, so one of the processes can write to the channel, and one (perhaps the same one, 
perhaps a different one) can read from the channel.  Suppose the structure is

P.  (Q  ||  R  ||  S).  T
and suppose  Q  writes to channel  c  and  R  reads from channel  c .  The messages written by  Q  
follow those written by  P , and those written by  T  follow those written by  Q .  The messages read 
by  R  follow those read by  P , and those read by  T  follow those read by  R .  There is no problem 
of two processes attempting to write at the same time, and the timing discipline makes sure that 
reading a message waits until after it is written.

Although communication on a channel, as defined so far, is one-way from a single writer to a single 
reader, we can have as many channels as we want.  So we can have two-way conversations between 
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all pairs of processes.  But sometimes it is convenient to have a broadcast from one process to more 
than one of the parallel processes.  In the program structure of the previous paragraph, we might 
want  Q  to write and both of  R  and  S  to read on the same channel.  Broadcast is achieved by 
several read cursors, one for each reading process.  Then all reading processes read the same 
messages, each at its own rate.  There is no harm in two processes reading the same message, even 
at the same time.  But there is a problem with broadcast:  which of the read cursors becomes the 
read cursor for  T ?  All of the read cursors start with the same value, but they may not end with the 
same value.  There is no sensible way to continue reading from that channel.  So we allow broadcast 
on a channel only when the parallel composition is not followed sequentially by a program that 
reads from that channel.

We next present a broadcast example that combines communicating processes, local channel 
declaration, and dynamic process generation, in one beautiful little program.  It is also a striking 
example of the importance of good notation and good theory.  It has been “solved” before without 
them, but the “solutions” required many pages, intricate synchronization arguments, lacked proof, 
and were sometimes wrong.

Exercise 415 is multiplication of power series:  Write a program to read from channel  a  an infinite 
sequence of coefficients  a0 a1 a2 a3 ...  of a power series  a0 + a1×x + a2×x2 + a3×x3 + ...  and in 
parallel to read from channel  b  an infinite sequence of coefficients  b0 b1 b2 b3 ...  of a power 
series  b0 + b1×x + b2×x2 + b3×x3 + ...  and in parallel to write on channel  c  the infinite sequence 
of coefficients  c0 c1 c2 c3 ...  of the power series  c0 + c1×x + c2×x2 + c3×x3 + ...  equal to the 
product of the two input series.  Assume that all inputs are already available;  there are no input 
delays.  Produce the outputs one per time unit.

The question provides us with a notation for the coefficients:  an = Ma ra+n ,  bn = Mb rb+n , and  
cn = Mc rc+n .  Let us use  A ,  B , and  C  for the power series, so we can express our desired result 
as

C = A×B
= (a0 + a1×x + a2×x2 + a3×x3 + ... ) × (b0 + b1×x + b2×x2 + b3×x3 + ... )
=     a0×b0 + (a0×b1 + a1×b0)×x + (a0×b2 + a1×b1 + a2×b0)×x2

+ (a0×b3 + a1×b2 + a2×b1 + a3×b0)×x3 + ...
from which we see  cn  =  Σi: 0,..n+1· ai×bn–i .  The question relieves us from concern with input 
times, but we are still concerned with output times.  The complete specification is

C = A×B  ∧  ∀n· Tc wc+n = t+n

Consider the problem:  output coefficient  n  requires  n+1  multiplications and  n  additions from 
2×(n+1)  input coefficients, and it must be produced  1  time unit after the previous coefficient.  To 
accomplish this requires more and more data storage, and more and more parallelism, as execution 
progresses.

As usual, let us concentrate on the result first, and leave the time for later.  Let
A1 = a1 + a2×x + a3×x2 + a4×x3 + ...
B1 = b1 + b2×x + b3×x2 + b4×x3 + ...

be the power series from channels  a  and  b  beginning with coefficient  1 .    Then
A×B

= (a0 + A1×x) × (b0 + B1×x)
= a0×b0 + (a0×B1 + A1×b0)×x + A1×B1×x2
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In place of the problem  A×B  we have five new problems.  The first is to read one coefficient from 
each input channel and output their product;  that's easy.  The next two,  a0×B1  and  A1×b0 , are 
multiplying a power series by a constant;  that's easier than multiplying two power series, requiring 
only a loop.  The next,  A1×B1 , is exactly the problem we started with, but one coefficient farther 
along;  it can be solved by recursion.  Finally, we have to add three power series together.  
Unfortunately, these three power series are not synchronized properly.  We must add the leading 
coefficients of  a0×B1  and  A1×b0  without any coefficient from  A1×B1 , and thereafter add 
coefficient  n+1  of  a0×B1  and  A1×b0  to coefficient  n  of  A1×B1 .  To synchronize, we move  
a0×B1  and  A1×b0  one coefficient farther along.  Let

A2 = a2 + a3×x + a4×x2 + a5×x3 + ...
B2 = b2 + b3×x + b4×x2 + b5×x3 + ...

be the power series from channels  a  and  b  beginning with coefficient  2 .  Continuing the earlier 
equation for  A×B ,

= a0×b0 + (a0×(b1 + B2×x) + (a1 + A2×x)×b0)×x + A1×B1×x2

= a0×b0 + (a0×b1 + a1×b0)×x + (a0×B2 + A1×B1 + A2×b0)×x2

From this expansion of the desired product we can almost write a solution directly.

One problem remains.  A recursive call will be used to obtain a sequence of coefficients of the 
product  A1×B1  in order to produce the coefficients of  A×B .  But the output channel for  A1×B1  
cannot be channel  c , the output channel for the main computation  A×B .  Instead, a local channel 
must be used for output from  A1×B1 .  We need a channel parameter, for which we invent the 
notation  〈! 〉 .  A channel parameter is really four parameters:  one for the message script, one for 
the time script, one for the write cursor, and one for the read cursor.  (The cursors are variables, so 
their parameters are reference parameters;  see Subsection 5.5.2.)

Now we are ready.  Define  P  (for product) to be our specification (ignoring time for a moment) 
parameterized by output channel.

P  =  〈!c: rat→C = A×B〉
We refine  P c  as follows.

P c   ⇐ (a? || b?).  c! a×b.
var a0: rat := a·  var b0: rat := b·  chan d: rat· 
P d  ||  ((a? || b?).  c! a0×b + a×b0.  C = a0×B + D + A×b0)

C = a0×B + D + A×b0   ⇐   (a? || b? || d?).  c! a0×b + d + a×b0.  C = a0×B + D + A×b0

That is the whole program:  4 lines!  First, an input is read from each of channels  a  and  b  and 
their product is output on channel  c ;  that takes care of  a0×b0 .  We will need these values again, 
so we declare local variables (really constants)  a0  and  b0  to retain their values.  Now that we have 
read one message from each input channel, we call  P d  to provide the coefficients of  A1×B1  on 
local channel  d , in parallel with the remainder of the program.  Both  P d  and its parallel process 
will be reading from channels  a  and  b  using separate read cursors;  there is no computation 
sequentially following them.  In parallel with  P d  we read the next inputs  a1  and  b1  and output 
the coefficient  a0×b1 + a1×b0 .  Finally we execute the loop specified as  C = a0×B + D + A×b0 , 
where  D  is the power series whose coefficients are read from channel  d .

The proof is completely straightforward.  Here it is in detail.  We start with the right side of the first 
refinement.
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(a? || b?).  c! a×b.
var a0: rat := a·  var b0: rat := b·  chan d: rat· 
P d  ||  ((a? || b?).  c! a0×b + a×b0.  C = a0×B + D + A×b0)

= (ra:= ra+1 || rb:= rb+1).  Mc wc = Ma ra–1 × Mb rb–1  ∧  (wc:= wc+1).
∃a0, a0′, b0, b0′, Md, rd, rd′, wd, wd′· 
a0:= Ma ra–1.  b0:= Mb rb–1.  rd:= 0.  wd:= 0.

(∀n· Md wd+n = (Σi: 0,..n+1· Ma ra+i × Mb rb+n–i))
∧ ((ra:= ra+1 || rb:= rb+1).  Mc wc = a0×Mb rb–1 + Ma ra–1×b0 ∧ (wc:= wc+1).

  ∀n· Mc wc+n = a0 × Mb rb+n + Md rd+n + Ma ra+n × b0)
Make all substitutions indicated by assignments.

= Mc wc = Ma ra × Mb rb
∧ ∃a0, a0′, b0, b0′, Md, rd, rd′, wd, wd′· 

(∀n· Md n = Σi: 0,..n+1· Ma ra+1+i × Mb rb+1+n–i)
∧ Mc wc+1 = Ma ra × Mb rb+1 + Ma ra+1 × Mb rb
∧ (∀n· Mc wc+2+n = Ma ra × Mb rb+2+n + Md n + Ma ra+2+n × Mb rb)

Use the first universal quantification to replace  Mdn  in the second.
Then throw away the first universal quantification (weakening our expression).

Now all existential quantifications are unused, and can be thrown away.
⇒ Mc wc = Ma ra × Mb rb

∧ Mc wc+1 = Ma ra × Mb rb+1 + Ma ra+1 × Mb rb
∧ ∀n· Mc wc+2+n = Ma ra × Mb rb+2+n

+ (Σi: 0,..n+1· Ma ra+1+i × Mb rb+1+n–i)
+ Ma ra+2+n × Mb rb

Now put the three conjuncts together.
= ∀n· Mc wc+n = Σi: 0,..n+1· Ma ra+i × Mb rb+n–i
= P c

We still have to prove the loop refinement.
(a? || b? || d?).  c! a0×b + d + a×b0.  C = a0×B + D + A×b0

= (ra:= ra+1 || rb:= rb+1 || rd:= rd+1).
Mc wc = a0 × Mb rb–1 + Md rd–1 + Ma ra–1 × b0  ∧  (wc:= wc+1).
∀n· Mc wc+n = a0 × Mb rb+n + Md rd+n + Ma ra+n × b0

Make all substitutions indicated by assignments.
= Mc wc = a0 × Mb rb + Md rd + Ma ra × b0

∧ ∀n· Mc wc+1+n = a0 × Mb rb+1+n + Md rd+1+n + Ma ra+1+n × b0
Put the two conjuncts together.

= ∀n· Mc wc+n = a0 × Mb rb+n + Md rd+n + Ma ra+n × b0
= C = a0×B + D + A×b0

According to the recursive measure of time, we must place a time increment before the recursive call  
P d  and before the recursive call  C = a0×B + D + A×b0 .  We do not need a time increment before 
inputs on channels  a  and  b  according to information given in the question.  We do need a time 
increment before the input on channel  d .  Placing only these necessary time increments, output  
c0 = a0×b0  will occur at time  t+0  as desired, but output  c1 = a0×b1 + a1×b0  will also occur at 
time  t+0 , which is too soon.  In order to make output  c1  occur at time  t+1  as desired, we must 
place a time increment between the first two outputs.  We can consider this time increment to 
account for actual computing time, or as a delay (see Section 5.3, “Time and Space Dependence”).  
Here is the program with time.
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Q c   ⇐ (a? || b?).  c! a×b.
var a0: rat := a·  var b0: rat := b·  chan d: rat· 
(t:= t+1.  Q d)  ||  ((a? || b?).  t:= t+1.  c! a0×b + a×b0.  R)

R   ⇐   (a? || b? || (t:= max t (Td rd + 1).  d?)).  c! a0×b + d + a×b0.  t:= t+1.  R

where  Q  and  R  are defined, as follows:

Q c  =  ∀n· Tc wc+n = t+n
Q d  =  ∀n· Td wd+n = t+n
R  =  (∀n· Td rd+n = t+n)  ⇒  (∀n· Tc wc+n = t+1+n)

Within loop  R , the assignment  t:= max t (Td rd + 1)  represents a delay of  1  time unit the first 
iteration (because  t = Td rd ), and a delay of  0  time units each subsequent iteration (because  
t  =  Td rd + 1 ).  This makes the proof very ugly.  To make the proof pretty, we can replace  
t:= max t (Td rd + 1)  by  t:= max (t+1) (Td rd + 1)  and delete  t:= t+1  just before the call to  R .  
These changes together do not change the timing at all;  they just make the proof easier.  The 
assignment  t:= max (t+1) (Td rd + 1)  increases the time by at least  1 , so the loop includes a time 
increase without the  t:= t+1 .  The program with time is now

Q c   ⇐ (a? || b?).  c! a×b.
var a0: rat := a·  var b0: rat := b·  chan d: rat· 
(t:= t+1.  Q d)  ||  ((a? || b?).  t:= t+1.  c! a0×b + a×b0.  R)

R   ⇐   (a? || b? || (t:= max (t+1) (Td rd + 1).  d?)).  c! a0×b + d + a×b0.  R

Here is the proof of the first of these refinements, beginning with the right side.
(a? || b?).  c! a×b.
var a0: rat := a·  var b0: rat := b·  chan d: rat· 
(t:= t+1.  Q d)  ||  ((a? || b?).  t:= t+1.  c! a0×b + a×b0.  R)

We can ignore  a?  and  b?  because they have no effect on timing (they are substitutions for
variables that do not appear in  Q d  and  R ).  We also ignore what messages are output,

looking only at their times.  We can therefore also ignore variables  a0  and  b0 .
⇒ Tc wc = t  ∧  (wc:= wc+1).

∃Td, rd, rd′, wd, wd′·  rd:= 0.  wd:= 0.
(t:= t+1.  ∀n· Td wd+n = t+n)

∧ ( t:= t+1.  Tc wc = t  ∧ (wc:= wc+1).
(∀n· Td rd+n = t+n) ⇒ (∀n· Tc wc+n = t+1+n) )

Make all substitutions indicated by assignments.
= Tc wc = t

∧ ∃Td, rd, rd′, wd, wd′· 
(∀n· Td n = t+1+n)

∧ Tc wc+1 = t+1
∧ ((∀n· Td n = t+1+n) ⇒ (∀n· Tc wc+2+n = t+2+n))

Use the first universal quantification to discharge the antecedent.
Then throw away the first universal quantification (weakening our expression).

Now all existential quantifications are unused, and can be thrown away.
⇒ Tc wc = t  ∧  Tc wc+1 = t+1  ∧  ∀n· Tc wc+2+n = t+2+n

Now put the three conjuncts together.
= ∀n· Tc wc+n = t+n
= Q c
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We still have to prove the loop refinement.
(R  ⇐  (a? || b? || (t:= max (t+1) (Td rd + 1).  d?)).  c! a0×b + d + a×b0.  R)

Ignore  a?  and  b?  and the output message.
⇐ ((∀n· Td rd+n = t+n)  ⇒  (∀n· Tc wc+n = t+1+n))

⇐ ( t:= max (t+1) (Td rd + 1).  rd:= rd+1.  Tc wc = t  ∧ (wc:= wc+1).
(∀n· Td rd+n = t+n)  ⇒  (∀n· Tc wc+n = t+1+n) )

Use the Law of Portation to move the first antecedent
to the right side, where it becomes a conjunct.

= (∀n· Tc wc+n = t+1+n)
⇐ (∀n· Td rd+n = t+n)

∧ ( t:= max (t+1) (Td rd + 1).  rd:= rd+1.  Tc wc = t  ∧ (wc:= wc+1).
(∀n· Td rd+n = t+n)  ⇒  (∀n· Tc wc+n = t+1+n) )

Specializing ∀n· Td rd+n = t+n to the case n=0,
we use Td rd = t to simplify max (t+1) (Td rd + 1).

= (∀n· Tc wc+n = t+1+n)
⇐ (∀n· Td rd+n = t+n)

∧ ( t:= t+1.  rd:= rd+1.  Tc wc = t  ∧ (wc:= wc+1).
(∀n· Td rd+n = t+n)  ⇒  (∀n· Tc wc+n = t+1+n) )

Make all substitutions indicated by assignments.
= (∀n· Tc wc+n = t+1+n)

⇐ (∀n· Td rd+n = t+n)
∧ Tc wc = t+1
∧ ((∀n· Td rd+1+n = t+1+n)  ⇒  (∀n· Tc wc+1+n = t+2+n))

The conjunct  ∀n· Td rd+n = t+n  discharges the antecedent
∀n· Td rd+1+n = t+1+n  which can be dropped.

⇐ (∀n· Tc wc+n = t+1+n)
⇐ Tc wc = t+1  ∧  (∀n· Tc wc+1+n = t+2+n)

= T
                                                                                                                                       End of Broadcast

                                                                                                                               End of Communication

                                                                                                                                     End of Interaction

For many students, the first understanding of programs they are taught is how programs are 
executed.  And for many students, that is the only understanding they are given.  With that 
understanding, the only method available for checking whether a program is correct is to test it by 
executing it with a variety of inputs to see if the resulting outputs are right.  All programs should be 
tested, but there are two problems with testing.

One problem with testing is:  how do you know if the outputs are right?  Some programs give 
answers you do not already know (that is why you wrote the program), and testing the program 
does not tell you if it is right.  In that case, you should test to see at least if the answers are 
reasonable.  For other programs, for example, graphics programs for producing pretty pictures, the 
only way to know if the output is right is to test the program and judge the result.

The other problem with testing is:  you cannot try all inputs.  Even if all the test cases you try give 
reasonable answers, there may be errors lurking in untried cases.
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If you have read and understood this book to here, you now have an understanding of programs 
that is completely different from execution.  When you prove that a program refines a specification, 
you are considering all inputs at once, and you are proving that the outputs have the properties 
stated in the specification.  That is far more than can ever be accomplished by testing.  But it is also 
more work than trying some inputs and looking at the outputs.  That raises the question:  when is 
the extra assurance of correctness worth the extra work?

If the program you are writing is easy enough that you can probably get it right without any theory, 
and it does not really matter if there are some errors in it, then the extra assurance of correctness 
provided by the theory may not be worth the trouble.  If you are writing a pacemaker controller for 
a heart, or the software that controls a subway system, or an air traffic control program, or nuclear 
power plant software, or any other programs that people's lives will depend on, then the extra 
assurance is definitely worth the trouble, and you would be negligent if you did not use the theory.

To prove that a program refines a specification after the program is finished is a very difficult task.  
It is much easier to perform the proof while the program is being written.  The information needed 
to make one step in programming is exactly the same information that is needed to prove that step is 
correct.  The extra work is mainly to write down that information formally.  It is also the same 
information that will be needed later for program modification, so writing it explicitly at each step 
will save effort later.  And if you find, by trying to prove a step, that the step is incorrect, you save 
the effort of building the rest of your program on a wrong step.  As a further bonus, after you 
become practiced and skillful at using the theory, you find that it helps in the program design;  it 
suggests programming steps.  In the end, it may not be any extra effort at all.

In this book we have looked only at small programs.  But the theory is not limited to small 
programs;  it is independent of scale, applicable to any size of software.  In a large software project, 
the first design decision might be to divide the task into several pieces that will fit together in some 
way.  This decision can be written as a refinement, specifying exactly what the parts are and how 
they fit together, and then the refinement can be proven.  Using the theory in the early stages is 
enormously beneficial, because if an early step is wrong, it is enormously costly to correct later.

For a theory of programming to be in widespread use for industrial program design, it must be 
supported by tools.  Ideally, an automated prover checks each refinement, remaining silent if the 
refinement is correct, complaining whenever there is a mistake, and saying exactly what is wrong.  
At present there are a few tools that provide some assistance, but they are far from ideal.  There is 
plenty of opportunity for tool builders, and they need a thorough knowledge of a practical theory of 
programming.
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10  Exercises
Exercises marked with  √  have been done in previous chapters.

10.0  Preface

0 There are four cards on a table showing symbols D, E, 2, and 3 (one per card).  Each card 
has a letter on one side and a digit on the other.  Which card(s) do you need to turn over to 
determine whether every card with a D on one side has a 3 on the other?  Why?

                                                                                                                                          End of Preface

10.1  Basic Theories

1 Simplify each of the following boolean expressions.
(a) x ∧ ¬x
(b) x ∨ ¬x
(c) x ⇒ ¬x
(d) x ⇐ ¬x
(e) x = ¬x
(f) x  ¬x

2 Prove each of the following laws of Boolean Theory using the proof format given in 
Subsection 1.0.1, and any laws listed in Section 11.4.  Do not use the Completion Rule.

(a) a∧b ⇒ a∨b
(b) (a∧b) ∨ (b∧c) ∨ (a∧c)  =  (a∨b) ∧ (b∨c) ∧ (a∨c)
(c) ¬a ⇒ (a ⇒ b)
(d) a = (b ⇒ a)  =  a ∨ b
(e) a = (a ⇒ b)  =  a ∧ b
(f) (a⇒c) ∧ (b⇒¬c) ⇒ ¬(a∧b)
(g) a ∧ ¬b ⇒ a ∨ b
(h) (a⇒b) ∧ (c⇒d) ∧ (a∨c) ⇒ (b∨d)
(i) a ∧ ¬a ⇒ b
(j) (a⇒b) ∨ (b⇒a)
(k)√ ¬(a ∧ ¬(a∨b))
(l) (¬a⇒¬b) ∧ (a b)  ∨  (a∧c ⇒ b∧c)
(m) (a⇒¬a) ⇒ ¬a
(n) (a⇒b) ∧ (¬a⇒b)  =  b
(o) (a⇒b)⇒a  =  a
(p) a=b ∨ a=c ∨ b=c
(q) a∧b ∨ a∧¬b  =  a
(r) a⇒(b⇒a)
(s) a ⇒ a ∧ b   =   a ⇒ b   =   a ∨ b ⇒ b
(t) if a then a else ¬a
(u) if b∧c then P else Q   =   if b then if c then P else Q else Q
(v) if b∨c then P else Q   =   if b then P else if c then P else Q
(w) if b then P else if b then Q else R   =   if b then P else R
(x) if if b then c else d then P else Q

= if b then if c then P else Q else if d then P else Q
(y) if b then if c then P else R else if c then Q else R

= if c then if b then P else Q else R



3 (dual)  One operator is the dual of another operator if it negates the result when applied to 
the negated operands.  The zero-operand operators  T  and  ⊥⊥⊥⊥  are each other's duals.  If  
op0 (¬a) = ¬(op1 a)  then  op0  and  op1  are duals.  If  (¬a) op0 (¬b)  =  ¬(a op1 b)  
then  op0  and  op1  are duals.  And so on for more operands.

(a) Of the 4 one-operand boolean operators, there is 1 pair of duals, and 2 operators that are 
their own duals.  Find them.

(b) Of the 16 two-operand boolean operators, there are 6 pairs of duals, and 4 operators that are 
their own duals.  Find them.

(c) What is the dual of the three-operand operator  if then else ?  Express it using only the 
operator  if then else .

(d) The dual of a boolean expression without variables is formed as follows:  replace each 
operator with its dual, adding parentheses if necessary to maintain the precedence.  Explain 
why the dual of a theorem is an antitheorem, and vice versa.

(e) Let  P  be a boolean expression without variables.  From part (d) we know that every 
boolean expression without variables of the form

(dual of  P )  =  ¬P
is a theorem.  Therefore, to find the dual of a boolean expression with variables, we must 
replace each operator by its dual and negate each variable.  For example, if  a  and  b  are 
boolean variables, then the dual of  a∧b  is  ¬a ∨ ¬b .  And since

(dual of  a∧b )  =  ¬(a∧b)
we have one of the Duality Laws:

¬a ∨ ¬b  =  ¬(a ∧ b)
The other of the Duality Laws is obtained by equating the dual and negation of  a∨b .  
Obtain five laws that do not appear in this book by equating a dual with a negation.

(f) Dual operators have truth tables that are each other's vertical mirror reflections.  For 
example, the truth table for  ∧  (below left) is the vertical mirror reflection of the truth table 
for  ∨  (below right).

T T ⎪ T T T ⎪ T
∧: T ⊥⊥⊥⊥ ⎪ ⊥⊥⊥⊥ ∨: T ⊥⊥⊥⊥ ⎪ T

⊥⊥⊥⊥    T ⎪ ⊥⊥⊥⊥ ⊥⊥⊥⊥    T ⎪ T
⊥⊥⊥⊥    ⊥⊥⊥⊥ ⎪ ⊥⊥⊥⊥ ⊥⊥⊥⊥    ⊥⊥⊥⊥ ⎪ ⊥⊥⊥⊥

Design symbols (you may redesign existing symbols where necessary) for the 4 one-
operand and 16 two-operand boolean operators according to the following criteria.
(i)  Dual operators should have symbols that are vertical mirror reflections (like  ∧  and  ∨ ).  
This implies that self-dual operators have vertically symmetric symbols, and all others have 
vertically asymmetric symbols.
(ii)  If  a op0 b  =  b op1 a  then  op0  and  op1  should have symbols that are horizontal 
mirror reflections (like  ⇒  and  ⇐ ).  This implies that symmetric operators have 
horizontally symmetric symbols, and all others have horizontally asymmetric symbols.

4 Truth tables and the Evaluation Rule can be replaced by a new proof rule and some new 
axioms.  The new proof rule says: “A boolean expression does not gain, lose, or change 
classification when a theorem within it is replaced by another theorem.  Similarly, a boolean 
expression does not gain, lose, or change classification when an antitheorem within it is 
replaced by another antitheorem.”.  The truth tables become new axioms;  for example, one 
truth table entry becomes the axiom  T∨T  and another becomes the axiom  T∨⊥⊥⊥⊥ .  These 
two axioms can be reduced to one axiom by the introduction of a variable, giving  T∨x .  
Write the truth tables as axioms and antiaxioms as succinctly as possible.
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5 Complete the following laws of Boolean Theory
(a) T  =
(b) ⊥⊥⊥⊥  =
(c) ¬a  =
(d) a∧b  =
(e) a∨b  =
(f) a=b  =
(g) a b  =
(h) a⇒b  =

by adding a right side using only the following symbols (in any quantity)
(i) ¬ ∧ a b ( )
(ii) ¬ ∨ a b ( )
(iii) ¬ ⇒ a b ( )
(iv)  ⇒ a b ( )
(v) ¬ if then else a b ( )

6 (BDD)  A BDD (Binary Decision Diagram) is a boolean expression that has one of the 
following 3 forms:  T ,  ⊥⊥⊥⊥ ,  if variable then BDD else BDD .  For example,

if x then if a then T else ⊥⊥⊥⊥ else if y then if b then T else ⊥⊥⊥⊥ else ⊥⊥⊥⊥
is a BDD.  An OBDD (Ordered BDD) is a BDD with an ordering on the variables, and in 
each  if then else , the variable in the if-part must come before any of the variables in its 
then- and else-parts (“before” means according to the ordering).  For example, using 
alphabetic ordering for the variables, the previous example is not an OBDD, but

if a then if c then T else ⊥⊥⊥⊥ else if b then if c then T else ⊥⊥⊥⊥ else ⊥⊥⊥⊥
is an OBDD.  An LBDD (Labeled BDD) is a set of definitions of the following 3 forms:

label = T
label = ⊥⊥⊥⊥
label = if variable then label else label

The labels are separate from the variables;  each label used in a then-part or else-part must 
be defined by one of the definitions;  exactly one label must be defined but unused.  The 
following is an LBDD.

true = T
false = ⊥⊥⊥⊥
alice = if b then true else false
bob = if a then alice else false

An LOBDD is an LBDD that becomes an OBDD when the labels are expanded.  The 
ordering prevents any recursive use of the labels.  The previous example is an LOBDD.  An 
RBDD (Reduced BDD) is a BDD such that, in each  if then else , the then- and else-parts 
differ.  An ROBDD is both reduced and ordered;  an RLBDD is both reduced and labeled;  
an RLOBDD is reduced, labeled, and ordered.  The previous example is an RLOBDD.

(a) Express  ¬a ,  a∧b ,  a∨b ,  a⇒b ,  a=b ,  a b , and  if a then b else c  as BDDs.
(b) How can you conjoin two OBDDs and get an OBDD?
(c) How can you determine if two RLOBDDs are equal?
(d) How can we represent an RLOBDD in order to determine efficiently if an assignment of 

values to variables satisfies it (solves it, gives it value  T )?

7 Express formally and succinctly that exactly one of three statements is true.

8 Design symbols for the 10 two-operand boolean operators that are not presented in Chapter 
1, and find laws about these operators.
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9 The Case Analysis Laws equate the three-operand operator  if a then b else c  to 
expressions using only two-operand and one-operand operators.  In each, the variable  a  
appears twice.  Find an equal expression using only two-operand and one-operand 
operators in which the variable  a  appears only once.  Hint:  use continuing operators.

10 Consider a fully parenthesized expression containing only the symbols  T ⊥⊥⊥⊥ =  ( )  in any 
quantity and any syntactically acceptable order.

(a) Show that all syntactically acceptable rearrangements are equivalent.
(b) Show that it is equivalent to any expression obtained from it by making an even number of 

the following substitutions:  T  for  ⊥⊥⊥⊥ ,  ⊥⊥⊥⊥  for  T ,  =  for   ,    for  = .

11 Let  p  and  q  be boolean expressions.  Suppose  p  is both a theorem and an antitheorem 
(the theory is inconsistent).

(a) Prove, using the rules of proof presented, that  q  is both a theorem and an antitheorem.
(b) Is  q=q  a theorem or an antitheorem?

12 Formalize each of the following statements as a boolean expression.  Start by staying as 
close as possible to the English, then simplify as much as possible (sometimes no 
simplification is possible).  You will have to introduce new basic boolean expressions like  
(the door can be opened)  for the parts that cannot make use of boolean operators, but for 
words like “only if” you should use boolean operators.  You translate meanings from 
words to boolean symbols;  the meaning of the words may depend on their context and even 
on facts not explicitly stated.  Formalization is not a simple substitution of symbols for 
words.

(a) The door can only be opened if the elevator is stopped.
(b) Neither the elevator door nor the floor door will open unless both of them do.
(c) Either the motor is jammed or the control is broken.
(d) Either the light is on or it is off.
(e) If you press the button, the elevator will come.
(f) If the power switch is on, the system is operating.
(g) Where there's smoke, there's fire;  and there's no smoke;  so there's no fire.
(h) Where there's smoke, there's fire;  and there's no fire;  so there's no smoke.
(i) You can't score if you don't shoot.
(j) If you have a key, only then can you open the door.
(k) No pain, no gain.
(l) No shirt?  No shoes?  No service!
(m) If it happens, it happens.

13 Formalize each of the following statements.  For each pair, either prove they are equivalent 
or prove they differ.

(a) Don't drink and drive.
(b) If you drink, don't drive.
(c) If you drive, don't drink.
(d) Don't drink and don't drive.
(e) Don't drink or don't drive.

14 Formalize and prove the following argument.  If it is raining and Jane does not have her 
umbrella with her, then she is getting wet.  It is raining.  Jane is not getting wet.  Therefore 
Jane has her umbrella with her.
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15 A sign says: NO PARKING
7-9am
4-6pm

Mon-Fri
Using variable  t  for time of day and  d  for day, write a boolean expression that says when 
there is no parking.

16 (tennis)  An advertisement for a tennis magazine says “If I'm not playing tennis, I'm 
watching tennis.  And if I'm not watching tennis, I'm reading about tennis.”.  Assuming the 
speaker cannot do more than one of these activities at a time,

(a) prove that the speaker is not reading about tennis.
(b) what is the speaker doing?

17 (maid and butler)  The maid said she saw the butler in the living room.  The living room 
adjoins the kitchen.  The shot was fired in the kitchen, and could be heard in all nearby 
rooms.  The butler, who had good hearing, said he did not hear the shot.  Given these facts, 
prove that someone lied.  Use the following abbreviations.

mtt =  (the maid told the truth)
btt =  (the butler told the truth)
blr =  (the butler was in the living room)
bnk =  (the butler was near the kitchen)
bhs =  (the butler heard the shot)

18 (knights and knaves)  There are three inhabitants of an island, named P, Q, and R.  Each is 
either a knight or a knave.  Knights always tell the truth.  Knaves always lie.  For each of the 
following, write the given information formally, and then answer the questions, with proof.

(a) You ask P: “Are you a knight?”.  P replies: “If I am a knight, I'll eat my hat.”.  Does P eat 
his hat?

(b) P says: “If Q is a knight, then I am a knave.”.  What are P and Q?
(c) P says: “There is gold on this island if and only if I am a knight.”.  Can it be determined 

whether P is a knight or a knave?  Can it be determined whether there is gold on the island?
(d) P, Q, and R are standing together.  You ask P: “Are you a knight or a knave?”.  P mumbles 

his reply, and you don't hear it.  So you ask Q: “What did P say?”.  Q replies: “P said that 
he is a knave.”.  Then R says: “Don't believe Q, he's lying.”.  What are Q and R?

(e) You ask P: “How many of you are knights?”.  P mumbles.  So Q says: “P said there is 
exactly one knight among us.”.  R says: “Don't believe Q, he's lying.”.  What are Q and 
R?

(f) P says: “We're all knaves.”.  Q says: “No, exactly one of us is a knight.”.  What are P, Q, 
and R?

19 Islands X and Y contain knights who always tell the truth, knaves who always lie, and 
possibly also some normal people who sometimes tell the truth and sometimes lie.  There is 
gold on at least one of the islands, and the people know which island(s) it is on.  You find a 
message from the pirate who buried the gold, with the following clue (which we take as an 
axiom):  “If there are any normal people on these islands, then there is gold on both 
islands.”.  You are allowed to dig on only one island, and you are allowed to ask one 
question of one random person.  What should you ask in order to find out which island to 
dig on?
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20 (caskets)  The princess had two caskets, one gold and one silver.  Into one she placed her 
portrait and into the other she placed a dagger.  On the gold casket she wrote the inscription:  
the portrait is not in here.  On the silver casket she wrote the inscription:  exactly one of 
these inscriptions is true.  She explained to her suitor that each inscription is either true or 
false (not both), but on the basis of the inscriptions he must choose a casket.  If he chooses 
the one with the portrait, he can marry her;  if he chooses the one with the dagger, he must 
kill himself.  Assuming marriage is preferable to death, which casket should he choose?

21 (the unexpected egg)  There are two boxes, one red and one blue.  One box has an egg in it;  
the other is empty.  You are to look first in the red box, then if necessary in the blue box, to 
find the egg.  But you will not know which box the egg is in until you open the box and see 
the egg.  You reason as follows:  “If I look in the red box and find it empty, I'll know that 
the egg is in the blue box without opening it.  But I was told that I would not know which 
box the egg is in until I open the box and see the egg.  So it can't be in the blue box.  Now I 
know it must be in the red box without opening the red box.  But again, that's ruled out, so it 
isn't in either box.”.  Having ruled out both boxes, you open them and find the egg in one 
unexpectedly, as originally stated.  Formalize the given statements and the reasoning, and 
thus explain the paradox.

22 A number can be written as a sequence of decimal digits.  For the sake of generality, let us 
consider using the sequence notation with arbitrary expressions, not just digits.  For 
example,  1(2+3)4  could be allowed, and be equal to  154 .  What changes are needed to 
the number axioms?

23 (scale)  There is a tradition in programming languages to use a scale operator,  e , in the 
limited context of digit sequences.  Thus  12e3  is equal to  12×103 .  For the sake of 
generality, let us consider using the scale notation with arbitrary expressions, not just digits.  
For example,  (6+6)e(5–2)  could be allowed, and be equal to  12e3 .  What changes are 
needed to the number axioms?

24 When we defined number expressions, we included complex numbers such as  (–1)1/2 , not 
because we particularly wanted them, but because it was easier than excluding them.  If we 
were interested in complex numbers, we would find that the number axioms given in 
Subsection 11.4.2 do not allow us to prove many things we might like to prove.  For 
example, we cannot prove  (–1)1/2 × 0 = 0 .  How can the axioms be made strong enough to 
prove things about complex numbers, but weak enough to leave room for  ∞ ?

25 Express formally
(a) the absolute value of a real number  x .
(b) the sign of a real number  x , which is  –1 ,  0 , or  +1  depending on whether  x  is negative, 

zero, or positive.

26 Prove  –∞<y<∞  ∧  y 0  ⇒  (x/y=z  =  x=z×y) .

27 Show that the number axioms become inconsistent when we add the axiom
–∞<y<∞  ⇒  x/y×y = x

28 (circular numbers)  Redesign the axioms for the extended number system to make it 
circular, so that  +∞ = –∞ .  Be careful with the transitivity of  < .
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29 Is there any harm in adding the axiom  0/0=5  to Number Theory?

30 (bracket algebra)  Here is a new way to write boolean expressions.  An expression can be 
empty;  in other words, nothing is already an expression.  If you put a pair of parentheses 
around an expression, you get another expression.  If you put two expressions next to each 
other, you get another expression.  For example,

()(())((())())
is an expression.  The empty expression is bracket algebra's way of writing  T ;  putting 
parentheses around an expression is bracket algebra's way of negating it, and putting 
expressions next to each other is bracket algebra's way of conjoining them.  So the example 
expression is bracket algebra's way of saying

¬T∧¬¬T∧¬(¬¬T∧¬T)
We can also have variables anywhere in a bracket expression.  There are three rules of 
bracket algebra.  If  x ,  y , and  z  are any bracket expressions, then

((x)) can replace or be replaced by x double negation rule
x()y can replace or be replaced by () base rule
x y z can replace or be replaced by x′ y z′ context rule

where  x′  is  x  with occurrences of  y  added or deleted, and similarly  z′  is  z  with 
occurrences of  y  added or deleted.  The context rule does not say how many occurrences 
of  y  are added or deleted;  it could be any number from none to all of them.  To prove, you 
just follow the rules until the expression disappears.  For example,

((a)b((a)b)) context rule: empty for  x ,  (a)b  for  y ,  ((a)b)  for  z
becomes ((a)b(       )) base rule:  (a)b  for  x  and empty for  y
becomes (       (       )) double negation rule: empty for  x
becomes
Since the last expression is empty, all the expressions are proven.

(a) Rewrite the boolean expression
¬(¬(a∧b)∧¬(¬a∧b)∧¬(a∧¬b)∧¬(¬a∧¬b))

as a bracket expression, and then prove it following the rules of bracket algebra.
(b) As directly as possible, rewrite the boolean expression

(¬a⇒¬b) ∧ (a b)  ∨  (a∧c ⇒ b∧c)
as a bracket expression, and then prove it following the rules of bracket algebra.

(c) Can all boolean expressions be rewritten reasonably directly as bracket expressions?
(d) Can  x y  become  y x  using the rules of bracket algebra?
(e) Can all theorems of boolean algebra, rewritten reasonably directly as bracket expressions, be 

proven using the rules of bracket algebra?
(f) We interpret empty as  T , parentheses as negation, and juxtaposition as conjunction.  Is 

there any other consistent way to interpret the symbols and rules of bracket algebra?

31 Let  •  be a two-operand infix operator (let's give it precedence 3) whose operands and result 
are of some type  T .  Let  ◊  be a two-operand infix operator (let's give it precedence 7) 
whose operands are of type  T  and whose result is boolean, defined by the axiom

a ◊ b  =  a • b = a
(a) Prove if  •  is idempotent then  ◊  is reflexive.
(b) Prove if  •  is associative then  ◊  is transitive.
(c) Prove if  •  is symmetric then  ◊  is antisymmetric.
(d) If  T  is the booleans and  •  is  ∧ , what is  ◊ ?
(e) If  T  is the booleans and  •  is  ∨ , what is  ◊ ?
(f) If  T  is the natural numbers and  ◊  is  ≤ , what is  • ?
(g) The axiom defines  ◊  in terms of  • .  Can it be inverted, so that  •  is defined in terms of  ◊ ?
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32 (family theory)  Design a theory of personal relationships.  Invent person expressions such 
as  Jack ,  Jill ,  father of p ,  mother of p .  Invent boolean expressions that use person 
expressions, such as  p is male ,  p is female ,  p is a parent of q ,  p is a son of q , 
p is a daughter of q ,  p is a child of q ,  p is married to q ,  p=q .  Invent axioms such as  
(p is male)  (p is female) .  Formulate and prove an interesting theorem.

                                                                                                                                End of Basic Theories

10.2  Basic Data Structures

33 Simplify
(a) (1, 7–3) + 4 – (2, 6, 8)
(b) nat×nat
(c) nat–nat
(d) (nat+1)×(nat+1)

34 Prove  ¬ 7: null .

35 We defined bunch  null  with the axiom  null: A .  Is there any harm in defining bunch  all  
with the axiom  A: all ?

36 Let  A  be a bunch of booleans such that  A = ¬A .  What is  A ?

37 Show that some of the axioms of Bunch Theory listed in Section 2.0 are provable from the 
other axioms.  How many of the axioms can you remove without losing any theorems?

38 (hyperbunch)  A hyperbunch is like a bunch except that each element can occur a number of 
times other than just zero times (absent) or one time (present).  The order of elements 
remains insignificant.  (A hyperbunch does not have a characteristic predicate, but a 
characteristic function with numeric result.)  Design notations and axioms for each of the 
following kinds of hyperbunch.

(a) multibunch:  an element can occur any natural number of times.  For example, a multibunch 
can consist of one 2, two 7s, three 5s, and zero of everything else.  (Note:  the equivalent for 
sets is called either a multiset or a bag.)

(b) wholebunch:  an element can occur any integer number of times.
(c) fuzzybunch:  an element can occur any real number of times from  0  to  1  inclusive.

39 A composite number is a natural number with  2  or more (not necessarily distinct) prime 
factors.  Express the composite numbers as simply as you can.

40 For this question only, let  #  be a two-operand infix operator (precedence 3) with natural 
operands and an extended natural result.  Informally,  n#m  means “the number of times 
that  n  is a factor of  m ”.  It is defined by the following two axioms.

m: n×nat  ∨  n#m = 0
n 0   ⇒   n#(m×n)  =  n#m + 1

(a) Make a 3×3 chart of the values of  (0,..3)#(0,..3) .
(b) Show that the axioms become inconsistent if the antecedent of the second axiom is 

removed.
(c) How should we change the axioms to allow  #  to have extended natural operands?
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41 For naturals  n  and  m , we can express the statement “ n  is a factor of  m ” formally as 
follows:

m: n×nat
(a) What are the factors of  0 ?
(b) What is  0  a factor of?
(c) What are the factors of  1 ?
(d) What is  1  a factor of?

42 Let  B  =  1, 3, 5 .  What is
(a) ¢(B + B)
(b) ¢(B × 2)
(c) ¢(B × B)
(d) ¢(B2)

43 The compound axiom says
x: A, B  =  x: A  ∨  x: B

There are 16 two-operand boolean operators that could sit where  ∨  sits in this axiom if we 
just replace bunch union (,) by a corresponding bunch operator.  Which of the 16 two-
operand boolean operators correspond to useful bunch operators?

44 (von Neumann numbers)
(a) Is there any harm in adding the axioms

0  =  {null} the empty set
n+1  =  {n, ~n} for each natural  n

(b) What correspondence is induced by these axioms between the arithmetic operations and the 
set operations?

(c) Is there any harm in adding the axioms
0  =  {null} the empty set
i+1  =  {i, ~i} for each integer  i

45 (Cantor's paradise)  Show that  ¢ S  >  ¢S  is neither a theorem nor an antitheorem.

46 The strings defined in Section 2.2 have natural indexes and extended natural lengths.  Add a 
new operator, the inverse of catenation, to obtain strings that have negative indexes and 
lengths.

47 Prove the trichotomy for strings of numbers.  For strings  S  and  T , prove that exactly one 
of  S<T ,  S=T ,  S>T  is a theorem.

48 In Section 2.3 there is a self-describing expression.  Make it into a self-printing program.  
To do so, you need to know that  c!e  outputs the value of expression  e  on channel  c .

49 Simplify (no proof)
(a) null, nil
(b) null; nil
(c) *nil
(d) [null]
(e) [*null]
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50 What is the difference between  [0, 1, 2]  and  [0; 1; 2] ?

51 (prefix order)  Give axioms to define the prefix partial order on strings.  String  S  comes 
before string  T  in this order if and only if  S  is an initial segment of T .

52 Simplify, assuming  i: 0,..#L
(a) i→Li | L
(b) L [0;..i] + [x] + L [i+1;..#L]

53 Simplify (no proof)
(a) 0→1 | 1→2 | 2→3 | 3→4 | 4→5 | [0;..5]
(b) (4→2 | [–3;..3]) 3
(c) ((3;2)→[10;..15] | 3→[5;..10] | [0;..5]) 3
(d) ([0;..5] [3; 4]) 1
(e) (2;2)→"j" | [["abc"]; ["de"]; ["fghi"]]
(f) #[nat]
(g) #[*3]
(h) [3; 4]: [3*4*int]
(i) [3; 4]: [3; int]
(j) [3, 4; 5]: [2*int]
(k) [(3, 4); 5]: [2*int]
(l) [3; (4, 5); 6; (7, 8, 9)] ‘ [3; 4; (5, 6); (7, 8)]

54 Let  i  and  j  be indexes of list  L .  Express  i→Lj | j→Li | L  without using  | .
                                                                                                                         End of Basic Data Structures

10.3  Function Theory

55 In each of the following, replace  p  by
〈x: int→〈y: int→〈z: int→x≥0 ∧ x2≤y ∧ ∀z: int· z2≤y ⇒ z≤x〉〉〉

and simplify, assuming  x, y, z, u, w: int .
(a) p (x+y) (2×u + w) z
(b) p (x+y) (2×u + w)
(c) p (x+z) (y+y) (2+z)

56 Some mathematicians like to use a notation like  ∃!x: D· Px  to mean “there is a unique  x  
in  D  such that  Px  holds”.  Define  ∃!  formally.

57 Write an expression equivalent to each of the following without using  § .
(a) ¢(§x: D· Px) = 0
(b) ¢(§x: D· Px) = 1
(c) ¢(§x: D· Px) = 2

58 (cat)  Define function  cat  so that it applies to a list of lists and produces their catenation.  
For example,

cat [[0; 1; 2]; [nil]; [[3]]; [4; 5]]  =  [0; 1; 2; [3]; 4; 5]

59 Express formally that  L  is a sublist (not necessarily consecutive items) of list  M .  For 
example,  [0; 2; 1]  is a sublist of  [0; 1; 2; 2; 1; 0] , but  [0; 2; 1]  is not a sublist of  
[0; 1; 2; 3] .
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60 Express formally that  L  is a longest sorted sublist of  M  where
(a) the sublist must be consecutive items (a segment).
(b) the sublist must be consecutive  (a segment) and nonempty.
(c) the sublist contains items in their order of appearance in  M , but not necessarily 

consecutively (not necessarily a segment).

61 Express formally that natural  n  is the length of a longest palindromic segment in list  L .  A 
palindrome is a list that equals its reverse.

62 Using the syntax  x can fool y at time t  formalize the statements
(a) You can fool some of the people all of the time.
(b) You can fool all of the people some of the time.
(c) You can't fool all of the people all of the time.

for each of the following interpretations of the word “You”:
(i) Someone
(ii) Anyone
(iii) The person I am talking to

63 (whodunit)  Here are ten statements.
(i) Some criminal robbed the Russell mansion.
(ii) Whoever robbed the Russell mansion either had an accomplice among the servants

or had to break in.
(iii) To break in one would have to either smash the door or pick the lock.
(iv) Only an expert locksmith could pick the lock.
(v) Anyone smashing the door would have been heard.
(vi) Nobody was heard.
(vii) No one could rob the Russell mansion without fooling the guard.
(viii) To fool the guard one must be a convincing actor.
(ix) No criminal could be both an expert locksmith and a convincing actor.
(x) Some criminal had an accomplice among the servants.

(a) Choosing good abbreviations, translate each of these statements into formal logic.
(b) Taking the first nine statements as axioms, prove the tenth.

64 (arity)  The arity of a function is the number of variables (parameters) it introduces, and the 
number of arguments it can be applied to.  Write axioms to define  αf  (arity of  f ).

65 There are some people, some keys, and some doors.  Let  p holds k  mean that person  p  
holds key  k .  Let  k unlocks d  mean that key  k  unlocks door  d .  Let  p opens  d  mean 
that person  p  can open door  d .  Formalize

(a) Anyone can open any door if they have the appropriate key.
(b) At least one door can be opened without a key (by anyone).
(c) The locksmith can open any door even without a key.

66 Prove that if variables  i  and  j  do not appear in predicates  P  and  Q , then
(∀i· Pi) ⇒ (∃i· Qi)   =   (∃i, j· Pi ⇒ Qj)

67 There are four boolean two-operand associative symmetric operators with an identity.  We 
used two of them to define quantifiers.  What happened to the other two?

68 Which operator can be used to define a quantifier to give the range of a function?
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69 We have defined several quantifiers by starting with an associative symmetric operator with 
an identity.  Bunch union is also such an operator.  Does it yield a quantifier?

70 Exercise 13 talks about drinking and driving, but not about time.  It's not all right to drink 
first and then drive soon after, but it is all right to drive first and then drink soon after.  It is 
also all right to drink first and then drive 6 hours after.  Let  drink  and  drive  be predicates 
of time, and formalize the rule that you can't drive for 6 hours after drinking.  What does 
your rule say about drinking and driving at the same time?

71 Formalize each of the following statements as a boolean expression.
(a) Everybody loves somebody sometime.
(b) Every 10 minutes someone in New York City gets mugged.
(c) Every 10 minutes someone keeps trying to reach you.
(d) Whenever the altititude is below 1000 feet, the landing gear must be down.
(e) I'll see you on Tuesday, if not before.
(f) No news is good news.

72 Express formally that
(a) natural  n  is the largest proper (neither  1  nor  m ) factor of natural  m .
(b) g  is the greatest common divisor of naturals  a  and  b .
(c) m  is the lowest common multiple of naturals  a  and  b .
(d) p  is a prime number.
(e) n  and  m  are relatively prime numbers.
(f) there is at least one and at most a finite number of naturals satisfying predicate  p .
(g) there is no smallest integer.
(h) between every two rational numbers there is another rational number.
(i) list  L  is a longest segment of list  M  that does not contain item  x .
(j) the segment of list  L  from (including) index  i  to (excluding) index  j  is a segment whose 

sum is smallest.
(k) a  and  b  are items of lists  A  and  B  (respectively) whose absolute difference is least.
(l) p  is the length of a longest plateau (segment of equal items) in a nonempty sorted list  L .
(m) all items that occur in list  L  occur in a segment of length  10 .
(n) all items of list  L  are different (no two items are equal).
(o) at most one item in list  L  occurs more than once.
(p) the maximum item in list  L  occurs  m  times.
(q) list  L  is a permutation of list  M .

73 (bitonic list)  A list is bitonic if it is monotonic up to some index, and antimonotonic after 
that.  For example,  [1; 3; 4; 5; 5; 6; 4; 4; 3]  is bitonic.  Express formally that  L  is bitonic.

74 Formalize and disprove the statement “There is a natural number that is not equal to any 
natural number.”.

75 (friends)  Formalize and prove the statement “The people you know are those known by all 
who know all whom you know.”.

76 (swapping partners)  There is a finite bunch of couples.  Each couple consists of a man and 
a woman.  The oldest man and the oldest woman have the same age.  If any two couples 
swap partners, forming two new couples, the younger partners of the two new couples have 
the same age.  Prove that in each couple, the partners have the same age.
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77 Express  ∀  and  ∃  in terms of  ¢  and  § .

78 Simplify
(a) Σ ((0,..n) → m)
(b) Π ((0,..n) → m)
(c) ∀ ((0,..n) → b)
(d) ∃ ((0,..n) → b)

79 Are the boolean expressions
nil→x  =  x
(S;T) → x  =  S→T→x

(a) consistent with the theory in Chapters 2 and 3?
(b) theorems according to the theory in Chapters 2 and 3?

80 (unicorns)  The following statements are made.
All unicorns are white.
All unicorns are black.
No unicorn is both white and black.

Are these statements consistent?  What, if anything, can we conclude about unicorns?

81 (Russell's barber)  Bertrand Russell stated:  “In a small town there is a barber who shaves 
all and only the people in the town who do not shave themselves.”.  Then Russell asked:  
“Does the barber shave himself?”.  If we say yes, then we can conclude from the statement 
that he does not, and if we say no, then we can conclude from the statement that he does.  
Formalize this paradox, and thus explain it.

82 (Russell's paradox)  Define  rus  =  〈f: (null→bool) → ¬ f f〉 .
(a) Can we prove  rus rus  =  ¬ rus rus ?
(b) Is this an inconsistency?
(c) Can we add the axiom  ¬  f: Δf ?  Would it help?

83 Prove that the square of an odd natural number is odd, and the square of an even natural 
number is even.

84 (Gödel/Turing incompleteness)  Prove that we cannot consistently and completely define an 
interpreter.  An interpreter is a predicate    that applies to texts;  when applied to a text 
representing a boolean expression, its result is equal to the represented expression.  For 
example,

 "∀s: [*char]· #s ≥ 0"  =  ∀s: [*char]· #s ≥ 0

85 Let  f  and  g  be functions from nat to  nat .  For what  f  do we have the theorem  g f = g ?  
For what  f  do we have the theorem  f g = g ?

86 What is the difference between  #[n*T]  and  ¢§[n*T] ?

87 Without using the Bounding Laws, prove
(a) ∀i· Li≤m   =   (MAX L) ≤ m
(b) ∃i· Li≤m   =   (MIN L) ≤ m

88 (pigeon-hole)  Prove  (ΣL) > n×#L  ⇒  ∃i: ΔL· Li>n .
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89 If  f: A→B  and  p: B→bool , prove
(a) ∃b: fA· pb  =  ∃a: A· pfa
(b) ∀b: fA· pb  =  ∀a: A· pfa

90 This question explores a simpler, more elegant function theory than the one presented in 
Chapter 3.  We separate the notion of local variable introduction from the notion of domain, 
and we generalize the latter to become local axiom introduction.  Variable introduction has 
the form  〈v→b〉  where  v  is a variable and  b  is any expression (the body;  no domain).  
There is an Application Law

〈v→b〉 x  =  (substitute  x  for  v  in  b )
and an Extension Law

f  =  〈v→fv〉
Let  a  be boolean, and let  b  be any expression.  Then  a » b  is an expression of the same 
type as  b .  The  »  operator has precedence level 12 and is right-associating.  Its axioms 
include:

T » b   =   b
a » b » c  =  a∧b » c

The expression  a » b  is a “one-tailed if-expression”, or “asserted expression”;  it 
introduces  a  as a local axiom within  b .  A function is a variable introduction whose body 
is an asserted expression in which the assertion has the form  v: D .  In this case, we allow 
an abbreviation:  for example, the function  〈n → n: nat » n+1〉  can be abbreviated  
〈n: nat→n+1〉 .  Applying this function to  3 , we find

〈n→n: nat » n+1〉 3
= 3: nat » 3+1
= T » 4
= 4

Applying it to  –3  we find
〈n→n: nat » n+1〉 (–3)

= –3: nat » –3+1
= ⊥⊥⊥⊥ » –2

and then we are stuck;  no further axiom applies.  In the example, we have used variable 
introduction and axiom introduction together to give us back the kind of function we had;  
but in general, they are independently useful.

(a) Show how function-valued variables can be introduced in this new theory.
(b) What expressions in the old theory have no equivalent in the new?  How closely can they be 

approximated?
(c) What expressions in the new theory have no equivalent in the old?  How closely can they be 

approximated?

91 Is there any harm in defining relation  R  with the following axioms?
∀x· ∃y· Rxy totality
∀x· ¬ Rxx irreflexivity
∀x, y, z· Rxy ∧ Ryz ⇒ Rxz transitivity
∃u· ∀x· x=u ∨ Rxu unity

92 Let  n  be a natural number, and let  R  be a relation on  0,..n .  In other words,
R: (0,..n) → (0,..n) → bool

We say that from  x  we can reach  x  in zero steps.  If  Rxy  we say that from  x  we can 
reach  y  in one step.  If  Rxy  and  Ryz  we say that from  x  we can reach  z  in two steps.  
And so on.  Express formally that from  x  we can reach  y  in some number of steps.
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93 Relation  R  is transitive if  ∀x, y, z· Rxy ∧ Ryz ⇒ Rxz .  Express formally that relation  R  is 
the transitive closure of relation  Q  ( R  is the strongest transitive relation that is implied by  
Q ).

                                                                                                                              End of Function Theory

10.4  Program Theory

94 Prove specification  S  is satisfiable for prestate  σ  if and only if  S.T  (note:  T  is the 
“true” boolean).

95 Let  x  be an integer state variable.  Which of the following specifications are 
implementable?

(a) x ≥ 0  ⇒  x′ 2 = x
(b) x′ ≥ 0  ⇒  x = 0
(c) ¬(x ≥ 0  ∧  x′ = 0)
(d) ¬(x ≥ 0  ∨  x′ = 0)

96 A specification is transitive if, for all states  a ,  b , and  c , if it allows the state to change 
from  a  to  b , and it allows the state to change from  b  to  c , then it allows the state to 
change from  a  to  c .  Prove  S  is transitive if and only if  S  is refined by  S.S .

97√ Simplify each of the following (in integer variables  x  and  y ).
(a) x:= y+1.  y′>x′
(b) x:= x+1.  y′>x ∧ x′>x
(c) x:= y+1.  y′=2x
(d) x:= 1.  x≥1 ⇒ ∃x· y′=2x
(e) x:= y.  x≥1 ⇒ ∃y· y′=x×y
(f) x:= 1.  ok
(g) x:= 1.  y:= 2
(h) x:= 1.  P  where  P  =  y:= 2
(i) x:= 1.  y:= 2.  x:= x+y
(j) x:= 1.  if y>x then x:= x+1 else x:= y
(k) x:= 1.  x′>x.  x′=x+1

98 Prove
(a) x:= x  =  ok
(b) x:= e.  x:= f x   =   x:= f e

99 Prove or disprove
(a) R.  if b then P else Q   =   if b then (R. P) else (R. Q)
(b) if b then P⇒Q else R⇒S   =  (if b then P else R) ⇒ (if b then Q else S)
(c) if b then (P. Q) else (R. S)   =   if b then P else R.  if b then Q else S

100 Prove
(a) P  and  Q  are each refined by  R  if and only if their conjunction is refined by  R .
(b) P⇒Q  is refined by  R  if and only if  Q  is refined by  P∧R .

101 (rolling)
(a) Can we always unroll a loop?  If  S  ⇐ A. S. Z , can we conclude  S  ⇐  A. A. S. Z. Z ?
(b) Can we always roll up a loop?  If  S  ⇐  A. A. S. Z. Z , can we conclude  S  ⇐ A. S. Z ?
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102 What is wrong with the following proof:
(R   ⇐   R. S) use context rule

= (R   ⇐   ⊥⊥⊥⊥. S) ⊥⊥⊥⊥  is base for  .
= (R   ⇐   ⊥⊥⊥⊥) base law for  ⇐
= T

103 For which kinds of specifications  P  and  Q  is the following a theorem:
(a) ¬(P. ¬Q)   ⇐   P. Q
(b) P. Q   ⇐   ¬(P. ¬Q)
(c) P. Q   =   ¬(P. ¬Q)

104 Write a formal specification of the following problem:  “Change the value of list variable  L  
so that each item is repeated.  For example, if  L  is  [6; 3; 5; 5; 7]  then it should be changed 
to  [6; 6; 3; 3; 5; 5; 5; 5; 7; 7] .”.

105 Let  P  and  Q  be specifications.  Let  C  be a precondition and let  C′  be the corresponding 
postcondition.  Prove the condition law

P. Q    ⇐   P∧C′.  C⇒Q

106 Let  P  and  Q  be specifications.  Let  C  be a precondition and let  C′  be the corresponding 
postcondition.  Which three of the following condition laws can be turned around, switching 
the problem and the solution?

C ∧ (P. Q)   ⇐   C∧P. Q
C ⇒ (P.Q)   ⇐   C⇒P. Q
(P.Q) ∧ C′   ⇐   P. Q∧C′
(P.Q) ⇐ C′   ⇐   P. Q⇐C′
P. C∧Q    ⇐   P∧C′. Q
P. Q   ⇐   P∧C′.  C⇒Q

107 Let  S  be a specification.  Let  C  be a precondition and let  C′  be the corresponding 
postcondition.  How does the exact precondition for  C′  to be refined by  S  differ from  
(S. C) ?  Hint:  consider prestates in which  S  is unsatisfiable, then deterministic, then 
nondeterministic.

108 We have Refinement by Steps, Refinement by Parts, and Refinement by Cases.  In this 
question we propose Refinement by Alternatives:
If  A  ⇐  if b then C else D  and  E  ⇐  if b then F else G  are theorems,

then  A∨E  ⇐  if b then C∨F else D∨G  is a theorem.
If  A  ⇐  B.C  and  D  ⇐  E.F  are theorems, then  A∨D  ⇐  B∨E. C∨F  is a theorem.
If  A ⇐ B  and  C ⇐ D  are theorems, then  A∨C  ⇐  B∨D  is a theorem.
Discuss the merits and demerits of this proposed law.

109 Let  x  and  y  be real variables.  Prove that if  y=x2  is true before
x:= x+1.  y:= y + 2×x – 1

is executed, then it is still true after.

110√ In one integer variable  x ,
(a) find the exact precondition  A  for  x′>5  to be refined by  x:= x+1 .
(b) find the exact postcondition for  A  to be refined by  x:= x+1 , where  A  is your answer 

from part  (a).
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111 Let all variables be integer except  L  is a list of integers.  What is the exact precondition for
(a) x′+y′ > 8  to be refined by  x:= 1
(b) x′=1  to be refined by  x:= 1
(c) x′=2  to be refined by  x:= 1
(d) x′=y  to be refined by  y:= 1
(e) x′ ≥ y′  to be refined by  x:= y+z
(f) y′+z′ ≥ 0  to be refined by  x:= y+z
(g) x′≤1  ∨  x′≥5  to be refined by  x:= x+1
(h) x′<y′  ∧  ∃x· Lx<y′  to be refined by  x:= 1
(i) ∃y· Ly<x′  to be refined by  x:= y+1
(j) L′ 3 = 4  to be refined by  L:= i→4 | L
(k) x′=a  to be refined by  if a > b then x:= a else ok
(l) x′=y  ∧  y′=x  to be refined by  (z:= x.  x:= y.  y:= z)
(m) a×x′ 2 + b×x′ + c = 0  to be refined by  (x:= a×x + b.  x:= –x/a)
(n) f ′ = n′!  to be refined by  (n:= n+1.  f:= f×n)  where  n  is natural and  !  is factorial.
(o) 7 ≤ c′ < 28  ∧ odd c′  to be refined by  (a:= b–1.  b:= a+3.  c:= a+b)
(p) s′  =  Σ L [0;..i′]  to be refined by  (s:= s + Li.  i:= i+1)

112 For what exact precondition and postcondition does the following assignment move integer 
variable  x  farther from zero?

(a) x:= x+1
(b) x:= abs (x+1)
(c)√ x:= x2

113 For what exact precondition and postcondition does the following assignment move integer 
variable  x  farther from zero staying on the same side of zero?

(a) x:= x+1
(b) x:= abs (x+1)
(c) x:= x2

114 Prove
(a) the Precondition Law:  C  is a sufficient precondition for specification  P  to be refined by 

specification  S  if and only if  C⇒P  is refined by  S .
(b) the Postcondition Law:  C′  is a sufficient postcondition for specification  P  to be refined 

by specification  S  if and only if  C′⇒P  is refined by  S .

115 (weakest prespecification, weakest postspecification)  Given specifications  P  and  Q , find 
the weakest specification  S  (in terms of  P  and  Q ) such that  P  is refined by

(a) S. Q
(b) Q. S

116 Let  a ,  b , and  c  be integer variables.  Simplify
(a) b:= a–b.  b:= a–b
(b) a:= a+b.  b:= a–b.  a:= a–b
(c) c:= a–b–c.  b:= a–b–c.  a:= a–b–c.  c:= a+b+c

117 Let  x  and  y  be boolean variables.  Simplify
(a) x:= x=y.  x:= x=y
(b) x:= x y.  y:= x y.  x:= x y
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118 Let  x  be an integer variable.  Prove the refinement
(a)√ x′=0   ⇐   if x=0 then ok else (x:= x–1.  x′=0)
(b) P   ⇐   if x=0 then ok else (x:= x–1.  t:= t+1.  P)

where  P   =   x′=0  ∧  if x≥0 then t′ = t+x else t′=∞

119 Let  x  be an integer variable.  Prove the refinement
(a) x′=1   ⇐   if x=1 then ok else (x:= div x 2.  x′=1)
(b)√ R   ⇐   if x=1 then ok else (x:= div x 2.  t:= t+1.  R)

where  R  =  x′=1  ∧  if x≥1 then t′ ≤ t + log x else t′=∞

120 In natural variables  s  and  n   prove
P   ⇐   if n=0 then ok else (n:= n–1.  s:= s+2n–n.  t:= t+1.  P)

where  P   =   s′ = s + 2n – n×(n–1)/2 – 1  ∧  n′=0  ∧  t′ = t+n .

121 Let  x  be an integer variable.  Is the refinement
P   ⇐   if x=0 then ok else (x:= x–1.  t:= t+1.  P)

a theorem when
P  =  x<0 ⇒ x′=1 ∧ t′=∞

Is this reasonable?  Explain.

122 (factorial)  In natural variables  n  and  f   prove
f:= n!   ⇐   if n=0 then f:= 1 else (n:= n–1.  f:= n!.  n:= n+1.  f:= f×n)

where  n!  =  1×2×3×...×n .

123 In natural variables  n  and  m  prove
P  ⇐ n:= n+1.

if n=10 then ok
else (m:= m–1.  P)

where  P  =  m:= m+n–9.  n:= 10 .

124 Let  x  and  n  be natural variables.  Find a specification  P  such that both the following 
hold:

x = x′×2n′   ⇐   n:= 0.  P
P   ⇐  if even x then (x:= x/2.  n:= n+1.  P) else ok

125 (square)  Let  s  and  n  be natural variables.  Find a specification  P  such that both the 
following hold:

s′ = n2   ⇐   s:= n.  P
P   ⇐   if n=0 then ok else (n:= n–1.  s:= s+n+n.  P)

This program squares using only addition, subtraction, and test for zero.

126 Let  a  and  b  be positive integers.  Let  x ,  u , and  v  be integer variables.  Let
P   =   u≥0  ∧  v≥0  ∧  x = u×a – v×b  ⇒  x′=0

(a) Prove
P   ⇐ if x>0 then (x:= x–a.  u:= u–1.  P)

else if x<0 then (x:= x+b.  v:= v–1.  P)
else ok

(b) Find an upper bound for the execution time of the program in part (a).

10  Exercises 164



127 Let  i  be an integer variable.  Add time according to the recursive measure, and then find the 
strongest  P  you can such that

(a) P  ⇐ if even i then i:= i/2 else i:= i+1.
if i=1 then ok else P

(b) P  ⇐ if even i then i:= i/2 else i:= i–3.
if i=0 then ok else P

128 Find a finite function  f  of natural variables  i  and  j  to serve as an upper bound on the 
execution time of the following program, and prove

t′ ≤ t + fij   ⇐ if i=0 ∧ j=0 then ok
else if i=0 then (i:= j×j.  j:= j–1.  t:= t+1.  t′ ≤ t + fij)
else (i:= i–1.  t:= t+1.  t′ ≤ t + fij)

129 Let  P  mean that the final values of natural variables  a  and  b  are the largest exponents of  
2  and  3  respectively such that both powers divide evenly into the initial value of positive 
integer  x .

(a) Define  P  formally.
(b) Define  Q  suitably and prove

P   ⇐ a:= 0.  b:= 0.  Q
Q   ⇐ if x: 2×nat then (x:= x/2.  a:= a+1.  Q)

else if x: 3×nat then (x:= x/3.  b:= b+1.  Q)
else ok

(c) Find an upper bound for the execution time of the program in part (b).

130 Express formally that specification  R  is satisfied by any number (including  0 ) of 
repetitions of behavior satisfying specification  S .

131 (Zeno)  Here is a loop.
R   ⇐   x:= x+1.  R

Suppose we charge time  2–x  for the recursive call, so that each iteration takes half as long 
as the one before.  Prove that the execution time is finite.

132 Let  t  be the time variable.  Can we prove the refinement
P   ⇐   t:= t+1.  P

for  P  =  t′=5 ?  Does this mean that execution will terminate at time  5 ?  What is wrong?

133 Let  n  and  r  be natural variables in the refinement
P   ⇐   if n=1 then r:= 0 else (n:= div n 2.  P.  r:= r+1)

Suppose the operations  div  and  +  each take time  1  and all else is free (even the call is 
free).  Insert appropriate time increments, and find an appropriate  P  to express the 
execution time in terms of

(a) the initial values of the memory variables.  Prove the refinement for your choice of  P .
(b) the final values of the memory variables.  Prove the refinement for your choice of  P .

134 (running total)  Given list variable  L  and any other variables you need, write a program to 
convert  L  into a list of cumulative sums.  Formally,

(a) ∀n: 0,..#L· L′n  =  Σ L [0;..n]
(b) ∀n: 0,..#L· L′n  =  Σ L [0;..n+1]

135 (cube)  Write a program that cubes using only addition, subtraction, and test for zero.
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136 (cube test)  Write a program to determine if a given natural number is a cube without using 
exponentiation.

137 ( mod 2 )  Let  n  be a natural variable.  The problem to reduce  n  modulo 2  can be solved 
as follows:

n′ = mod n 2   ⇐   if n<2 then ok else (n:= n–2.  n′ = mod n 2)
Using the recursive time measure, find and prove an upper time bound.  Make it as small as 
you can.

138 (fast  mod 2 )  Let  n  and  p  be natural variables.  The problem to reduce  n  modulo 2  can 
be solved as follows:

n′ = mod n 2   ⇐   if n<2 then ok else (even n′ = even n.  n′ = mod n 2)
even n′ = even n   ⇐   p:= 2.  even p   ⇒   even p′  ∧  even n′ = even n
even p   ⇒   even p′  ∧  even n′ = even n   ⇐

n:= n–p.  p:= p+p.
if n<p then ok else even p   ⇒   even p′  ∧  even n′ = even n

(a) Prove these refinements.
(b) Using the recursive time measure, find and prove a sublinear upper time bound.

139 Given a specification  P  and a prestate  σ  with  t  as time variable, we might define “the 
exact precondition for termination” as follows:

∃n: nat· ∀σ′·  t′ ≤ t+n  ⇐  P
Letting  x  be an integer variable, find the exact precondition for termination of the following, 
and comment on whether it is reasonable.

(a) x ≥ 0  ⇒  t′ ≤ t+x
(b) ∃n: nat· t′ ≤ t+n
(c) ∃f: int→nat· t′ ≤ t + fx

140√ (maximum item)  Write a program to find the maximum item in a list.

141 (list comparison)  Using item comparison but not list comparison, write a program to 
determine whether one list comes before another in the list order.

142√ (list summation)  Write a program to find the sum of a list of numbers.

143 (alternating sum)  Write a program to find the alternating sum  L0 – L1 + L2 – L3 + ...  of 
a list  L  of numbers.

144 (combinations)  Write a program to find the number of ways to partition  a+b  things into  
a  things in the left part and  b  things in the right part.  Include recursive time.

145 (earliest meeting time)  Write a program to find the earliest meeting time acceptable to three 
people.  Each person is willing to state their possible meeting times by means of a function 
that tells, for each time  t , the earliest time at or after  t  that they are available for a meeting.  
(Do not confuse this  t  with the execution time variable.  You may ignore execution time for 
this problem.)

146 (polynomial)  You are given  n: nat , c: [n*rat] , x: rat  and variable  y: rat .  c  is a list of 
coefficients of a polynomial (“of degree  n–1”)  to be evaluated at  x .  Write a program for

y′ = Σi: 0,..n· ci×xi
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147 (multiplication table)  Given  n: nat  and variable  M: [*[*nat]] , write a program to assign to  
M  a multiplication table of size  n  without using multiplication.  For example, if  n = 4 , 
then

M′ = [ [0];
[0; 1];
[0; 2; 4];
[0; 3; 6; 9] ]

148 (Pascal's triangle)  Given  n: nat  and variable  P: [*[*nat]] , write a program to assign to  P  
a Pascal's triangle of size  n .  For example, if  n = 4 , then

P′ = [ [1];
[1; 1];
[1; 2; 1];
[1; 3; 3; 1] ]

The left side and diagonal are all 1s; each interior item is the sum of the item above it and 
the item diagonally above and left.

149√ (binary exponentiation)  Given natural variables  x  and  y , write a program for  y′ = 2x  
without using exponentiation.

150 Write a program to find the smallest power of  2  that is bigger than or equal to a given 
positive integer without using exponentiation.

151√ (fast exponentiation)  Given rational variables  x  and  z  and natural variable  y , write a 
program for  z′ = xy  that runs fast without using exponentiation.

152 (sort test)  Write a program to assign a boolean variable to indicate whether a given list is 
sorted.

153√ (linear search)  Write a program to find the first occurrence of a given item in a given list.  
The execution time must be linear in the length of the list.

154√ (binary search)  Write a program to find a given item in a given nonempty sorted list.  The 
execution time must be logarithmic in the length of the list.  The strategy is to identify which 
half of the list contains the item if it occurs at all, then which quarter, then which eighth, and 
so on.

155 (binary search with test for equality)  The problem is binary search (Exercise 154), but each 
iteration tests to see if the item in the middle of the remaining segment is the item we seek.

(a) Write the program, with specifications and proofs.
(b) Find the execution time according to the recursive measure.
(c) Find the execution time according to a measure that charges time  1  for each test.
(d) Compare the execution time to binary search without the test for equality each iteration.

156 (ternary search)  The problem is the same as binary search (Exercise 154).  The strategy 
this time is to identify which third of the list contains the item if it occurs at all, then which 
ninth, then which twenty-seventh, and so on.

157√ (two-dimensional search)  Write a program to find a given item in a given 2-dimensional 
array.  The execution time must be linear in the product of the dimensions.
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158 (sorted two-dimensional search)  Write a program to find a given item in a given 2-
dimensional array in which each row is sorted and each column is sorted.  The execution 
time must be linear in the sum of the dimensions.

159 (sorted two-dimensional count)  Write a program to count the number of occurrences of a 
given item in a given 2-dimensional array in which each row is sorted and each column is 
sorted.  The execution time must be linear in the sum of the dimensions.

160 (pattern search)  Let  subject  and  pattern  be two texts.  Write a program to do the 
following.  If  pattern  occurs somewhere within  subject , natural variable  h  is assigned to 
indicate the beginning of its first occurrence

(a) using any list operators given in Section 2.3.
(b) using list indexing, but no other list operators.

161 (fixed point)  Let  L  be a nonempty sorted list of  n  different integers.  Write a program to 
find a fixed-point of  L , that is an index  i  such that  Li = i , or to report that no such index 
exists.  Execution time should be at most  log n  where  n  is the length of the list.

162 (all present)  Given a natural number and a list, write a program to determine if every natural 
number up to the given number is an item in the list.

163 (missing number)  You are given an unsorted list of length  n  whose items are the numbers  
0,..n+1  with one number missing.  Write a program to find the missing number.

164 (text length)  You are given a text (string of characters) that begins with zero or more 
“ordinary” characters, and then ends with zero or more “padding” characters.  A padding 
character is not an ordinary character.  Write a program to find the number of ordinary 
characters in the text.  Execution time should be logarithmic in the text length.

165 (ordered pair search)  Given a list of at least two items whose first item is less than or equal 
to its last item, write a program to find an adjacent pair of items such that the first of the pair 
is less than or equal to the second of the pair.  Execution time should be logarithmic in the 
length of the list.

166 (convex equal pair)  A list of numbers is convex if its length is at least  2 , and every item 
(except the first and last) is less than or equal to the average of its two neighbors.  Given a 
convex list, write a program to determine if it has a pair of consecutive equal items.  
Execution should be logarithmic in the length of the list.

167 Define a partial order  «  on pairs of integers as follows:
[a; b] « [c; d]   =   a<c ∧ b<d

Given  n: nat+1  and  L: [n*[int; int]]  write a program to find the index of a minimal item 
in  L .  That is, find  j: 0,..#L  such that  ¬∃i· Li « Lj .  The execution time should be at most  
n × log n .

168 ( n  sort)  Given a list  L  such that  L (0,..#L)  =  0,..#L , write a program to sort  L  in linear 
time and constant space.  The only change permitted to  L  is to swap two items.

169√ ( n2  sort)  Write a program to sort a list.  Execution time should be at most  n2 where  n  is 
the length of the list.
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170 ( n × log n  sort)  Write a program to sort a list.  Execution time should be at most  n × log n  
where  n  is the length of the list.

171 (reverse)  Write a program to reverse the order of the items of a list.

172 (next sorted list)  Given a nonempty sorted list of naturals, write a program to find the next 
(in list order) sorted list having the same length and sum.

173 (next combination)  You are given a sorted list of  m  different numbers, all in the range  
0,..n .  Write a program to find the lexicographically next sorted list of  m  different 
numbers, all in the range  0,..n .

174 (next permutation)  You are given a list of the numbers  0,..n  in some order.  Write a 
program to find the lexicographically next list of the numbers  0,..n .

175 (permutation inverse)  You are given a list variable  P  of different items in  0,..#P .  Write a 
program for  P P′ = [0;..#P] .

176 (idempotent permutation)  You are given a list variable  L  of items in  0,..#L  (not 
necessarily all different).  Write a program to permute the list so that finally  L′ L′ = L′ .

177 (local minimum)  You are given a list  L  of at least  3  numbers such that  L0 ≥ L1  and  
L(#L–2) ≤ L(#L–1) .  A local minimum is an interior index  i: 1,..#L–1  such that

L(i–1) ≥ Li ≤ L(i+1)
Write a program to find a local minimum of  L .

178 (natural division)  The natural quotient of natural  n  and positive integer  p  is the natural 
number  q  satisfying

q ≤ n/p < q+1
Write a program to find the natural quotient of  n  and  p  in  log n  time without using any 
functions ( div ,  mod ,  floor ,  ceil , ... ).

179 (remainder)  Write a program to find the remainder after natural division (Exercise 178), 
using only comparison, addition, and subtraction (not multiplication or division or  mod ).

180 (natural binary logarithm)  The natural binary logarithm of a positive integer  p  is the 
natural number  b  satisfying

2b ≤ p < 2b+1

Write a program to find the natural binary logarithm of a given positive integer  p  in  log p  
time.

181 (natural square root)  The natural square root of a natural number  n  is the natural number  
s  satisfying

s2 ≤ n < (s+1)2

(a) Write a program to find the natural square root of a given natural number  n  in  log n  time.
(b) Write a program to find the natural square root of a given natural number  n  in  log n  time 

using only addition, subtraction, doubling, halving, and comparisons (no multiplication or 
division).
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182 (factor count)  Write a program to find the number of factors (not necessarily prime) of a 
given natural number.

183 (Fermat's last program)  Given natural  c , write a program to find the number of unordered 
pairs of naturals  a  and  b  such that  a2 + b2 = c2  in time proportional to  c .  (An 
unordered pair is really a bunch of size  1  or  2 .  If we have counted the pair  a  and  b , we 
don't want to count the pair  b  and  a .)  Your program may use addition, subtraction, 
multiplication, division, and comparisons, but not exponentiation or square root.

184 (flatten)  Write a program to flatten a list.  The result is a new list just like the old one but 
without the internal structure.  For example,

L  =  [ [3; 5]; 2; [5; [7]; [nil] ] ]
L′ =  [3; 5; 2; 5; 7]

Your program may employ a test  Li: int  to see if an item is an integer or a list.

185 (diagonal)  Some points are arranged around the perimeter of a circle.  The distance from 
each point to the next point going clockwise around the perimeter is given by a list.  Write a 
program to find two points that are farthest apart.

186 (minimum sum segment)  Given a list of integers, possibly including negatives, write a 
program to find

(a)√ the minimum sum of any segment (sublist of consecutive items).
(b) the segment (sublist of consecutive items) whose sum is minimum.

187 (maximum product segment)  Given a list of integers, possibly including negatives, write a 
program to find

(a) the maximum product of any segment (sublist of consecutive items).
(b) the segment (sublist of consecutive items) whose product is maximum.

188 (segment sum count)
(a) Write a program to find, in a given list of naturals, the number of segments whose sum is a 

given natural.
(b) Write a program to find, in a given list of positive naturals, the number of segments whose 

sum is a given natural.

189 (longest plateau)  You are given a nonempty sorted list of numbers.  A plateau is a segment 
(sublist of consecutive items) of equal items.  Write a program to find

(a) the length of a longest plateau.
(b) the number of longest plateaus.

190 (longest smooth segment)  In a list of integers, a smooth segment is a sublist of consecutive 
items in which no two adjacent items differ by more than  1 .  Write a program to find a 
longest smooth segment.

191 (longest balanced segment)  Given a list of booleans, write a program to find a longest 
segment (sublist of consecutive items) having an equal number of  T  and  ⊥⊥⊥⊥  items.

192 (longest palindrome)  A palindrome is a list that equals its reverse.  Write a program to find 
a longest palindromic segment in a given list.
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193 (greatest subsequence)  Given a list, write a program to find the sublist that is largest 
according to list order.  (A sublist contains items drawn from the list, in the same order of 
appearance, but not necessarily consecutive items.)

194 Given a list whose items are all  0 ,  1 , or  2 , write a program
(a) to find the length of a shortest segment (consecutive items) that contains all three numbers 

in any order.
(b) to count the number of sublists (not necessarily consecutive items) that are  0  then  1  then  

2  in that order.

195 Let  L  and  M  be sorted lists of numbers.  Write a program to find the number of pairs of 
indexes  i: 0,..#L  and  j: 0,..#M  such that  Li ≤ Mj .

196 (heads and tails)  Let  L  be a list of positive integers.  Write a program to find the number 
of pairs of indexes  i  and  j  such that

Σ L [0;..i]   =   Σ L [j;..#L]

197 (pivot)  You are given a nonempty list of positive numbers.  Write a program to find the 
balance point, or pivot.  Each item contributes its value (weight) times its distance from the 
pivot to its side of the balance.  Item  i  is considered to be located at point  i + 1/2 , and the 
pivot point may likewise be noninteger.

198 (inversion count)  Given a list, write a program to find how many pairs of items (not 
necessarily consecutive items) are out of order, with the larger item before the smaller item.

199 (minimum difference)  Given two nonempty sorted lists of numbers, write a program to find 
a pair of items, one from each list, whose absolute difference is smallest.

200 (earliest quitter)  In a nonempty list find the first item that is not repeated later.  In list  
[13; 14; 15; 14; 15; 13]  the earliest quitter is  14  because the other items  13  and  15  both 
occur after the last occurrence of  14 .

201 (interval union)  A collection of intervals along a real number line is given by the list of left 
ends  L  and the corresponding list of right ends  R .  List  L  is sorted.  The intervals might 
sometimes overlap, and sometimes leave gaps.  Write a program to find the total length of 
the number line that is covered by these intervals.

202 (bit sum)  Write a program to find the number of ones in the binary representation of a 
given natural number.

203 (digit sum)  Write a program to find the sum of the digits in the decimal representation of a 
given natural number.

204 (parity check)  Write a program to find whether the number of ones in the binary 
representation of a given natural number is even or odd.

205 (approximate search)  Given a nonempty sorted list of numbers and a number, write a 
program to determine the index of an item in the list that is closest in value to the given 
number.

171 10  Exercises



206 Given two natural numbers  s  and  p , write a program to find four natural numbers  a ,  b ,  
c , and  d  whose sum is  s  and product  p , in time  s2 , if such numbers exist.

207 Given three natural numbers  n ,  s , and  p , write a program to find a list of length  n  of 
natural numbers whose sum is  s  and product  p , if such a list exists.

208 (transitive closure)  A relation  R: (0,..n)→(0,..n)→bool  can be represented by a square 
boolean array of size  n .  Given a relation in the form of a square boolean array, write a 
program to find

(a) its transitive closure (the strongest transitive relation that is implied by the given relation).
(b) its reflexive transitive closure (the strongest reflexive and transitive relation that is implied 

by the given relation).

209 (reachability)  You are given a finite bunch of places;  and a successor function  S  on places 
that tells, for each place, those places that are directly reachable from it;  and a special place 
named  h  (for home).  Write a program to find all places that are reachable (reflexively, 
directly, or indirectly) from  h .

210 (shortest path)  You are given a square extended rational array in which item  i j  represents 
the direct distance from place  i  to place  j .  If it is not possible to go directly from  i to  j , 
then item  i j  is  ∞ .  Write a program to find the square extended rational array in which 
item  i j  represents the shortest, possibly indirect, distance from place  i  to place  j .

211 (McCarthy's 91 problem)  Let  i  be an integer variable.  Let
M   =   if i>100 then i:= i–10 else i:= 91

(a) Prove  M   ⇐  if i>100 then i:= i–10 else (i:= i+11.  M.  M) .
(b) Find the execution time of  M  as refined in part (a).

212 (Towers of Hanoi)  There are  3  towers and  n  disks.  The disks are graduated in size;  
disk  0  is the smallest and disk  n–1  is the largest.  Initially tower A holds all  n  disks, with 
the largest disk on the bottom, proceding upwards in order of size to the smallest disk on 
top.  The task is to move all the disks from tower A to tower B, but you can move only one 
disk at a time, and you must never put a larger disk on top of a smaller one.  In the process, 
you can make use of tower C as intermediate storage.

(a)√ Using the command  MoveDisk from to  to cause a robot arm to move the top disk from 
tower  from  to tower  to , write a program to move all the disks from tower A to tower B.

(b)√ Find the execution time, counting  MoveDisk  as time  1 , and all else free.
(c) Suppose that the posts where the disks are placed are arranged in an equilateral triangle, so 

that the distance the arm moves each time is constant (one side of the triangle to get into 
position plus one side to move the disk), and not dependent on the disk being moved.  
Suppose the time to move a disk varies with the weight of the disk being moved, which 
varies with its area, which varies with the square of its radius, which varies with the disk 
number.  Find the execution time.

(d)√ Find the maximum memory space required by the program, counting a recursive call as  1  
location (for the return address) and all else free.

(e)√ Find the average memory space required by the program, counting a recursive call as  1  
location (for the return address) and all else free.

(f) Find a simple upper bound on the average memory space required by the program, counting 
a recursive call as  1  location (for the return address) and all else free.
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213 (Ackermann)  Function  ack  of two natural variables is defined as follows.
ack 0 0  =  2
ack 1 0  =  0
ack (m+2) 0  =  1
ack 0 (n+1)  =  ack 0 n + 1
ack (m+1) (n+1)  =  ack m (ack (m+1) n)

(a) Suppose that functions and function application are not implemented expressions;  in that 
case  n:= ack m n  is not a program.  Refine  n:= ack m n  to obtain a program.

(b) Find a time bound.  Hint:  you may use function  ack  in your time bound.
(c) Find a space bound.

214 (alternate Ackermann)  For each of the following functions  f , refine  n:= f m n , find a time 
bound (possibly involving  f ), and find a space bound.

(a) f 0 n  =  n+2
f 1 0  =  0
f (m+2) 0  =  1
f (m+1) (n+1)  =  f m (f (m+1) n)

(b) f 0 n  =  n×2
f (m+1) 0  =  1
f (m+1) (n+1)  =  f m (f (m+1) n)

(c) f 0 n  =  n+1
f 1 0  =  2
f 2 0  =  0
f (m+3) 0  =  1
f (m+1) (n+1)  =  f m (f (m+1) n)

215 Let  n  be a natural variable.  Add time according to the recursive measure, and find a finite 
upper bound on the execution time of

P   ⇐   if n ≥ 2 then (n:= n–2.  P.  n:= n+1.  P.  n:= n+1) else ok

216√ (roller-coaster)  Let  n  be a natural variable.  It is easy to prove
n′=1   ⇐ if n=1 then ok

else if even n then (n:= n/2.  n′=1)
else (n:= 3×n + 1.  n′=1)

The problem is to find the execution time.  Warning:  this problem has never been solved.

217√ (Fibonacci)  The Fibonacci numbers  fib n  are defined as follows.
fib 0 = 0
fib 1 = 1
fib (n+2) = fib n + fib (n+1)

Write a program to find  fib n  in time  log n .  Hint:  see Exercise 301.

218 (Fibolucci)  Let  a  and  b  be integers.  Then the Fibolucci numbers for  a  and  b  are
f 0 = 0
f 1 = 1
f (n+2) = a × f n + b × f (n+1)

(The Fibonacci numbers are Fibolucci numbers for  1  and  1 .)  Given natural  k , without 
using any list variables, write a program to compute

Σn: 0,..k· fn × f(k–n)
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219 (item count)  Write a program to find the number of occurrences of a given item in a given 
list.

220 (duplicate count)  Write a program to find how many items are duplicates (repeats) of 
earlier items

(a) in a given sorted nonempty list.
(b) in a given list.

221 (z-free subtext)  Given a text, write a program to find the longest subtext that does not 
contain the letter  "z" .

222 (merge)  Given two sorted lists, write a program to merge them into one sorted list.

223 (arithmetic)  Let us represent a natural number as a list of naturals, each in the range  0,..b  
for some natural base  b>1 , in reverse order.  For example, if  b=10 , then  [9; 2; 7]  
represents  729 .  Write programs for each of the following.

(a) Find the list representing a given natural in a given base.
(b) Given a base and two lists representing natural numbers, find the list representing their sum.
(c) Given a base and two lists representing natural numbers, find the list representing their 

difference.  You may assume the first list represents a number greater than or equal to the 
number represented by the second list.  What is the result if this is not so?

(d) Given a base and two lists representing natural numbers, find the list representing their 
product.

(e) Given a base and two lists representing natural numbers, find the lists representing their 
quotient and remainder.

224 (machine multiplication)  Given two natural numbers, write a program to find their product 
using only addition, subtraction, doubling, halving, test for even, and test for zero.

225 (machine division)  Given two natural numbers, write a program to find their quotient using 
only addition, subtraction, doubling, halving, test for even, and test for zero.

226 (machine squaring)  Given a natural number, write a program to find its square using only 
addition, subtraction, doubling, halving, test for even, and test for zero.

227 Given a list of roots of a polynomial, write a program to find the list of coefficients.

228 (longest sorted sublist)  Write a program to find the length of a longest sorted sublist of a 
given list, where

(a) the sublist must be consecutive items (a segment).
(b) the sublist consists of items in their order of appearance in the given list, but not necessarily 

consecutively.

229 (almost sorted segment)  An almost sorted list is a list in which at most one adjacent pair of 
elements is out of order.  Write a program to find the length of a longest almost sorted 
segment of a given list.

230 (edit distance)  Given two lists, write a program to find the minimum number of item 
insertions, item deletions, and item replacements to change one list into the other.
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231 (ultimately periodic sequence)  You are given function  f: int→int  such that the sequence
x0 = 0
xn+1 = f (xn)

generated by  f  starting at  0  is ultimately periodic:
∃p: nat+1· ∃n: nat· xn = xn+p

The smallest positive  p  such that  ∃n: nat· xn = xn+p  is called the period.  Write a program 
to find the period.  Your program should use an amount of storage that is bounded by a 
constant, and not dependent on  f .

232 (partitions)  A list of positive integers is called a partition of natural number  n  if the sum of 
its items is  n .  Write a program to find

(a) a list of all partitions of a given natural  n .  For example, if  n=3  then an acceptable answer 
is  [[3]; [1; 2]; [2; 1]; [1; 1; 1]] .

(b) a list of all sorted partitions of a given natural  n .  For example, if  n=3  then an acceptable 
answer is  [[3]; [1; 2]; [1; 1; 1]] .

(c) the sorted list of all partitions of a given natural  n .  For example, if  n=3  then the answer is  
[[1; 1; 1]; [1; 2]; [2; 1]; [3]] .

(d) the sorted list of all sorted partitions of a given natural  n .  For example, if  n=3  then the 
answer is  [[1; 1; 1]; [1; 2]; [3]] .

233 (largest true square)  Write a program to find, within a boolean array, a largest square 
subarray consisting entirely of items with value  T .

234 (P-list)  Given a nonempty list  S  of natural numbers, define a P-list as a nonempty list  P  
of natural numbers such that each item of  P  is an index of  S , and

∀i: 1,..#P· P (i–1) < P i ≤ S (P (i–1))
Write a program to find the length of a longest P-list for a given list  S .

235 (J-list)  For natural number  n , a J-list of order  n  is a list of  2×n  naturals in which each  
m: 0,..n  occurs twice, and between the two occurrences of  m  there are  m  items.

(a) Write a program that creates a J-list of order  n  if there is one, for given  n .
(b) For which  n  do J-lists exist?

236 (diminished J-list)  For positive integer  n , a diminished J-list of order  n  is a list of  2×n–1  
naturals in which  0  occurs once and each  m: 1,..n  occurs twice, and between the two 
occurrences of  m  there are  m  items.

(a) Write a program that creates a diminished J-list of order  n  if there is one, for given  n .
(b) For which  n  do diminished J-lists exist?

237 (greatest common divisor)  Given two positive integers, write a program to find their greatest 
common divisor.

238 (least common multiple)  Given two positive integers, write a program to find their least 
common multiple.

239 Given two integers (not necessarily positive ones) that are not both zero, write a program to 
find their greatest common divisor.

240 (common items)  Let  A  be a sorted list of different integers.  Let  B  be another such list.  
Write a program to find the number of integers that occur in both lists.
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241 (unique items)  Let  A  be a sorted list of different integers.  Let  B  be another such list.  
Write a program to find the sorted list of integers that occur in exactly one of  A  or  B .

242 (smallest common item)  Given two sorted lists having at least one item in common, write a 
program to find the smallest item occurring in both lists.

243 Given three sorted lists having at least one item common to all three, write a program to find 
the smallest item occurring in all three lists.

244 Given three positive integers, write a program to find their greatest common divisor.  One 
method is to find the greatest common divisor of two of them, and then find the greatest 
common divisor of that and the remaining number, but there is a better way.

245 (longest common prefix)  A natural number can be written as a sequence of decimal digits 
with a single leading zero.  Given two natural numbers, write a program to find the number 
that is written as their longest common prefix of digits.  For example, given  025621  and  
02547 , the result is  025 .  Hint:  this question is about numbers, not about strings or lists.

246 (museum)  You are given natural  n , rationals  s  and  f  (start and finish), and lists  
A, D: [n*rat]  (arrive and depart) such that

∀i· s ≤ Ai ≤ Di ≤ f
They represent a museum that opens at time  s , is visited by  n  people with person  i  
arriving at time  Ai  and departing at time  Di  and closes at time  f .  Write a program to find 
the total amount of time during which at least one person is inside the museum, and the 
average number of people in the museum during the time it is open, in time linear in  n , if

(a) list  A  is sorted.
(b) list  D  is sorted.

247 (rotation test)  Given two lists, write a program to determine if one list is a rotation of the 
other.  You may use item comparisons, but not list comparisons.  Execution time should be 
linear in the length of the lists.

248 (smallest rotation)  Given a text variable  t , write a program to reassign  t  its alphabetically 
(lexicographically) smallest rotation.  You may use character comparisons, but not text 
comparisons.

249 You are given a list variable  L  assigned a nonempty list.  All changes to  L  must be via 
procedure  swap , defined as

swap  =  〈i, j: 0,..#L→L:= i→Lj | j→Li | L〉
(a) Write a program to reassign  L  a new list obtained by rotating the old list one place to the 

right (the last item of the old list is the first item of the new). 
(b) (rotate)  Given an integer  r , write a program to reassign  L  a new list obtained by rotating 

the old list  r  places to the right.  (If  r<0 , rotation is to the left  –r  places.)  Recursive 
execution time must be at most  #L .

(c) (segment swap)  Given an index  p , swap the initial segment up to  p  with the final segment 
beginning at  p .

250 (squash)  Let  L  be a list variable assigned a nonempty list.  Reassign it so that any run of 
two or more identical items is collapsed to a single item.
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251 Let  n  and  p  be natural variables.  Write a program to solve
n≥2  ⇒  p′: 22nat  ∧  n≤p′<n2

Include a finite upper bound on the execution time, but it doesn't matter how small.

252 (greatest square under a histogram)  You are given a histogram in the form of a list  H  of 
natural numbers.  Write a program to find the longest segment of  H  in which the height 
(each item) is at least as large as the segment length.

253 (long texts)  A particular computer has a hardware representation for texts of length  n  
characters or less, for some constant  n .  Longer texts must be represented in software as a 
string of packaged short texts.  (The long text represented is the catenation of the short 
texts.)  A long text is called “packed” if all its items except possibly the last have length  n .  
Write a program to pack a string of packaged short texts without changing the long text 
represented.

254 (Knuth, Morris, Pratt)
(a) Given list  P , find list  L  such that for every index  n  of list  P ,  Ln  is the length of the 

longest list that is both a proper prefix and a proper suffix of  P [0;..n+1] .  Here is a 
program to find  L .

A  ⇐  i:= 0.  L:= [#P*0].  j:= 1.  B
B  ⇐  if j≥#P then ok else (C.  L:= j→i | L.  j:= j+1.  B)
C  ⇐ if Pi=Pj then i:= i+1

else if i=0 then ok
else (i:= L (i–1).  C)

Find specifications  A ,  B , and  C  so that  A  is the problem and the three refinements are 
theorems.

(b) Given list  S  (subject), list  P  (pattern), and list  L  (as in part (a)), determine if  P  is a 
segment of  S , and if so, where it occurs.  Here is a program.

D  ⇐  m:= 0.  n:= 0.  E
E  ⇐  if m=#P then h:= n–#P else F
F  ⇐ if n=#S then h:= ∞

else if Pm=Sn then (m:= m+1.  n:= n+1.  E)
else G

G  ⇐  if m=0 then (n:= n+1.  F)  else (m:= L (m–1).  G)
Find specifications  D ,  E ,  F , and  G  so that  D  is the problem and the four refinements 
are theorems.

                                                                                                                               End of Program Theory

10.5  Programming Language

255 (nondeterministic assignment)  Generalize the assignment notation  x:= e  to allow the 
expression  e  to be a bunch, with the meaning that  x  is assigned an arbitrary element of the 
bunch.  For example,  x:= nat  assigns  x  an arbitrary natural number.  Show the standard 
boolean notation for this form of assignment.  Show what happens to the Substitution Law.

256 Suppose variable declaration is defined as
var x: T· P     =     ∃x: undefined· ∃x′: T· P

What are the characteristics of this kind of declaration?  Look at the example
var x: int· ok
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257 What is wrong with defining local variable declaration as follows:
var x: T· P     =     ∀x: T· ∃x′: T· P

258 Suppose variable declaration with initialization is defined as
var x: T := e·  P    =    var x: T·  x:= e. P

In what way does this differ from the definition given in Subsection 5.0.0?

259 Here are two different definitions of variable declaration with initialization.
var x: T := e·  P    =    ∃x, x′: T· x=e ∧ P
var x: T := e·  P    =    ∃x′: T· (substitute  e  for  x  in  P )

Show how they differ with an example.

260 The specification
var x: nat·  x:= –1

introduces a local variable and then assigns it a value that is out of bounds.  Is this 
specification implementable?  (Proof required.)

261 (frame problem)  Suppose there is one nonlocal variable  x , and we define  P  =  x′=0 .  
Can we prove

P   ⇐   var y: nat·  y:= 0.  P.  x:= y
The problem is that  y  was not part of the state space where  P  was defined, so does  P  
leave  y  unchanged?  Hint:  consider the definition of dependent composition.  Is it being 
used properly?

262 Let the state variables be  x ,  y , and  z .  Rewrite  frame x· T  without using  frame .  Say in 
words what the final value of  x  is.

263 In a language with array element assignment, the program
x:= i.  i:= A i.  A i:= x

was written with the intention to swap the values of  i  and  A i .  Assume that all variables 
and array elements are of type  nat , and that  i  has a value that is an index of  A .

(a) In variables  x ,  i , and  A , specify that  i  and  A i  should be swapped, the rest of  A  should 
be unchanged, but  x  might change.

(b) Find the exact precondition for which the program refines the specification of part (a).
(c) Find the exact postcondition for which the program refines the specification of part (a).

264 In a language with array element assignment, what is the exact precondition for  A′ i′ = 1  to 
be refined by  (A(A i):= 0.  A i:= 1.  i:= 2) ?

265√ (unbounded bound)  Find a time bound for the following program in natural variables  x  
and  y .

while ¬ x=y=0 do
if y>0 then y:= y–1
else (x:= x–1.  var n: nat· y:= n)

266 Let  W ⇐ while b do P  be an abbreviation of  W ⇐ if b then (P. W) else ok .  Let  
R ⇐ repeat P until b  be an abbreviation of  R ⇐ P. if b then ok else R .  Now prove

      (R ⇐ repeat P until b) ∧ (W ⇐ while ¬b do P)
⇐  (R ⇐ P. W) ∧ (W ⇐ if b then ok else R)
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267 (guarded command)  In “Dijkstra's little language” there is a conditional program with the 
syntax

if b → P [] c → Q fi
where  b  and  c  are boolean and  P  and  Q  are programs.  It can be executed as follows.  
If exactly one of  b  and  c  is true initially, then the corresponding program is executed;  if 
both  b  and  c  are true initially, then either one of  P  or  Q  (arbitrary choice) is executed;  
if neither  b  nor  c  is true initially, then execution is completely arbitrary.

(a) Express this program in the notations of this book as succinctly as possible.
(b) Refine this program using only the programming notations introduced in Chapter 4.

268√ Using a for-loop, write a program to add  1  to every item of a list.

269 Here is one way that we might consider defining the for-loop.  Let  j ,  n ,  k  and  m  be 
integer expressions, and let  i  be a fresh name.

for i:= nil do P   =   ok
for i:= j do P   =   (substitute  j  for  i  in  P )
for i:= n;..k ; k;..m do P   =   for i:= n;..k  do P.   for i:= k;..m do P

(a) From this definition, what can we prove about  for i:= 0;..n do n:= n+1  where  n  is an 
integer variable?

(b) What kinds of for-loop are in the programming languages you know?

270 (majority vote)  The problem is to find, in a given list, the majority item (the item that occurs 
in more than half the places) if there is one.  Letting  L  be the list and  m  be a variable 
whose final value is the majority item, prove that the following program solves the problem.

(a) var e: nat := 0· 
for i:= 0;..#L do

if m = L i then e:= e+1
else if i = 2×e then (m:= L i.  e:= e+1)
else ok

(b) var s: nat := 0· 
for i:= 0;..#L do

if m = L i then ok
else if i = 2×s then m:= L i
else s:= s+1

271 We defined the programmed expression  P result e  with the axiom
x′ = (P result e)  =  P.  x′=e

Why don't we define it instead with the axiom 
x′ = (P result e)  =  P ⇒ x′=e′

272 Let  a  and  b  be rational variables.  Define procedure  P  as
P   =   〈x, y: rat→if x=0 then a:= x else (a:= x×y.  a:= a×y)〉

(a) What is the exact precondition for  a′=b′  to be refined by  P a (1/b) ?
(b) Discuss the difference between “eager” and “lazy” evaluation of arguments as they affect 

both the theory of programming and programming language implementation.

273 “Call-by-value-result” describes a parameter that gets its initial value from an argument, is 
then a local variable, and gives its final value back to the argument, which therefore must be 
a variable.  Define “call-by-value-result” formally.  Discuss its merits and demerits.
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274 (call-by-name)  Here is a procedure applied to an argument.
〈x: int→a:= x.  b:= x〉 (a+1)

Suppose, by mistake, we replace both occurrences of  x  in the body with the argument.  
What do we get?  What should we get?  (This mistake is known as “call-by-name”.)

275 We defined  wait until w   =   t:= max t w  where  t  is an extended integer time variable, 
and  w  is an integer expression.

(a)√ Prove  wait until w   ⇐   if t≥w then ok else (t:= t+1.  wait until w)
(b) Now suppose that  t  is an extended real time variable, and  w  is an extended real 

expression.  Redefine  wait until w  appropriately, and refine it using the real time measure 
(assume any positive operation time you need).

276 The specification  wait w  where  w  is a length of time, not an instant of time, describes a 
delay in execution of time  w .  Formalize and implement it using

(a) the recursive time measure.
(b) the real time measure (assume any positive operation times you need).

277 We propose to define a new programming connective  P ♦ Q .  What properties of  ♦  are 
essential?  Why?

278 (Boole's booleans)  If  T=1  and  ⊥⊥⊥⊥=0 , express
(a) ¬a
(b) a∧b
(c) a∨b
(d) a⇒b
(e) a⇐b
(f) a=b
(g) a b

using only the following symbols (in any quantity)
(i) 0 1 a b ( ) + – ×
(ii) 0 1 a b ( ) – max min

279 Prove that the average value of
(a) n2  as  n  varies over  nat+1  according to probability  2–n  is  6 .
(b) n  as it varies over  nat  according to probability  (5/6)n × 1/6  is  5 .

280 (coin)  Repeatedly flip a coin until you get a head.  Prove that it takes  n  flips with 
probability  2–n .  With an appropriate definition of  R , the program is

R   ⇐   t:= t+1.  if rand 2 then ok else R

281 (blackjack)  You are dealt a card from a deck;  its value is in the range  1  through  13  
inclusive.  You may stop with just one card, or have a second card if you want.  Your object 
is to get a total as near as possible to  14 , but not over  14 .  Your strategy is to take a 
second card if the first is under  7 .  Assuming each card value has equal probability,

(a)√ find the probability for each value of your total.
(b) find the average value of your total.

282√ (dice)  If you repeatedly throw a pair of six-sided dice until they are equal, how long does it 
take?
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283 (drunk)  A drunkard is trying to walk home.  At each time unit, the drunkard may go 
forward one distance unit, stay in the same position, or go back one distance unit.  After  n  
time units, where is the drunkard?

(a) At each time unit, there is  2/3  probability of going forward, and  1/3  probability of staying 
in the same position.  The drunkard does not go back.

(b) At each time unit, there is  1/4  probability of going forward,  1/2  probability of staying in 
the same position, and  1/4  probability of going back.

(c) At each time unit, there is  1/2  probability of going forward,  1/4  probability of staying in 
the same position, and  1/4  probability of going back.

284 (Mr.Bean's socks)  Mr.Bean is trying to get a matching pair of socks from a drawer 
containing an inexhaustible supply of red and blue socks.  He begins by withdrawing two 
socks at random.  If they match, he is done.  Otherwise, he throws away one of them at 
random, withdraws another sock at random, and repeats.  How long will it take him to get a 
matching pair?  Assume that a sock withdrawn from the drawer has  1/2  probability of 
being each color, and that a sock that is thrown away also has a  1/2  probability of being 
each color.

                                                                                                                     End of Programming Language

10.6  Recursive Definition

285 Prove  ¬ –1: nat .  Hint: You will need induction.

286 (Cantor's diagonal)  Prove  ¬∃f: nat→nat→nat· ∀g: nat→nat· ∃n: nat· fn = g .

287 Prove  ∀n: nat· Pn   =   ∀n: nat· ∀m: 0,..n· Pm

288√ Prove that the square of an odd natural number is  8×m + 1  for some natural  m .

289 Prove that every positive integer is a product of primes.  By “product” we mean the result 
of multiplying together any natural number of (not necessarily distinct) numbers.  By 
“prime” we mean a natural number with exactly two factors.

290 Here is an argument to “prove” that in any group of people, all the people are the same age.  
The “proof” is by induction on the size of groups.  The induction base is that in any group 
of size  1 , clearly all the people are the same age.  Or we could equally well use groups of 
size  0  as the induction base.  The induction hypothesis is, of course, to assume that in any 
group of size  n , all the people are the same age.  Now consider a group of size  n+1 .  Let 
its people be  p0,  p1,  ..., pn .  By the induction hypothesis, in the subgroup  p0,  p1,  ..., pn–1  
of size  n , all the people are the same age;  to be specific, they are all the same age as  p1 .  
And in the subgroup  p1,  p2,  ..., pn  of size  n , all the people are the same age;  again, they 
are the same age as  p1 .  Hence all  n+1  people are the same age.  Formalize this argument 
and find the flaw.

291 Here is a possible alternative construction axiom for  nat .
0, 1, nat+nat: nat

(a) What induction axiom goes with it?
(b) Are the construction axiom given and your induction axiom of part (a) satisfactory as a 

definition if  nat?
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292 Chapter 6 gives four predicate versions of  nat  induction.  Prove that they are equivalent.

293 Prove  nat  =  0,..∞ .

294 Here are a construction axiom and an induction axiom for bunch  bad .
(§n: nat· ¬ n: bad) : bad
(§n: nat· ¬ n: B) : B  ⇒  bad: B

(a)√ Are these axioms consistent?
(b) From these axioms, can we prove the fixed-point equation

bad   =   §n: nat· ¬ n: bad

295 Prove the following;  quantifications are over  nat .
(a) ¬∃i, j·  j 0  ∧  21/2 = i/j   The square root of  2  is irrational.
(b) ∀n· (Σi: 0,..n· 1)  =  n
(c) ∀n· (Σi: 0,..n· i)  =  n × (n–1) / 2
(d) ∀n· (Σi: 0,..n· i3)  =  (Σi: 0,..n· i)2

(e) ∀n· (Σi: 0,..n· 2i)  =  2n – 1
(f) ∀n· (Σi: 0,..n· i×2i)  =  (n–2)×2n + 2
(g) ∀n· (Σi: 0,..n· (–2)i)  =  (1 – (–2)n) / 3
(h) ∀n· n≥10  ⇒  2n > n3

(i) ∀n· n≥4  ⇒  3n > n3

(j) ∀n· n≥3  ⇒  2×n3 > 3×n2 + 3×n
(k) ∀a, d· ∃q, r· d 0  ⇒  r<d  ∧  a = q×d + r
(l) ∀a, b· a≤b  ⇒  (Σi: a,..b· 3i) = (3b–3a)/2

296 Show that we can define  nat  by fixed-point construction together with
(a) ∀n: nat·  0 ≤ n < n+1
(b) ∃m: nat· ∀n: nat·  m ≤ n < n+1

297√ Suppose we define  nat  by ordinary construction and induction.
0, nat+1:  nat
0, B+1:  B   ⇒   nat: B

Prove that fixed-point construction and induction
nat  =  0, nat+1
B  =  0, B+1   ⇒   nat: B

are theorems.

298 (fixed-point theorem)  Suppose we define  nat  by fixed-point construction and induction.
nat  =  0, nat+1
B  =  0, B+1   ⇒   nat: B

Prove that ordinary construction and induction
0, nat+1:  nat
0, B+1:  B   ⇒   nat: B

are theorems.  Warning:  this is hard, and requires the use of limits.

299 (rulers)  Rulers are formed as follows.  A vertical stroke  |  is a ruler.  If you append a 
horizontal stroke  —  and then a vertical stroke  |  to a ruler you get another ruler.  Thus the 
first few rulers are  | ,  |—| ,  |—|—| ,  |—|—|—| , and so on.  No two rulers formed this 
way are equal.  There are no other rulers.  What axioms are needed to define bunch  ruler  
consisting of all and only the rulers?
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300 Function  f  is called monotonic if  ∀i, j·  i ≤ j  ⇒  f i ≤ f j .
(a) Prove  f  is monotonic if and only if  ∀i, j·  f i < f j  ⇒  i < j .
(b) Let  f: int→int .  Prove  f  is monotonic if and only if  ∀i·  f i ≤ f (i+1) .
(c) Let  f: nat→nat  be such that  ∀n· f f n < f (n+1) .  Prove  f  is the identity function.  Hints:  

First prove  ∀n· n ≤ f n .  Then prove  f  is monotonic.  Then prove  ∀n· f n ≤ n .

301 The Fibonacci numbers  fib n  are defined as follows.
fib 0  =  0
fib 1  =  1
fib (n+2)  =  fib n + fib (n+1)

Prove
(a) fib (gcd n m)  =  gcd (fib n) (fib m)

where  gcd  is the greatest common divisor.
(b) fib n × fib (n+2)   =   fib (n+1) 2  –  (–1)n

(c) fib (n+m+1)   =   fib n × fib m  +  fib (n+1) × fib (m+1)
(d) fib (n+m+2)   =   fib n × fib (m+1)  +  fib (n+1) × fib m  +  fib (n+1) × fib (m+1)
(e) fib (2×n+1)   =   fib n 2  +  fib (n+1) 2
(f) fib (2×n+2)   =   2 × fib n × fib (n+1)  +  fib (n+1) 2

302 Let  R  be a relation of naturals  R: nat→nat→bool  that is monotonic in its second 
parameter

∀i, j· R i j ⇒ R i (j+1)
Prove

∃i· ∀j· R i j   =   ∀j· ∃i· R i j

303 What is the smallest bunch satisfying
(a) B  =  0, 2×B + 1
(b) B  =  2, B×B

304 What elements can be proven in  P  from the axiom  P  =  1, x, –P, P+P, P×P ?  Prove
2×x2–1: P

305 Bunch  this  is defined by the construction and induction axioms
2, 2×this:  this
2, 2×B:  B   ⇒   this: B

Bunch  that  is defined by the construction and induction axioms
2, that×that:  that
2, B×B:  B   ⇒   that: B

Prove  this = that .

306 Express  2int  without using exponentiation.  You may introduce auxiliary names.

307 Let  n  be a natural number.  From the fixed-point equation
ply = n, ply+ply

we obtain a sequence of bunches  plyi  by recursive construction.
(a) State  plyi  formally (no proof needed).
(b) State  plyi  in English.
(c) What is  ply∞ ?
(d) Is  ply∞  a solution?  If so, is it the only solution?
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308 For each of the following fixed-point equations, what does recursive construction yield?  
Does it satisfy the fixed-point equation?

(a) M  =  [*int], [*M]
(b) T  =  [nil], [T; int; T]
(c) A  =  bool, rat, char, [*A]

309 Let  A \ B  be the difference between bunch  A  and bunch  B .  The operator  \  has 
precedence level 4, and is defined by the axiom

x: A \ B   =   x: A  ∧  ¬ x: B
For each of the following fixed-point equations, what does recursive construction yield?  
Does it satisfy the fixed-point equation?

(a) Q   =   nat \ (Q+3)
(b) D  =  0, (D+1) \ (D–1)
(c) E  =  nat \ (E+1)
(d) F  =  0, (nat \ F)+1

310 For each of the following fixed-point equations, what does recursive construction yield?  
Does it satisfy the fixed-point equation?

(a) P  =  §n: nat· n=0 ∧ P=null  ∨  n: P+1
(b) Q  =  §x: xnat· x=0 ∧ Q=null  ∨  x: Q+1

311 Here is a pair of mutually recursive equations.
even  =  0, odd+1
odd  =  even+1

(a) What does recursive construction yield?  Show the construction.
(b) Are further axioms needed to ensure that  even  consists of only the even naturals, and  odd  

consists of only the odd naturals?  If so, what axioms?

312(a) Considering  E  as the unknown, find three solutions of  E, E+1  =  nat .
(b) Now add the induction axiom  B, B+1  =  nat   ⇒   E: B .  What is  E ?

313 From the construction axiom  0, 1–few: few
(a) what elements are constructed?
(b) give three solutions (considering  few  as the unknown).
(c) give the corresponding induction axiom.
(d) state which solution is specified by construction and induction.

314 Investigate the fixed-point equation
strange  =  §n: nat· ∀m: strange· ¬ m+1: n×nat

315 Let  truer  be a bunch of strings of booleans defined by the construction and induction 
axioms

T, ⊥⊥⊥⊥;truer;truer:  truer
T, ⊥⊥⊥⊥;B;B:  B  ⇒  truer: B

Given a string of booleans, write a program to determine if the string is in  truer .

316 (strings)  If  S  is a bunch of strings, then  *S  is the bunch of all strings formed by 
catenating together any number of any strings in  S  in any order.  Define  *S  by 
construction and induction.
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317 Here are the construction and induction axioms for lists of items of type  T .
[nil], [T], list+list: list
[nil], [T], L+L: L  ⇒  list: L

Prove  list = [*T] .

318 (decimal-point numbers)  Using recursive data definition, define the bunch of all decimal-
point numbers.  These are the rationals that can be expressed as a finite string of decimal 
digits containing a decimal point.   Note:  you are defining a bunch of numbers, not a bunch 
of texts.

319 (Backus-Naur Form) Backus-Naur Form is a grammatical formalism in which grammatical 
rules are written as in the following example.

〈exp〉::= 〈exp〉 + 〈exp〉  |  〈exp〉 × 〈exp〉  |  0  |  1
In our formalism, it would be written

exp   =   exp; "+"; exp,   exp; "×"; exp,   "0",   "1"
In a similar fashion, write axioms to define each of the following.

(a) palindromes:  texts that read the same forward and backward.  Use a two-symbol alphabet.
(b) palindromes of odd length.
(c) all texts consisting of “a”s followed by the same number of “b”s.
(d) all texts consisting of “a”s followed by at least as many “b”s.

320 Section 6.1 defines program  zap  by the fixed-point equation
zap   =   if x=0 then y:= 0 else (x:= x–1.  t:= t+1.  zap)

(a) Prove  zap   ⇒   x≥0  ⇒  x′=y′=0 ∧ t′ = t+x .
(b) Prove  x≥0 ∧ x′=y′=0 ∧ t′ = t+x   ⇒   zap .
(c) What axiom is needed to make  zap  the weakest fixed-point?
(d) What axiom is needed to make  zap  the strongest fixed-point?
(e) Section 6.1 gives six solutions to this equation.  Find more solutions.  Hint:  strange things 

can happen at time  ∞ .

321 Let all variables be integer.  Add recursive time.  Using recursive construction, find a fixed-
point of

(a) skip = if i≥0 then (i:= i–1.  skip.  i:= i+1) else ok
(b) inc = ok ∨ (i:= i+1.  inc)
(c) sqr = if i=0 then ok else (s:= s + 2×i – 1.  i:= i–1.  sqr)
(d) fac = if i=0 then f:= 1 else (i:= i–1.  fac.  i:= i+1.  f:= f×i)
(e) chs = if a=b then c:= 1 else (a:= a–1.  chs.  a:= a+1.  c:= c×a/(a–b) )

322 Let all variables be integer.  Add recursive time.  Any way you can, find a fixed-point of
(a) walk = if i≥0 then (i:= i–2.  walk.  i:= i+1.  walk.  i:= i+1) else ok
(b) crawl = if i≥0 then (i:= i–1.  crawl.  i:= i+2.  crawl.  i:= i–1) else ok
(c) run = if even i then i:= i/2 else i:= i+1.

if i=1 then ok else run

323 Investigate how recursive construction is affected when we start with
(a) t′ = ∞
(b) t:= ∞
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324 Let  x  be an integer variable.  Using the recursive time measure, add time and then find the 
strongest implementable specifications  P  and  Q  that you can find for which

P   ⇐   x′ ≥ 0.  Q
Q   ⇐   if x=0 then ok else (x:= x–1.  Q)

Assume that  x′ ≥ 0  takes no time.

325 Let  x  be an integer variable.
(a) Using the recursive time measure, add time and then find the strongest implementable 

specification  S  that you can find for which
S   ⇐ if x=0 then ok

else if x>0 then (x:= x–1.  S)
else (x′ ≥ 0.  S)

Assume that  x′ ≥ 0  takes no time.
(b) What do we get from recursive construction starting with  t′ ≥ t ?

326 Prove that the following three ways of defining  R  are equivalent.
R   =   ok ∨ (R. S)
R   =   ok ∨ (S. R)
R   =   ok ∨ S ∨ (R. R)

327 Prove the laws of Refinement by Steps and Refinement by Parts for while-loops.

328 Prove that
∀σ, σ′· (t′≥t ∧ (if b then (P.  t:= t+1.  W) else ok)  ⇐  W)

⇐ ∀σ, σ′· (while b do P  ⇐  W)
is equivalent to the  while  construction axioms, and hence that construction and induction 
can be expressed together as

∀σ, σ′· (t′≥t ∧ (if b then (P.  t:= t+1.  W) else ok)  ⇐  W)
= ∀σ, σ′· (while b do P  ⇐  W)

329 The notation  do P while b  has been used as a loop construct that is executed as follows.  
First  P  is executed;  then  b  is evaluated, and if  T  execution is repeated, and if  ⊥⊥⊥⊥  
execution is finished.  Define  do P while b  by construction and induction axioms.

330 Using the definition of Exercise 329, but ignoring time, prove
(a) do P while b   =   P.  while b do P
(b) while b do P   =   if b then do P while b else ok
(c) (∀σ, σ′· (D = do P while b)) ∧ (∀σ, σ′· (W = while b do P))

= (∀σ, σ′· (D = P. W)) ∧ (∀σ, σ′· (W = if b then D else ok))

331 Let  P: nat→bool .
(a) Define quantifier  FIRST  so that  FIRST m: nat· Pm  is the smallest natural  m  such that  

Pm , and  ∞  if there is none.
(b) Prove n:= FIRST m: nat· Pm  ⇐  n:= 0.  while ¬Pn do n:= n+1 .

332 Let the state consist of boolean variables  b  and  c .  Let
W  =  if b then (P. W) else ok
X  =  if b∨c then (P. X) else ok

(a) Find a counterexample to  W. X  =  X .
(b) Now let  W  and  X  be the weakest solutions of those equations, and prove  W. X  =  X .
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333 In real variable  x , consider the equation
P   =   P.  x:= x2

(a) Find  7  distinct solutions for  P .
(b) Which solution does recursive construction give starting from  T ?  Is it the weakest 

solution?
(c) If we add a time variable, which solution does recursive construction give starting from  

t′≥t ?  Is it a strongest implementable solution?
(d) Now let  x  be an integer variable, and redo the question.

334 Suppose we define  while b do P  by ordinary construction and induction, ignoring time.
if b then (P.  while b do P) else ok   ⇐   while b do P
∀σ, σ′· (if b then (P. W) else ok  ⇐  W)  ⇒  ∀σ, σ′· (while b do P  ⇐  W)

Prove that fixed-point construction and induction
while b do P  =  if b then (P.  while b do P) else ok
∀σ, σ′· (W  =  if b then (P. W) else ok)  ⇒  ∀σ, σ′· (while b do P  ⇐  W)

are theorems.

335 Suppose we define  while b do P  by fixed-point construction and induction, ignoring time.
while b do P   =  if b then (P.  while b do P) else ok
∀σ, σ′· (W  =  if b then (P. W) else ok)  ⇒  ∀σ, σ′· (while b do P  ⇐  W)

Prove that ordinary construction and induction
if b then (P.  while b do P) else ok    ⇐   while b do P
∀σ, σ′· (if b then (P. W) else ok  ⇐  W)  ⇒  ∀σ, σ′· (while b do P  ⇐  W)

are theorems.  Warning:  this is hard, and requires the use of limits.
                                                                                                                         End of Recursive Definition

10.7  Theory Design and Implementation

336 (widgets)  A theory of widgets is presented in the form of some new syntax and some 
axioms.  An implementation of widgets is written.

(a) How do we know whether the theory of widgets is consistent or inconsistent?
(b) How do we know whether the theory of widgets is complete or incomplete?
(c) How do we know whether the implementation of widgets is correct or incorrect?

337√ Implement data-stack theory to make the two boolean expressions
pop empty = empty
top empty = 0

antitheorems.

338 Prove that the following definitions implement the simple data-stack theory.
stack  =  [nil], [stack; X] 
push  =  〈s: stack→〈x: X→[s; x]〉〉
pop  =  〈s: stack→s 0〉
top  =  〈s: stack→s 1〉

339 (weak data-stack)  In Subsection 7.1.3 we designed a program-stack theory so weak that we 
could add axioms to count pushes and pops without inconsistency.  Design a similarly 
weak data-stack theory.
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340 (data-queue implementation)  Implement the data-queue theory presented in Section 7.0.

341 (slip)  The slip data structure introduces the name  slip  with the following axioms:
slip  =  [X; slip]
B = [X; B]  ⇒  B: slip

where  X  is some given type.  Can you implement it?

342 Prove that the program-stack implementation given in Subsection 7.1.1 satisfies the 
program-stack axioms of Subsection 7.1.0.

343 Implement weak program-stack theory as follows:  the implementer's variable is a list that 
grows and never shrinks.  A popped item must be marked as garbage.

344 You are given a program-stack.  Can you write a program composed from the programs
push "A"     push "B"     push "C"     push "D"     push "E"

in that order, with the programs  print top  and  pop  interspersed wherever needed as many 
times as needed, to obtain the following output?

(a) B D E C A
(b) B C D E A
(c) C A D E B
(d) A B E C D
(e) A B C D E

345 (brackets)  You are given a text  t  of characters drawn from the alphabet  "x", "(", ")", "[", 
"]" .  Write a program to determine if  t  has its brackets properly paired and nested.

346 (limited-stack)  A stack, according to our axioms, has an unlimited capacity to have items 
pushed onto it.  A limited-stack is a similar data structure but with a limited capacity to have 
items pushed onto it.

(a) Design axioms for a limited-data-stack.  
(b) Design axioms for a limited-program-stack.
(c) Can the limit be  0 ?

347 (limited-queue)  A queue, according to our axioms, has an unlimited capacity to have items 
joined onto it.  A limited-queue is a similar data structure but with a limited capacity to have 
items joined onto it.

(a) Design axioms for a limited-data-queue. 
(b) Design axioms for a limited-program-queue.
(c) Can the limit be  0 ?

348 You are given a program-queue.  Can you write a program composed from the programs
join "A"     join "B"     join "C"     join "D"     join "E"

in that order, with the programs  print front  and  leave  interspersed wherever needed as 
many times as needed, to obtain the following output?

(a) B D E C A
(b) B C D E A
(c) C A D E B
(d) A B E C D
(e) A B C D E
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349 Each of the program theories provides a single, anonymous instance of a data structure.  
How can a program theory be made to provide many instances of a data structure, like data 
theories do?

350 (circular list)  Design axioms for a circular list.  There should be operations to create an 
empty list, to move along one position in the list (the first item comes after the last, in 
circular fashion), to insert an item at the current position, to delete the current item, and to 
give the current item.

351 (resettable variable)  A resettable variable is defined as follows.  There are three new names:   
value  (of type  X ),  set  (a procedure with one parameter of type  X ), and  reset  (a 
program).  Here are the axioms:

value′=x  ⇐  set x
value′=value  ⇐  set x.  reset
reset. reset  =  reset

Implement this data structure, with proof.

352 A particular program-list has the following operations:
• the operation  mkempty  makes the list empty
• the operation  extend x  catenates item  x  to the end of the list
• the operation  swap i j  swaps the items at indexes  i  and  j
• the expression  length  tells the length of the list
• the expression  item i  tells the item at index  i

(a) Write axioms to define this program-list.
(b) Implement this program-list, with proof.

353 (linear algebra)  Design a theory of linear algebra.  It should include scalar, vector, and 
matrix sums, products, and inner products.  Implement the theory, with proof.

354 (leafy tree)  A leafy tree is a tree with information residing only at the leaves.  Design 
appropriate axioms for a binary leafy data-tree.

355 A tree can be implemented by listing its items in breadth order.
(a) Implement a binary tree by a list of its items such that the root is at index  0  and the left and 

right subtrees of an item at index  n  are rooted at indexes  2×n+1  and  2×n+2 .
(b) Prove your implementation.
(c) Generalize this implementation to trees in which each item can have at most  k  branches for 

arbitrary (but constant)  k .

356 (hybrid-tree)  Chapter 7 presented data-tree theory and program-tree theory.  Design a 
hybrid-tree theory in which there is only one tree structure, so it can be an implementer's 
variable with program operations on it, but there can be many pointers into the tree, so they 
are data-pointers (they may be data-stacks).

357 (heap)  A heap is a tree with the property that the root is the largest item and the subtrees are 
heaps.

(a) Specify the heap property formally.
(b) Write a function  heapgraft  that makes a heap from two given heaps and a new item.  It 

may make use of  graft , and may rearrange the items as necessary to produce a heap.
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358 (leaf count)  Write a program to count the number of leaves in a tree.

359 (binary search tree)  A binary search tree is a binary tree with the property that all items in 
the left subtree are less than the root item, all items in the right subtree are greater than the 
root item, and the subtrees are also binary search trees.

(a) Specify the binary search tree property formally.
(b) How many binary search trees are there with three items?
(c) How many binary search trees are there with three distinct items?
(d) Write a program to find an item in a binary search tree.
(e) Write a program to add an item to a binary search tree as a new leaf.
(f) Write a program to make a list of the items in a binary search tree in order.
(g) Write a program to determine whether two binary search trees have the same items.

360 (party)  A company is structured as a tree, with employees at the nodes.  Each employee, 
except the one at the root, has a boss represented by their parent in the tree.  Each employee 
has a conviviality rating (a number) representing how much fun they are at a party.  But no-
one will be at a party with their boss.  Write a program to find the bunch of employees to 
invite to a party so that the total convivialty is maximized.

361 (insertion list)  An insertion list is a data structure similar to a list, but with an associated 
insertion point.

[ ...;  4  ;  7  ;  1  ;  0  ;  3  ;  8  ;  9  ;  2  ;  5  ; ... ]
                          ↑
                insertion point

insert  puts an item at the insertion point (between two existing items), leaving the insertion 
point at its right.  erase  removes the item to the left of the insertion point, closing up the 
list.  item  gives the item to the left of the insertion point.  forward  moves the insertion 
point one item to the right.  back  moves the insertion point one item to the left.

(a) Design axioms for a doubly-infinite data-insertion list.
(b) Design axioms for a doubly-infinite program-insertion list.
(c) Design axioms for a finite data-insertion list.
(d) Design axioms for a finite program-insertion list.

362√ (parsing)  Define  E  as a bunch of strings of lists of characters satisfying
E   =   ["x"],   ["if"]; E; ["then"]; E; ["else"]; E

Given a string of lists of characters, write a program to determine if the string is in the 
bunch  E .

363 A theory provides three names:  zero ,  increase , and  inquire .  It is presented by an 
implementation.  Let  u: bool  be the user's variable, and let  v: nat  be the implementer's 
variable.  The axioms are

zero   =   v:= 0
increase   =   v:= v+1
inquire   =   u:= even v

Use data transformation to replace  v  with  w: bool  according to the transformer
(a)√ w  =  even v
(b) T
(c) ⊥⊥⊥⊥  (this isn't a data transformer, since  ∀w· ∃v· ⊥⊥⊥⊥  isn't a theorem, but apply it 

anyway to see what happens)
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364 A theory provides three names:  set ,  flip , and  ask .  It is presented by an implementation.  
Let  u: bool  be the user's variable, and let  v: bool  be the implementer's variable.  The 
axioms are

set   =   v:= T
flip   =   v:= ¬v
ask   =   u:= v

(a)√ Replace  v  with  w: nat  according to the data transformer  v  =  even w .
(b) Replace  v  with  w: nat  according to the data transformer  (w=0 ⇒ v) ∧ (w=1 ⇒ ¬v) .  Is 

anything wrong?
(c) Replace  v  with  w: nat  according to  (v ⇒ w=0) ∧ (¬v ⇒ w=1) .  Is anything wrong?

365 Let  a ,  b  and  c  be boolean variables.  Variables  a  and  b  are implementer's variables, 
and  c  is a user's variable for the operations

seta   =   a:= T
reseta   =   a:= ⊥⊥⊥⊥
flipa   =   a:= ¬a
setb   =   b:= T
resetb   =   b:= ⊥⊥⊥⊥
flipb   =   b:= ¬b
and   =   c:= a∧b
or   =   c:= a∨b

This theory must be reimplemented using integer variables, with  0  for  ⊥⊥⊥⊥  and all other 
integers for  T .

(a) What is the data transformer?
(b) Transform  seta .
(c) Transform  flipa .
(d) Transform  and .

366 Find a data transformer to transform the program of Exercise 270(a) into the program of 
Exercise 270(b).

367√ (security switch)  A security switch has three boolean user's variables  a ,  b , and  c .  The 
users assign values to  a  and  b  as input to the switch.  The switch's output is assigned to  
c .  The output changes when both inputs have changed.  More precisely, the output changes 
when both inputs differ from what they were the previous time the output changed.  The 
idea is that one user might flip their input indicating a desire for the output to change, but 
the output does not change until the other user flips their input indicating agreement that the 
output should change.  If the first user changes back before the second user changes, the 
output does not change.

(a) Implement a security switch to correspond as directly as possible to the informal 
description.

(b) Transform the implementation of part (a) to obtain an efficient implementation.

368 The user's variable is boolean  b .  The implementer's variables are natural  x  and  y .  The 
operations are:

done   =   b:= x=y=0
step   =   if y>0 then y:= y–1 else (x:= x–1.  var n: nat· y:= n)

Replace the two implementer's variables  x  and  y  with a single new implementer's variable:  
natural  z .
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369 Let  p  be a user's boolean variable, and let  m  be an implementer's natural variable.  The 
operations allow the user to assign a value  n  to the implementer's variable, and to test 
whether the implementer's variable is a prime number.

assign n   =   m:= n
check   =   p:= prime m

assuming  prime  is suitably defined.  If  prime  is an expensive function, and the  check  
operation is more frequent than the  assign  operation, we can improve the solution by 
making  check  less expensive even if that makes  assign  more expensive.  Using data 
transformation, make this improvement.

370√ (take a number)  Maintain a list of natural numbers standing for those that are “in use”.  
The three operations are:
• make the list empty (for initialization)
• assign to variable  n  a number that is not in use, and add this number to the list (now it 

is in use)
• given a number  n  that is in use, remove it from the list (now it is no longer in use, and it 

can be reused later)
(a) Implement the operations in terms of bunches.
(b) Use a data transformer to replace all bunch variables with natural variables.
(c) Use a data transformer to obtain a distributed solution.

371√ A limited queue is a queue with a limited number of places for items.  Let the limit be 
positive natural  n , and let  Q: [n*X]  and  p: nat  be implementer's variables.  Here is an 
implementation.

mkemptyq  =  p:= 0
isemptyq  =  p=0
isfullq  =  p=n
join x  =  Qp:= x.  p:= p+1
leave  =  for i:= 1;..p do Q(i–1):= Qi.  p:= p–1
front  =  Q0

Removing the front item from the queue takes time  p–1  to shift all remaining items down 
one index.  Transform the queue so that all operations are instant.

372 A binary tree can be stored as a list of nodes in breadth order.  Traditionally, the root is at 
index  1 , the node at index  n  has its left child at index  2×n  and its right child at index  
2×n+1 .  Suppose the user's variable is  x: X , and the implementer's variables are  s: [*X]  
and  p: nat+1 , and the operations are

goHome = p:= 1
goLeft = p:= 2×p
goRight = p:= 2×p + 1
goUp = p:= div p 2
put = s:= p→x | s
get = x:= s p

Now suppose we decide to move the entire list down one index so that we do not waste 
index  0 .  The root is at index  0 , its children are at indexes  1  and  2 , and so on.  Develop 
the necessary data transform, and use it to transform the operations.
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373 (sparse array)  An array  A: [*[*rat]]  is said to be sparse if many of its items are  0 .  We 
can represent such an array compactly as a list of triples  [i; j; x]  of all nonzero items  
A i j = x  0.  Using this idea, find a data transformer and transform the programs

(a) A:= [100*[100*0]]
(b) x:= A i j
(c) A:= (i;j)→x | A

374 (transformation incompleteness)  The user's variable is  i  and the implementer's variable is  
j , both of type  nat .  The operations are:

initialize  =  i′ = 0 ≤ j′ < 3
step  =  if j>0 then (i:= i+1.  j:= j–1) else ok

The user can look at  i  but not at  j .  The user can  initialize , which starts  i  at  0  and starts  
j  at any of  3  values.  The user can then repeatedly  step  and observe that  i  increases  0  
or  1  or  2  times and then stops increasing, which effectively tells the user what value  j  
started with.

(a) Show that there is no data transformer to replace  j  with boolean variable  b   so that
initialize is transformed to i′=0
step is transformed to if b ∧ i<2 then i′ = i+1 else ok

The transformed  initialize  starts  b  either at  T , meaning that  i  will be increased, or at  ⊥⊥⊥⊥ , 
meaning that  i  will not be increased.  Each use of the transformed  step  tests  b  to see if 
we might increase  i , and checks  i<2  to ensure that  i  will remain below  3 .  If  i  is 
increased,  b  is again assigned either of its two values.  The user will see  i  start at  0  and 
increase  0  or  1  or  2  times and then stop increasing, exactly as in the original 
specification.

(b) Use the data transformer  b=(j>0)  to transform  initialize  and  i+j=k ⇒ step  where  
k: 0, 1, 2 .

                                                                                                      End of Theory Design and Implementation

10.8  Concurrency

375 Let  x  and  y  be natural variables.  Rewrite the following program as a program that does 
not use  || .

(a) x:= x+1  ||  if x=0 then y:= 1 else ok
(b) if x>0 then y:= x–1 else ok  ||  if x=0 then x:= y+1 else ok

376 If we ignore time, then
x:= 3.  y:= 4   =   x:= 3 || y:= 4

Some dependent compositions could be executed in parallel if we ignore time.  But the time 
for  P.Q  is the sum of the times for  P  and  Q , and that forces the execution to be 
sequential.

t:= t+1.  t:= t+2   =   t:= t+3
Likewise some independent compositions could be executed sequentially, ignoring time.  
But the time for  P||Q  is the maximum of the times for  P  and  Q , and that forces the 
execution to be parallel.

t:= t+1 || t:= t+2   =   t:= t+2
Invent another form of composition, intermediate between dependent and independent 
composition, whose execution is sequential to the extent necessary, and parallel to the extent 
possible.  Warning:  this is a research question.
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377 (disjoint composition)  Independent composition  P||Q  requires that  P  and  Q  have no 
variables in common, although each can make use of the initial values of the other's variables 
by making a private copy.  An alternative, let's say disjoint composition, is to allow both  P  
and  Q  to use all the variables with no restrictions, and then to choose disjoint sets of 
variables  v  and  w  and define

P |v|w| Q   =   (P.  v′=v) ∧ (Q.  w′=w)
(a) Describe how  P |v|w| Q  can be executed.
(b) Prove that if  P  and  Q  are implementable specifications, then  P |v|w| Q  is implementable.

378 (semi-dependent composition)  Independent composition  P||Q  requires that  P  and  Q  
have no state variables in common, although each can make use of the initial values of the 
other's state variables by making a private copy.  In this question we explore another kind of 
composition, let's say semi-dependent composition  P|||Q .  Like dependent composition, it 
requires  P  and  Q  to have the same state variables.  Like independent composition, it can 
be executed by executing the processes in parallel, but each process makes its assignments 
to local copies of state variables.  Then, when both processes are finished, the final value of 
a state variable is determined as follows:  if both processes left it unchanged, it is 
unchanged;  if one process changed it and the other left it unchanged, its final value is the 
changed one;  if both processes changed it, its final value is arbitrary.  This final rewriting of 
state variables does not require coordination or communication between the processes;  each 
process rewrites those state variables it has changed.  In the case when both processes have 
changed a state variable, we do not even require that the final value be one of the two 
changed values;  the rewriting may mix the bits.

(a) Formally define semi-dependent composition, including time.
(b) What laws apply to semi-dependent composition?
(c) Under what circumstances is it unnecessary for a process to make private copies of state 

variables?
(d) In variables  x ,  y , and  z , without using  ||| , express

x:= z ||| y:= z
(e) In variables  x ,  y , and  z , without using  ||| , express

x:= y ||| y:= x
(f) In variables  x ,  y , and  z , without using  ||| , express

x:= y ||| x:= z
(g) In variables  x ,  y , and  z , prove

x:= y ||| x:= z   =   if x=y then x:= z else if x=z then x:= y else (x:= y ||| x:= z)
(h) In boolean variables  x ,  y  and  z , without using  ||| , express

x:= x∧z  |||  y:= y∧¬z  |||  x:= x∧¬z  |||  y:= y∧z
(i) Let  w: 0,..4  and  z: 0, 1  be variables.  Without using  ||| , express

w:= 2 × max (div w 2) z  +  max (mod w 2) (1–z)
||| w:= 2 × max (div w 2) (1–z)  +  max (mod w 2) z

379 Extend the definition of semi-dependent composition  P|||Q  (Exercise 378) from variables 
to list items.

380 Redefine semi-dependent composition  P|||Q  (Exercise 378) so that if  P  and  Q  agree on a 
changed value for a variable, then it has that final value, and if they disagree on a changed 
value for a variable, then its final value is

(a) arbitrary.
(b) either one of the two changed values.
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381 We want to find the smallest number in  0,..n  with property  p .  Linear search solves the 
problem.  But evaluating  p  is expensive;  let us say it takes time  1 , and all else is free.  
The fastest solution is to evaluate  p  on all  n  numbers concurrently, and then find the 
smallest number that has the property.  Write a program without concurrency for which the 
sequential to parallel transformation gives the desired computation.

382 Exercise 134 asks for a program to compute cumulative sums (running total).  Write a 
program that can be transformed from sequential to parallel execution with  log n  time 
where  n  is the length of the list.

383 (sieve)  Given variable  p: [n*bool] := [⊥⊥⊥⊥; ⊥⊥⊥⊥; (n–2)*T] , the following program is the sieve 
of Eratosthenes for determining if a number is prime.

for i:= 2;..ceil (n1/2) do
    if p i then for j:= i;..ceil (n/i) do p:= (j×i)→⊥⊥⊥⊥ | p
    else ok

(a) Show how the program can be transformed for concurrency.  State your answer by drawing 
the execution pattern.

(b) What is the execution time, as a function of  n , with maximum concurrency?

384√ (dining philosophers)  Five philosophers are sitting around a round table.  At the center of 
the table is an infinite bowl of noodles.  Between each pair of neighboring philosophers is a 
chopstick.  Whenever a philosopher gets hungry, the hungry philosopher reaches for the 
two chopsticks on the left and right, because it takes two chopsticks to eat.  If either 
chopstick is unavailable because the neighboring philosopher is using it, then this hungry 
philosopher will have to wait until it is available again.  When both chopsticks are available, 
the philosopher eats for a while, then puts down the chopsticks, and goes back to thinking, 
until the philosopher gets hungry again.  The problem is to write a program whose 
execution simulates the life of these philosophers with the maximum concurrency that does 
not lead to deadlock.

                                                                                                                                   End of Concurrency

10.9  Interaction

385√ Suppose  a  and  b  are integer boundary variables,  x  and  y  are integer interactive 
variables, and  t  is an extended integer time variable.  Suppose that each assignment takes 
time  1 .  Express the following using ordinary boolean operators, without using any 
programming notations.

(x:= 2.  x:= x+y.  x:= x+y) || (y:= 3.  y:= x+y)

386 Let  a  and  b  be boolean interactive variables.  Define
loop  =  if b then loop else ok

Add a time variable according to any reasonable measure, and then without using  || , express
b:= ⊥⊥⊥⊥  ||  loop

387 The Substitution Law does not work for interactive variables.
(a) Show an example of the failure of the law.
(b) Develop a new Substitution Law for interactive variables.
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388√ (thermostat)  Specify a thermostat for a gas burner.  The thermostat operates in parallel with 
other processes

thermometer || control || thermostat || burner
The thermometer and the control are typically located together, but they are logically 
distinct.  The inputs to the thermostat are:
• real  temperature , which comes from the thermometer and indicates the actual 

temperature.
• real  desired , which comes from the control and indicates the desired temperature.
• boolean  flame , which comes from a flame sensor in the burner and indicates 

whether there is a flame.
The outputs of the thermostat are:
• boolean  gas ;  assigning it  T  turns the gas on and  ⊥⊥⊥⊥  turns the gas off.
• boolean  spark ;  assigning it  T  causes sparks for the purpose of igniting the gas.
Heat is wanted when the desired temperature falls  ε  below the actual temperature, and not 
wanted when the desired temperature rises  ε  above the actual temperature, where  ε  is 
small enough to be unnoticeable, but large enough to prevent rapid oscillation.  To obtain 
heat, the spark should be applied to the gas for at least  1  second to give it a chance to ignite 
and to allow the flame to become stable.  But a safety regulation states that the gas must not 
remain on and unlit for more than  3  seconds.  Another regulation says that when the gas is 
shut off, it must not be turned on again for at least  20  seconds to allow any accumulated 
gas to clear.  And finally, the gas burner must respond to its inputs within  1  second.

389√ (grow slow)  Suppose  alloc  allocates  1  unit of memory space and takes time  1  to do so.  
Then the following computation slowly allocates memory.

GrowSlow   ⇐   if t=2×x then (alloc || x:= t) else t:= t+1.  GrowSlow
If the time is equal to  2×x , then one space is allocated, and in parallel  x  becomes the time 
stamp of the allocation;  otherwise the clock ticks.  The process is repeated forever.  Prove 
that if the space is initially less than the logarithm of the time, and  x  is suitably initialized, 
then at all times the space is less than the logarithm of the time.

390 According to the definition of assignment to an interactive variable, writing to the variable 
takes some time during which the value of the variable is unknown.  But any variables in the 
expression being assigned are read instantaneously at the start of the assignment.  Modify 
the definition of assignment to an interactive variable so that

(a) writing takes place instantaneously at the end of the assignment.
(b) reading the variables in the expression being assigned takes the entire time of the 

assignment, just as writing does.

391 (interactive data transformation)  Section 7.2 presented data transformation for boundary 
variables.  How do we do data transformation when there are interactive variables?  
Warning:  this is a research question.

392 (telephone)  Specify the control of a simple telephone.  Its inputs are those actions you can 
perform:  picking up the phone, dialing a digit, and putting down (hanging up) the phone.  
Its output is a list of digits (the number dialed).  The end of dialing is indicated by  5  
seconds during which no further digit is dialed.  If the phone is put down without waiting  5  
seconds, then there is no output.  But, if the phone is put down and then picked up again 
within  2  seconds, this is considered to be an accident, and it does not affect the output.
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393 (consensus)  Some parallel processes are connected in a ring.  Each process has a local 
integer variable with an initial value.  These initial values may differ, but otherwise the 
processes are identical.  Execution of all processes must terminate in time linear in the 
number of processes, and in the end the values of these local variables must all be the same, 
and equal to one of the initial values.  Write the processes.

394 Many programming languages require a variable for input, with a syntax such as  read x .  
Define this form of input formally.  When is it more convenient than the input described in 
Section 9.1?  When is it less convenient?

395 Write a program to print the sequence of natural numbers, one per time unit.

396 Write a program to repeatedly print the current time, up until some given time.

397 Given a finite string  S  of different characters sorted in increasing order, write a program to 
print the strings  *(S0,..↔S)  in the following order:  shorter strings come before longer 
strings;  strings of equal length are in string (alphabetical, lexicographic) order.

398 (T-strings)  Let us call a string  S: *("a", "b", "c")  a T-string if no two adjacent nonempty 
segments are identical:

¬∃i, j, k· 0≤i<j<k≤↔S  ∧  Si;..j = Sj;..k
Write a program to output all T-strings in alphabetical order.  (The mathematician Thue 
proved that there are infinitely many T-strings.)

399 (reformat)  Write a program to read, reformat, and write a sequence of characters.  The input 
includes a line-break character at arbitrary places;  the output should include a line-break 
character just after each semicolon.  Whenever the input includes two consecutive stars, or 
two stars separated only by line-breaks, the output should replace the two stars by an up-
arrow.  Other than that, the output should be identical to the input.  Both input and output 
end with a special end-character.

400 According to the definition of  result  expression given in Subsection 5.5.0, what happens 
to any output that occurs in the program part of programmed data?  Can input be read and 
used?  What happens to it?

401 (Huffman code)  You are given a finite set of messages, and for each message, the 
probability of its occurrence.

(a) Write a program to find a binary code for each message.  It must be possible to 
unambiguously decode any sequence of 0s and 1s into a sequence of messages, and the 
average code length (according to message frequency) must be minimum.

(b) Write the accompanying program to produce the decoder for the codes produced in part (a).

402 (matrix multiplication)  Write a program to multiply two  n×n  matrices that uses  n2  
processes, with  2×n2  local channels, with execution time  n .

403 (coin weights)  You are given some coins, all of which have a standard weight except 
possibly for one of them, which may be lighter or heavier than the standard.  You are also 
given a balance scale, and as many more standard coins as you need.  Write a program to 
determine whether there is a nonstandard coin, and if so which, and whether it is light or 
heavy, in the minimum number of weighings.
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404 How should “deterministic” and “nondeterministic” be defined in the presence of 
channels?

405 From the fixed-point equation
twos   =   c! 2.  t:= t+1.  twos

use recursive construction to find
(a) the weakest fixed-point.
(b) a strongest implementable fixed-point.
(c) the strongest fixed-point.

406 Here are two definitions.
A   = if √c ∧ √d then c? ∨ d?

else if √c then c?
else if √d then d?
else if Tc rc < Td rd then (t:= Tc rc + 1.  c?)
else if Td rd < Tc rc then (t:= Td rd + 1.  d?)
else (t:= Tc rc + 1.  c? ∨ d?)

B   = if √c ∧ √d then c? ∨ d?
else if √c then c?
else if √d then d?
else (t:= t+1.  B)

Letting time be an extended integer, prove  A = B .

407 (input implementation)  Let  W  be “wait for input on channel  c  and then read it”.
(a)√ W   =   t:= max t (Tr + 1).  c?

Prove  W   ⇐   if √c then c? else (t:= t+1.  W)  assuming time is an extended integer.
(b) Now let time be an extended real, redefine  W  appropriately, and reprove the refinement.

408 (input with timeout)  As in Exercise 407, let  W  be “wait for input on channel  c  and then 
read it”, except that if input is still not available by a deadline, an alarm should be raised.

W   ⇐   if t ≤ deadline then if √c then c? else (t:= t+1.  W) else alarm
Define  W  appropriately, and prove the refinement.

409 Define relation  partmerge: nat→nat→bool  as follows:
partmerge 0 0
partmerge (m+1) 0  =  partmerge m 0  ∧  Mc wc+m = Ma ra+m
partmerge 0 (n+1)  =  partmerge 0 n  ∧  Mc wc+n = Mb rb+n
partmerge (m+1) (n+1)  = partmerge m (n+1)  ∧  Mc wc+m+n+1 = Ma ra+m

∨ partmerge (m+1) n  ∧  Mc wc+m+n+1 = Mb rb+n
Now  partmerge m n  says that the first  m+n  outputs on channel  c  are a merge of  m  
inputs from channel  a  and  n  inputs from channel  b .  Define  merge  as

merge   =   (a?.  c! a) ∨ (b?.  c! b).  merge
Prove  merge   =   (∀m· ∃n· partmerge m n) ∨ (∀n· ∃m· partmerge m n)

410 (perfect shuffle)  Write a specification for a computation that repeatedly reads an input on 
either channel  c  or  d .  The specification says that the computation might begin with either 
channel, and after that it alternates.
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411 (time merge)  We want to repeatedly read an input on either channel  c  or channel  d , 
whichever comes first, and write it on channel  e .  At each reading, if input is available on 
both channels, read either one;  if it is available on just one channel, read that one;  if it is 
available on neither channel, wait for the first one and read that one (in case of a tie, read 
either one).

(a)√ Write the specification formally, and then write a program.
(b) Prove

Te we   =   max t (min (Tc rc) (Td rd) + 1)
∀m, n· Te we+m+n+1 ≤ max (max (Tc rc+m) (Td rd+n)) (Te we+m+n) + 1

412 (fairer time merge)  This question is the same as the time merge (Exercise 411), but if input 
is available on both channels, the choice must be made the opposite way from the previous 
read.  If, after waiting for an input, inputs arrive on both channels at the same time, the 
choice must be made the opposite way from the previous read.

413 In the reaction controller in Subsection 9.1.6, it is supposed that the synchronizer receives 
digital data from the digitizer faster than requests from the controller.  Now suppose that the 
controller is sometimes faster than the digitizer.  Modify the synchronizer so that if two or 
more requests arrive in a row (before new digital data arrives), the same digital data will be 
sent in reply to each request.

414 (Brock-Ackermann)  The following picture shows a network of communicating processes.

a! 0 b
a
choose         c?.  b! c

d c

The formal description of this network is
chan a, b, c·  a! 0  ||  choose  ||  (c?.  b! c)

Formally define  choose , add transit time, and state the output message and time if
(a) choose  either reads from  a  and outputs a  0  on  c  and  d , or reads from  b  and outputs a  

1  on  c  and  d .  The choice is made freely.
(b) As in part (a),  choose  either reads from   a  and outputs a  0  on  c  and  d , or reads from  

b  and outputs a  1  on  c  and  d .  But this time the choice is not made freely;   choose  
reads from the channel whose input is available first (if there's a tie, then take either one).

415√ (power series multiplication)  Write a program to read from channel  a  an infinite sequence 
of coefficients  a0 a1 a2 a3 ...  of a power series  a0 + a1×x + a2×x2 + a3×x3 + ...  and in 
parallel to read from channel  b  an infinite sequence of coefficients  b0 b1 b2 b3 ...  of a 
power series  b0 + b1×x + b2×x2 + b3×x3 + ...  and in parallel to write on channel  c  the 
infinite sequence of coefficients  c0 c1 c2 c3 ...  of the power series  c0 + c1×x + c2×x2 + 
c3×x3 + ...  equal to the product of the two input series.  Assume that all inputs are already 
available;  there are no input delays.  Produce the outputs one per time unit.

416 (repetition)  Write a program to read an infinite sequence, and after every even number of 
inputs, to output a boolean saying whether the second half of the input sequence is a 
repetition of the first half.
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417 (file update)  A master file of records and a transaction file of records are to be read, one 
record at a time, and a new file of records is to be written, one record at a time.  A record 
consists of two text fields:  a  "key"  field and an  "info"  field.  The master file is kept in 
order of its keys, without duplicate keys, and with a final record having a sentinel key  
"zzzzz"  guaranteed to be larger than all other keys.  The transaction file is also sorted in 
order of its keys, with the same final sentinel key, but it may have duplicate keys.  The new 
file is like the master file, but with changes as signified by the transaction file.  If the 
transaction file contains a record with a key that does not appear in the master file, that 
record is to be added.  If the transaction file contains a record with a key that does appear in 
the master file, that record is a change of the  "info"  field, unless the  "info"  text is the 
empty text, in which case it signifies record deletion.  Whenever the transaction file contains 
a repeated key, the last record for each key determines the result.

418 (mutual exclusion)  Process  P  is an endless repetition of a “non-critical section”  NP  and 
a “critical section”  CP .  Process  Q  is similar.

P   =  NP.  CP.  P
Q   =  NQ.  CQ.  Q

They are executed in parallel  (P || Q) .  Specify formally that the two critical sections are 
never executed at the same time.  Hint:  You may insert into  P  and  Q  outputs on channels 
that are never read, but help to specify the mutual exclusion of the critical sections.

419 (synchronous communication)  A synchronous communication happens when the sender is 
ready to send and the receiver(s) is(are) ready to receive.  Those that are ready must wait for 
those that are not.

(a) Design a theory of synchronous communication.  For each channel, you will need only one 
cursor, but two (or more) time scripts.  An output, as well as an input, increases the time to 
the maximum of the time scripts for the current message.

(b) Show how it works in some examples, including a deadlock example.
(c) Show an example that is not a deadlock with asynchronous communication, but becomes a 

deadlock with synchronous communication.
                                                                                                                                     End of Interaction

                                                                                                                                       End of Exercises
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11  Reference
11.0  Justifications

This section explains some of the decisions made in choosing and presenting the material in this 
book.  It is probably not of interest to a student whose concern is to learn the material, but it may be 
of interest to a teacher or researcher.

11.0.0  Notation

Whenever I had to choose between a standard notation that will do and a new notation that's perfect, 
I chose the standard notation.  For example, to express the maximum of two numbers  x  and  y , a 
function  max  is applied:  max x y .  Since maximum is symmetric and associative, it would be 
better to introduce a symmetric symbol like  ↑  as an infix operator:  x↑y .  I always do so privately, 
but in this book I have chosen to keep the symbols few in number and reasonably traditional.  Most 
people seeing  max x y  will know what is meant without prior explanation;  most people seeing  x↑y  
would not.  In the first edition, I used  λ  notation for functions, thinking that it was standard.  Ten 
years of students convinced me that it was not standard, freeing me to use a better notation in later 
editions.

A precedence scheme is chosen on two criteria:  to minimize the need for parentheses, and to be 
easily remembered.  The latter is helped by sticking to tradition, by placing related symbols 
together, and by having as few levels as possible.  The two criteria are sometimes conflicting, 
traditions are sometimes conflicting, and the three suggestions for helping memory are sometimes 
conflicting.  In the end, one makes a decision and lives with it.  Extra parentheses can always be 
used, and should be used whenever structural similarities would be obscured by the precedence 
scheme.  For the sake of structure, it would be better to give  ∧  and  ∨  the same precedence, but I 
have stayed with tradition.  The scheme in this book has more levels than I would like.  I could 
place  ¬  with one-operand  – ,  ∧  with  × ,  ∨  with two-operand  + , and  ⇒  and  ⇐  with  =  and  

 .  This saves four levels, but is against mathematical tradition and costs a lot of parentheses.  The 
use of large symbols  =  ⇐  ⇒  with large precedence level is a novelty;  I hope it is both 
readable and writable.  Do not judge it until you have used it awhile;  it saves an enormous number 
of parentheses.  One can immediately see generalizations of this convention to all symbols and 
many sizes (a slippery slope).
                                                                                                                                        End of Notation

11.0.1  Basic Theories

Boolean Theory sometimes goes by other names:  Boolean Algebra, Propositional Calculus, 
Sentential Logic.  Its expressions are sometimes called “propositions” or “sentences”.  
Sometimes a distinction is made between “terms”, which are said to denote values, and 
“propositions”, which are said not to denote values but instead to be true or false.  A similar 
distinction is made between “functions”, which apply to arguments to produce values, and 
“predicates”, which are instantiated to become true or false.  But slowly, the subject of logic is 
emerging from its confused, philosophical past.  I consider that propositions are just boolean 
expressions and treat them on a par with number expressions and expressions of other types.  I 
consider that predicates are just boolean functions.  I use the same equal sign for booleans as for 
numbers, characters, sets, and functions.  Perhaps in the future we won't feel the need to imagine 
abstract objects for expressions to denote;  we will justify them by their practical applications.  We 
will explain our formalisms by the rules for their use, not by their philosophy.



Why bother with “antiaxioms” and “antitheorems”?  They are not traditional (in fact, I made up 
the words).  As stated in Chapter 1, thanks to the negation operator and the Consistency Rule, we 
don't need to bother with them.  Instead of saying that  expression  is an antitheorem, we can say 
that  ¬expression  is a theorem.  Why bother with  ⊥⊥⊥⊥ ?  We could instead write  ¬T .  One reason 
is just that it is shorter to say “antitheorem” than to say “negation of a theorem”.  Another reason 
is to help make clear the important difference between “disprovable” and “not provable”.  
Another reason is that some logics do not use the negation operator and the Consistency Rule.  The 
logic in this book is “classical logic”;  “constructive logic” omits the Completion Rule;  
“evaluation logic” omits both the Consistency Rule and the Completion Rule.

Some books present proof rules (and axioms) with the aid of a formal metanotation.  In this book, 
there is no formal metalanguage;  the metalanguage is English.  A formal metalanguage may be 
considered helpful (though it is not necessary) for the presentation and comparison of a variety of 
competing formalisms, and for proving theorems about formalisms.  But in this book, only one 
formalism is presented.  The burden of learning another formalism first, for the purpose of 
presenting the main formalism, is unnecessary.  A formal metanotation  [ / ]  for substitution would 
allow me to write the function application rule as

〈v→b〉 a  =  b[a/v]
but then I would have to explain that  b[a/v]  means  “substitute  a  for  v  in  b ”.  I may as well 
say directly

〈v→b〉 a  =  (substitute  a  for  v  in  b )
A proof syntax (formalizing the “hints”) would be necessary if we were using an automated 
prover, but in this book it is unnecessary and I have not introduced one.

Some authors may distinguish “axiom” from “axiom schema”, the latter having variables which 
can be instantiated to produce axioms;  I have used the term “axiom” for both.  I have also used 
the term “law” as a synonym for “theorem” (I would prefer to reduce my vocabulary, but both 
words are well established).  Other books may distinguish them by the presence or absence of 
variables, or they may use “law” to mean “we would like it to be a theorem but we haven't yet 
designed an appropriate theory”.

I have taken a few liberties with the names of some axioms and laws.  What I have called 
“transparency” is often called “substitution of equals for equals”, which is longer and doesn't 
quite make sense.  Each of my Laws of Portation is historically two laws, one an implication in one 
direction, and the other an implication in the other direction.  One was called “Importation”, and 
the other “Exportation”, but I can never remember which was which.
                                                                                                                                End of Basic Theories

11.0.2  Basic Data Structures

Why bother with bunches?  Don't sets work just as well?  Aren't bunches really just sets but using a 
peculiar notation and terminology?  The answer is no, but let's take it slowly.  Suppose we just 
present sets.  We want to be able to write  {1, 3, 7}  and similar expressions, and we might describe 
these set expressions with a little grammar like this:

set  =  "{" contents "}"
contents = number

| set
| contents "," contents

We will want to say that the order of elements in a set is irrelevant so that  {1, 2} = {2, 1} ;  the best 
way to say it is formally:  A,B = B,A  (comma is symmetric, or commutative).  Next, we want to say 
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that repetitions of elements in a set are irrelevant so that  {3, 3} = {3} ;  the best way to say that is  
A,A = A  (comma is idempotent).  What we are doing here is inventing bunches, but calling them 
“contents” of a set.  And note that the grammar is equating bunches;  the string catenations 
(denoted here by juxtaposition) distribute over the elements of their operands, and the alternations 
(denoted here by vertical bars) are bunch unions.

When a child first learns about sets, there is often an initial hurdle:  that a set with one element is 
not the same as the element.  How much easier it would be if a set were presented as packaging:  a 
bag with an apple in it is obviously not the same as the apple.  Just as  {2}  and  2  differ, so  {2,7}  
and  2,7  differ.  Bunch Theory tells us about aggregation;  Set Theory tells us about packaging.  
The two are independent.

We could define sets without relying on bunches (as has been done for many years), and we could 
use sets wherever I have used bunches.  In that sense, bunches are unnecessary.  Similarly we could 
define lists without relying on sets (as I did in this book), and we could always use lists in place of 
sets.  In that sense, sets are unnecessary.  But sets are a beautiful data structure that introduces one 
idea (packaging), and I prefer to keep them.  Similarly bunches are a beautiful data structure that 
introduces one idea (aggregation), and I prefer to keep them.  I always prefer to use the simplest 
structure that is adequate for its purpose.

The subject of functional programming has suffered from an inability to express nondeterminism 
conveniently.  To say something about a value, but not pin it down completely, one can express the 
set of possible values.  Unfortunately, sets do not reduce properly to the deterministic case;  in this 
context it is again a problem that a set containing one element is not equal to the element.  What is 
wanted is bunches.  One can always regard a bunch as a “nondeterministic value”.

Bunches have also been used in this book as a “type theory”.  Surely it is discouraging to others, 
as it is to me, to see type theory duplicating all the operators of its value space:  for each operation 
on values, there is a corresponding operation on type spaces.  By using bunches, this duplication is 
eliminated.

Many mathematicians consider that curly brackets and commas are just syntax, and syntax is 
annoying and unimportant, though necessary.  I have treated them as operators, with algebraic 
properties (in Section 2.1 on Set Theory, we see that curly brackets have an inverse).  This 
continues a very long, historical trend.  For example,  =  was at first just a syntax for the informal 
statement that two things are (in some way) the same, but now it is a formal operator with algebraic 
properties.

In many papers there is a little apology as the author explains that the notation for catenation of lists 
will be abused by sometimes catenating a list and an item.  Or perhaps there are three catenation 
notations:  one to catenate two lists, one to prepend an item to a list, and one to append an item to a 
list.  The poor author has to fight with unwanted packaging provided by lists in order to get the 
sequencing.  I offer these authors strings:  sequencing without packaging.  (Of course, they can be 
packaged into lists whenever wanted.  I am not taking away lists.)
                                                                                                                         End of Basic Data Structures
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11.0.3  Function Theory

I have used the words “local” and “nonlocal” where others might use the words “bound” and 
“free”, or “local” and “global”, or “hidden” and “visible”, or “private” and “public”.  The 
tradition in logic, which I have not followed, is to begin with all possible variables (infinitely many 
of them) already “existing”.  The function notation  〈 〉  is said to “bind” variables, and any 
variable that is not bound remains “free”.  For example,  〈x: int→x+y〉  has bound variable  x , free 
variable  y , and infinitely many other free variables.  In this book, variables do not automatically 
“exist”;  they are introduced (rather than bound) either formally using the function notation, or 
informally by saying in English what they are.

The quantifier formed from  max  is called  MAX  even though its result may not be any result of 
the function it is applied to;  the name “least upper bound” is traditional.  Similarly for  MIN , 
which is traditionally called “greatest lower bound”.

I have ignored the traditional question of the “existence” of limits;  in cases where traditionally a 
limit does not “exist”, the Limit Law does not tell us exactly what the limit is, but it might still tell 
us something useful.
                                                                                                                              End of Function Theory

11.0.4  Program Theory

Assignment could have been defined as
x:= e   =   defined "e" ∧ e: T  ⇒  x′=e ∧ y′=y ∧ ...

where  defined  rules out expressions like  1/0 , and  T  is the type of variable  x .  I left out  defined  
because a complete definition of it is impossible, a reasonably complete definition is as complicated 
as all of program theory, and it serves no purpose.  The antecedent  e: T  would be useful, making 
the assignment  n:= n–1  implementable when  n  is a natural variable.  But its benefit is not worth 
its trouble, since the same check is made at every dependent composition.  Even worse, we would 
lose the Substitution Law;  we want  (n:= –1.  n≥0)  to be  ⊥⊥⊥⊥ .

Since the design of Algol-60, sequential execution has often been represented by a semi-colon.  The 
semi-colon is unavailable to me for this purpose because I used it for string catenation.  Dependent 
composition is a kind of product, so I hope a period will be an acceptable symbol.  I considered 
switching the two, using semi-colon for dependent composition and a period for string catenation, 
but the latter did not work well.

In English, the word “precondition” means “something that is necessary beforehand”.  In many 
programming books, the word “precondition” is used to mean “something that is sufficient 
beforehand”.  In those books, “weakest precondition” means “necessary and sufficient 
precondition”, which I have called “exact precondition”.

In the earliest and still best-known theory of programming, we specify that variable  x  is to be 
increased as follows:

{x = X} S {x > X}
We are supposed to know that  x  is a state variable, that  X  is a local variable to this specification 
whose purpose is to relate the initial and final value of  x , and that  S  is also local to the 
specification and is a place-holder for a program.  Neither  X  nor  S  will appear in a program that 
refines this specification.  Formally,  X  and  S  are quantified as follows:

§S· ∀X· {x = X} S {x > X}
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In the theory of weakest preconditions, the equivalent specification looks similar:
§S· ∀X· x=X ⇒ wp S (x>X)

There are two problems with these notations.  One is that they do not provide any way of referring 
to both the prestate and the poststate, hence the introduction of  X .  This is solved in the Vienna 
Development Method, in which the same specification is

§S· {T} S {x′ > x}
The other problem is that the programming language and specification language are disjoint, hence 
the introduction of  S .  In my theory, the programming language is a sublanguage of the 
specification language.  The specification that  x  is to be increased is

x′ > x
The same single-expression double-state specifications are used in Z, but refinement is rather 
complicated.  In Z,  P  is refined by  S  if and only if

∀σ· (∃σ′· P) ⇒ (∃σ′· S) ∧ (∀σ′· P ⇐ S)
In the early theory,  §S· {P} S {Q}  is refined by  §S· {R} S {U}  if and only if

∀σ· P  ⇒  R ∧ (Q ⇐ U)
In my theory,  P  is refined by  S  if and only if

∀σ, σ′· P ⇐ S
Since refinement is what we must prove when programming, it is best to make refinement as simple 
as possible.

One might suppose that any type of mathematical expression can be used as a specification:  
whatever works.  A specification of something, whether cars or computations, distinguishes those 
things that satisfy it from those that don't.  Observation of something provides values for certain 
variables, and on the basis of those values we must be able to determine whether the something 
satisfies the specification.  Thus we have a specification, some values for variables, and two possible 
outcomes.  That is exactly the job of a boolean expression:  a specification (of anything) really is a 
boolean expression.  If instead we use a pair of predicates, or a function from predicates to 
predicates, or anything else, we make our specifications in an indirect way, and we make the task of 
determining satisfaction more difficult.

One might suppose that any boolean expression can be used to specify any computer behavior:  
whatever correspondence works.  In Z, the expression  T  is used to specify (describe) terminating 
computations, and  ⊥⊥⊥⊥  is used to specify (describe) nonterminating computations.  The reasoning is 
something like this:   ⊥⊥⊥⊥  is the specification for which there is no satisfactory final state;  an infinite 
computation is behavior for which there is no final state;  hence  ⊥⊥⊥⊥  represents infinite computation.  
Although we cannot observe a “final” state of an infinite computation, we can observe, simply by 
waiting 10 time units, that it satisfies  t′ > t+10 , and it does not satisfy  t′ ≤ t+10 .  Thus it ought to 
satisfy any specification implied by  t′ > t+10 , including  T , and it ought not to satisfy any 
specification that implies  t′ ≤ t+10 , including  ⊥⊥⊥⊥ .  Since  ⊥⊥⊥⊥  is not true of anything, it does not 
describe anything.  A specification is a description, and  ⊥⊥⊥⊥  is not satisfiable, not even by 
nonterminating computations.  Since  T  is true of everything, it describes everything, even 
nonterminating computations.  To say that  P  refines  Q  is to say that all behavior satisfying  P  
also satisfies  Q , which is just implication.  The correspondence between specifications and 
computer behavior is not arbitrary.

As pointed out in Chapter 4, specifications such as  x′=2 ∧ t′=∞  that talk about the “final” values 
of variables at time infinity are strange.  I could change the theory to prevent any mention of results 
at time infinity, but I do not for two reasons:  it would make the theory more complicated, and I 
need to distinguish among infinite loops when I introduce interactions (Chapter 9).
                                                                                                                               End of Program Theory
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11.0.5  Programming Language

The form of variable declaration given in Chapter 5 assigns the new local variable an arbitrary value 
of its type.  Thus, for example, if  y  and  z  are integer variables, then

var x: nat· y:= x   =   y′: nat  ∧  z′=z
For ease of implementation and speed of execution, this is much better than initialization with “the 
undefined value”.  For error detection, it is no worse, assuming that we prove all our refinements.  
Furthermore, there are circumstances in which arbitrary initialization is exactly what's wanted (see 
Exercise 270 (majority vote)).  However, if we do not prove all our refinements, initialization with  
undefined  provides a measure of protection.  If we allow the generic operators ( = ,   ,  
if then else ) to apply to  undefined , then we can prove trivialities like  undefined = undefined .  If 
not, then we can prove nothing at all about  undefined .  Some programming languages seek to 
eliminate the error of using an uninitialized variable by initializing each variable to a standard value 
of its type.  Such languages achieve the worst of all worlds:  they are not as efficient as arbitrary 
initialization;  and they eliminate only the error detection, not the error.

An alternative way to define variable declaration is
var x: T   =   x′: T  ∧  ok

which starts the scope of  x , and
end x   =   ok

which ends the scope of  x .  In each of these programs,  ok  maintains the other variables.  This 
kind of declaration does not require scopes to be nested;  they can be overlapped.

The most widely known and used rule for while-loops is the Method of Invariants and Variants.  
Let  I  be a precondition (called the “invariant”) and let  I′  be the corresponding postcondition.  
Let  v  be an integer expression (called the “variant” or “bound function”) and let  v′  be the 
corresponding expression with primed variables.  The Rule of Invariants and Variants says:

I ⇒ I′ ∧ ¬b′   ⇐   while b do I ∧ b  ⇒  I′ ∧ 0≤v′<v
The rule says, very roughly, that if the body of the loop maintains the invariant and decreases the 
variant but not below zero, then the loop maintains the invariant and negates the loop condition.  For 
example, to prove

s′ = s + Σ L [n;..#L]   ⇐   while n #L do (s:= s + Ln.  n:= n+1)
we must invent an invariant

s + Σ L [n;..#L] = ΣL
and a variant

#L – n
and prove both

s′ = s + Σ L [n;..#L]
⇐ s + Σ L [n;..#L] = ΣL  ⇒  s′ + Σ L [n′;..#L] = ΣL  ∧  n′=#L

and
s + Σ L [n;..#L] = ΣL  ∧  n #L  ⇒  s′ + Σ L [n′;..#L] = ΣL  ∧  0 ≤ #L – n′ < #L – n

⇐ s:= s + Ln.  n:= n+1
The proof method given in Chapter 5 is easier and more information (time) is obtained.  Sometimes 
the Method of Invariants and Variants requires the introduction of extra constants (mathematical 
variables) not required by the proof method in Chapter 5.  For example, to add  1  to each item in 
list  L  requires introducing list constant  M  to stand for the initial value of  L .

Probability Theory would be simpler if all real numbers were probabilities, instead of just the reals 
in the closed interval from  0  to  1 , in which case I would add the axioms  T=∞  and  ⊥⊥⊥⊥=–∞ ;  but 
it is not my purpose in this book to invent a better probability theory.  For probabilistic 
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programming, my first approach was to reinterpret the types of variables as probability distributions 
expressed as functions.  If  x  was a variable of type  T , it becomes a variable of type  T→prob  
such that  Σx = Σx′ = 1 .  All operators then need to be extended to distributions expressed as 
functions.  Although this approach works, it was too low-level;  a distribution expressed as a 
function tells us about the probability of its variables by their positions in an argument list, rather 
than by their names.

The subject of programming has often been mistaken for the learning of a large number of 
programming language “features”.  This mistake has been made of both imperative and functional 
programming.  Of course, each fancy operator provided in a programming language makes the 
solution of some problems easy.  In functional programming, an operator called “fold” or 
“reduce” is often presented;  it is a useful generalization of some quantifiers.  Its symbol might be  
/  and it takes as left operand a two-operand operator and as right operand a list.  The list 
summation problem is solved as  +/L .  The search problem could similarly be solved by the use of 
an appropriate search operator, and it would be a most useful exercise to design and implement 
such an operator.  This exercise cannot be undertaken by someone whose only programming ability 
is to find an already implemented operator and apply it.  The purpose of this book is to teach the 
necessary programming skills.

As our examples illustrate, functional programming and imperative programming are essentially the 
same:  the same problem in the two styles requires the same steps in its solution.  They have been 
thought to be different for the following reasons:  imperative programmers adhere to clumsy loop 
notations, complicating proofs;  functional programmers adhere to equality, rather than refinement, 
making nondeterminism difficult.
                                                                                                                     End of Programming Language

11.0.6  Recursive Definition

The combination of construction and induction is so useful that it has a name (generation) and a 
notation ( ::= ).  To keep terminology and notation to a minimum, I have not used them.

Recursive construction has always been done by taking the limit of a sequence of approximations.  
My innovation is to substitute  ∞  for the index in the sequence;  this is a lot easier than finding a 
limit.  Substituting  ∞  is not guaranteed to produce the desired fixed-point, but neither is finding 
the limit.  Substituting  ∞  works well except in examples contrived to show its limitation.
                                                                                                                         End of Recursive Definition

11.0.7  Theory Design and Implementation

I used the term “data transformation” instead of the term “data refinement” used by others.  I 
don't see any reason to consider one space more “abstract” and another more “concrete”.  What I 
call a “data transformer” is sometimes called “abstraction relation”, “linking invariant”, “gluing 
relation”, “retrieve function”, or “data invariant”.

The incompleteness of data transformation is demonstrated with an example carefully crafted to 
show the incompleteness, not one that would ever arise in practice.  I prefer to stay with the simple 
rule that is adequate for all transformations that will ever arise in any problem other than a 
demonstration of theoretical incompleteness, rather than to switch to a more complicated rule, or 
combination of rules, that are complete.  To regain completeness, all we need is the normal 
mathematical practice of introducing local variables.  Variables for this purpose have been called 
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“bound variables”, “logical constants”, “specification variables”, “ghost variables”, “abstract 
variables”, and “prophesy variables”, by different authors.
                                                                                                      End of Theory Design and Implementation

11.0.8  Concurrency

In FORTRAN (prior to 1977) we could have a sequential composition of if-statements, but we 
could not have an if-statement containing a sequential composition.  In ALGOL the syntax was 
fully recursive;  sequential and conditional compositions could be nested, each within the other.  
Did we learn a lesson?  Apparently we did not learn a very general one:  we now seem happy to 
have a parallel composition of sequential compositions, but very reluctant to have a sequential 
composition of parallel compositions.  So in currently popular languages, a parallel composition 
can occur only as the outermost construct.

As we saw in Chapter 8, the execution pattern
A          C

B          D

can be expressed as  ((A || B).  (C || D))  without any synchronization primitives.  But the pattern
A          C

B          D

cannot be expressed using only parallel and sequential composition.  This pattern occurs in the 
buffer program.

In the first edition of this book, parallel composition was defined for processes having the same 
state space (semi-dependent composition).  That definition was more complicated than the present 
one (see Exercise 378), but in theory, it eliminated the need to partition the variables.  In practice, 
however, the variables were always partitioned, so in the present edition the simpler definition 
(independent composition) is used.
                                                                                                                                   End of Concurrency

11.0.9  Interaction

In the formula for implementability, there is no conjunct  r′ ≤ w′  saying that the read cursor must 
not get ahead of the write cursor.  In Subsection 9.1.8 on deadlock we see that it can indeed happen.  
Of course, it takes infinite time to do so.  In the deadlock examples, we can prove that the time is 
infinite.  But there is a mild weakness in the theory.  Consider this example.

chan c·  t:= max t (Tr + 1).  c?
= ∃M, T, r, r′, w, w′· t′ = max t (T0 + 1)  ∧  r′=1  ∧  w′=0
= t′ ≥ t

We might like to prove  t′=∞ .  To get this answer, we must strengthen the definition of local 
channel declaration by adding the conjunct  Tw′ ≥ t′ .  I prefer the simpler, weaker theory.
                                                                                                                                     End of Interaction

We could talk about a structure of channels, and about indexed processes.  We could talk about a 
parallel for-loop.  There is always something more to say, but we have to stop somewhere.
                                                                                                                                  End of Justifications
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11.1  Sources

Ideas do not come out of nowhere.  They are the result of one's education, one's culture, and one's 
interactions with acquaintances.  I would like to acknowledge all those people who have influenced 
me and enabled me to write this book.  I will probably fail to mention people who have influenced 
me indirectly, even though the influence may be strong.  I may fail to thank people who gave me 
good ideas on a bad day, when I was not ready to understand.  I will fail to give credit to people 
who worked independently, whose ideas may be the same as or better than those that happened to 
reach my eyes and ears.  To all such people, I apologize.  I do not believe anyone can really take 
credit for an idea.  Ideally, our research should be done for the good of everyone, perhaps also for 
the pleasure of it, but not for the personal glory.  Still, it is disappointing to be missed.  Here then is 
the best accounting of my sources that I can provide.

The early work in this subject is due to Alan Turing (1949), Peter Naur (1966), Robert Floyd 
(1967), Tony Hoare (1969), Rod Burstall (1969), and Dana Scott and Christopher Strachey (1970).  
(See the Bibliography, which follows.)  My own introduction to the subject was a book by Edsger 
Dijkstra (1976);  after reading it I took my first steps toward formalizing refinement (1976).  
Further steps in that same direction were taken by Ralph Back (1978), though I did not learn of 
them until 1984.  The first textbooks on the subject began to appear, including one by me (1984).  
That work was based on Dijkstra's weakest precondition predicate transformer, and work continues 
today on that same basis.  I highly recommend the book Refinement Calculus by Ralph Back and 
Joachim vonWright (1998).

In the meantime, Tony Hoare (1978, 1981) was developing communicating sequential processes.  
During a term at Oxford in 1981 I realized that they could be described as predicates, and published 
a predicate model (1981, 1983).  It soon became apparent that the same sort of description, a single 
boolean expression, could be used for any kind of computation, and indeed for anything else;  in 
retrospect, it should have been obvious from the start.  The result was a series of papers (1984, 
1986, 1988, 1989, 1990, 1994, 1998, 1999, 2004) leading to the present book.

The importance of format in expressions and proofs was made clear to me by Netty van Gasteren 
(1990).  The symbols  ¢  and  $  for bunch and set cardinality were suggested by Chris Lengauer.  
The word “conflation” was suggested by Doug McIlroy.  The value of indexing from  0  was 
taught to me by Edsger Dijkstra.  Joe Morris and Alex Bunkenburg (2001) found and fixed a 
problem with bunch theory.  The word “apposition” and the idea to which it applies come from 
Lambert Meertens (1986).  Peter Kanareitsev helped with higher-order functions.  Alan Rosenthal 
suggested that I stop worrying about when limits “exist”, and just write the axioms describing 
them;  I hope that removes the last vestige of Platonism from the mathematics, though some remains 
in the English.  My Refinement by Parts law was made more general by Theo Norvell.  I learned 
the use of a timing variable from Chris Lengauer (1981), who credits Mary Shaw;  we were using 
weakest preconditions then, so our time variables ran down instead of up.  The recursive measure of 
time is inspired by the work of Paul Caspi, Nicolas Halbwachs, Daniel Pilaud, and John Plaice 
(1987);  in their language LUSTRE, each iteration of a loop takes time  1 , and all else is free.  I 
learned to discount termination by itself, with no time bound, in discussions with Andrew Malton, 
and from an example of Hendrik Boom (1982).  I was told the logarithmic solution to the Fibonacci 
number problem by Wlad Turski, who learned it while visiting the University of Guelph.  My 
incorrect version of local variable declaration was corrected by Andrew Malton.  Local variable 
suspension is adapted from Carroll Morgan (1990).  The for-loop rule was influenced by Victor 
Kwan and Emil Sekerinski.  The backtracking implementation of unimplementable specifications is 
an adaptation of a technique due to Greg Nelson (1989) for implementing angelic nondeterminism.  
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Carroll Morgan and Annabelle McIver (1996) suggested probabilities as observable quantities, and 
Exercise 284 (Mr.Bean's socks) comes from them.  The use of bunches for nondeterminism in 
functional programming and for function refinement is joint work with Theo Norvell (1992).  Theo 
also added the timing to the recursive definition of while-loops (1997).  The style of data-type 
theories (data-stack, data-queue, data-tree) comes from John Guttag and Jim Horning (1978).  The 
implementation of data-trees was influenced by Tony Hoare (1975).  Program-tree theory went 
through successive versions due to Theo Norvell, Yannis Kassios, and Peter Kanareitsev.  I learned 
about data transformation from He Jifeng and Carroll Morgan, based on earlier work by Tony 
Hoare (1972);  the formulation here is my own, but I checked it for equivalence with those in Wei 
Chen and Jan Tijmen Udding (1989).  Theo Norvell provided the criterion for data transformers.  
The second data transformation example (take a number) is adapted from a resource allocation 
example of Carroll Morgan (1990).  The final data transformation example showing 
incompleteness was invented by Paul Gardiner and Carroll Morgan (1993).  For an encyclopedic 
treatment of data transformers, see the book by Willem-Paul deRoever and Kai Engelhardt (1998).  
I published various formulations of independent (parallel) composition (1981, 1984, 1990, 1994);  
the one in the first edition of this book is due to Theo Norvell and appears in this edition as 
Exercise 378 (semi-dependent composition), and is used in recent work by Hoare and He (1998);  
for this edition I was persuaded by Leslie Lamport to return to my earlier (1984, 1990) version:  
simple conjunction.  Section 8.1 on sequential to parallel transformation is joint work with Chris 
Lengauer (1981);  he has since made great advances in the automatic production of highly parallel, 
systolic computations from ordinary sequential, imperative programs.  The thermostat example is a 
simplification and adaptation of a similar example due to Anders Ravn, Erling Sørensen, and Hans 
Rischel (1990).  The form of communication was influenced by Gilles Kahn (1974).  Time scripts 
were suggested by Theo Norvell.  The input check is an invention of Alain Martin (1985), which he 
called the “probe”.  Monitors were invented by Per Brinch Hansen (1973) and Tony Hoare 
(1974).  The power series multiplication is from Doug McIlroy (1990), who credits Gilles Kahn.  
Many of the exercises were given to me by Wim Feijen for my earlier book (1984);  they were 
developed by Edsger Dijkstra, Wim Feijen, Netty van Gasteren, and Martin Rem for examinations 
at the Technical University of Eindhoven;  they have since appeared in a book by Edsger Dijkstra 
and Wim Feijen (1988).  Some exercises come from a series of journal articles by Martin Rem 
(1983,..1991).  Other exercises were taken from a great variety of sources too numerous to 
mention.
                                                                                                                                         End of Sources
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11.3  Index
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unbounded 178
variable 204, 208

boundary variable 126, 131
bracket algebra 153
brackets 188
break 71
broadcast 141
Brock-Ackermann 199
buffer 122
bunch 14, 202

elementary 14
empty 15

busy-wait loop 76
call-by-value-result 179
Cantor's diagonal 181

paradise 155
cardinality 14
cases, refinement by 43
caskets 152
catenation 17, 156

list 20
channel 131

declaration 138
character 13, 15
check, input 133

parity 171
circular list 189

numbers 152
classical logic 202
clock 76
closure, transitive 172
code, Huffman 197
coin 180

weights 197
combination 166

next 169
command, guarded 179
common divisor, greatest 175

item, smallest 175
items 175
multiple, least 175
prefix, longest 176

communication 131
synchronous 200
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comparison list 166
compiler 45
complete 5, 101
completeness 51, 117
completion rule 5, 6
composite number 154
composition conditional 4

dependent 36, 127
disjoint 194
function 31
independent 118, 119, 126
list 21
semi-dependent 194

computing constant 36
interactive 134
variable 36

concrete space 207
concurrency 118

list 120
condition 40

final 40
initial 40

conditional composition 4
conjunct 3
conjunction 3
consensus 197
consequent 3
consistency rule 5, 6
consistent 5, 101
constant 23

computing 36
logical 208
mathematical 36
state 36

construction 16, 91
fixed-point 94
recursive data 95
recursive program 98

constructive logic 202
constructors 91
context 10
continuing 7, 9
contradiction 10
control process 134
controlled iteration 74
controller, reaction 137
convex equal pair 168

count, duplicate 174
inversion 171
item 174
segment sum 170
two-dimensional sorted 168

cube 165
test 166

cursor, read 131
write 131

data construction, recursive 95
invariant 207
refinement 207
structure 14
structures 100
transformation 109
transformation, interactive 196
transformer 109

deadlock 124, 139
decimal-point numbers 185
declaration, channel 138

variable 66
dependent composition 35, 127
detachment 6
deterministic 89

function 29
specification 35

diagonal 170
Cantor's 181

dice 86, 180
difference, minimum 171
digit sum 171
digitizer 137
diminished J-list 175
dining philosophers 124, 195
disjoint composition 194
disjunct 3
disjunction 3
distribute 15
distribution, probability 82

one-point 83
division, machine 174

natural 169
divisor, greatest common 175
domain 23
drunk 181
dual 148
duplicate count 174
earliest meeting time 166

quitter 171
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edit distance 174
element 14

assignment, array 68
elementary bunch 14
empty bunch 15

set 17
string 17

entropy 87
equation 4
evaluation logic 202

rule 5, 6
exact postcondition 40

precondition 40
precondition for termination 166

exclusion, mutual 200
execution, sequential 36

time 60
existence 204
existential quantification 26
exit 71
exponentiation, binary 45, 167

fast 57, 167
expression 13
extended integers 15

naturals 15
rationals 15
reals 15

factor 155
count 169

factorial 164
family theory 154
fast exponentiation 57. 167
Fermat's last program 170
Fibolucci 173
Fibonacci 59, 173, 183
file update 200
final condition 40
state 34
fixed-point 94, 168

construction 94
induction 94
least 94
theorem 182

flatten 170
follows from 3
formal 12
format, proof 7
frame 67

problem 178
free 204

friends 158
function 23, 79, 80

bound 206
composition 31
deterministic 29
higher-order 30
inclusion 30
nondeterministic 29
partial 29
refinement 89
retrieve 207
total 29

functional  programming 88, 90
fuzzybunch 154
gas burner 128, 136, 196
general recursion 76
generation 207
generator, random number 84
generic 13
ghost variables 208
gluing relation 207
go to 45, 71, 76
Gödel/Turing incompleteness 159
grammar 94
greatest common divisor 175

lower bound 204
square under a histogram 177
subsequence 171

grow slow 196
guarded command 179
heads and tails 171
heap 189
hidden variable 204
higher-order function 30
Huffman code 197
hyperbunch 154
idempotent permutation 169
imperative programming 88, 90
implementable 34, 35, 89, 132, 127
implementation, input 198
implemented specification 41
implementer's variables 106
implication 3
inclusion 14

function 30
incomplete 5
incompleteness, Gödel/Turing 159

transformation 193
inconsistent 5
independent composition 118, 119, 126
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index 18
list 20

induction 16, 91
fixed-point 94
proof by 93

infinity 12
infix 3
information 87
initial condition 40

state 34
initializing assignment 67
input 133

check 133
implementation 198

insertion list 190
sort 123

instance rule 5
instantiation 4
integer numbers 15
integers, extended 15
interactive computing 134

data transformation 196
variable 126, 131

intersection 14
interval union 171
invariant 75, 77, 206

data 207
linking 207

inverse permutation 169
inversion count 171
item 17

count 174
maximum 120
smallest common 175

items, common 175
unique 175

iteration, controlled 74
J-list 175
knights and knaves 151
Knuth, Morris, Pratt 177
largest true square 175
law 7

substitution 38
least common multiple 175

fixed-point 94
upper bound 204

left side 4
length list 20

string 17
text 168

lexicographic order 18
limit 33
limited queue 115, 192
linear algebra 189

search 51, 167
linking invariant 207
list 14, 20

bitonic 158
catenation 20
circular 189
comparison 166
composition 21
concurrency 120
diminished J- 175
index 20
insertion 190
J- 175
length 20
next sorted 169
P- 175
summation 43, 67, 88, 166

local 25
minimum 169

logarithm natural binary 169
logic 3

classical 202
constructive 202
evaluation 202

logical constants 208
long texts 177
longest balanced segment 170

common prefix 176
palindrome 170
plateau 170
smooth segment170
sorted sublist 174

loop 48, 69
busy-wait 76

lower bound, greatest 204
machine division 174

multiplication 174
squaring 174

maid and butler 151
majority vote 179
mathematical constant 36

variable 36
matrix multiplication 197
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maximum item 120, 166
product segment 170
space 63

McCarthy's 91 problem 172
memory variables 46
merge 135, 174

time 199
message script 131
metalanguage 202
minimum difference 171

local 169
sum segment 170

missing number 168
model-checking 1
modification, program 57
modus ponens 6
monitor 136, 138
monotonic 9
Mr.Bean's socks 181
multibunch 154
multidimensional 22
multiple, least common 175
multiplication, machine 174

matrix 197
table 167

museum 176
mutual exclusion 200
natural binary logarithm 169

division 169
numbers 15
square root 169

naturals, extended 15
necessary postcondition 40

precondition 40
negation 3
next combination 169

permutation 169
sorted list 169

nondeterministic 89
assignment 177
function 29
specification 35

nonlocal 25
notation 201
number 12

composite 154
generator, random 84
missing 168

numbers, circular 152
decimal-point 185
Fibonacci 59
integer 15
natural 15
rational 15
real 15
von Neumann 155

one-point law 28
distribution 83

operand 3
operator 3
order lexicographic 18

prefix 156
ordered pair search 168
output 133
P-list 175
package 14
pair search, ordered 168
palindrome, longest 170
parallelism 118
parameter 24, 79, 80

reference 80, 81
parity check 171
parking 151
parsing 113, 190
partial function 29
partition 118
partitions 175
parts, refinement by 43
party 190
Pascal's triangle 167
path, shortest 172
pattern search 168
perfect shuffle 198
periodic sequence, ultimately 175
permutation, idempotent 169

inverse 169
next 169

pigeon-hole 159
pivot 171
pointer 22, 81, 105
polynomial 166
postcondition 40, 77

exact 40
necessary 40
sufficient 40

postspecification, weakest 163
poststate 34
power series 141, 199
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powerset 17
precedence 4, 5
precondition 40, 77, 204

exact 40
necessary 40
sufficient 40
weakest 204

predecessor 13
predicate 24
prefix 3

longest common 176
order 156

prespecification, weakest 163
prestate 34
private variable 204
probability 82

distribution 82
uniform 84

problem, frame 178
process 118

control 134
processing, batch 134
program 41

construction, recursive 98
modification 57

programming, functional 88, 90
programming, imperative 88, 90
proof 7

by induction 93
format 7
rule 5

prophesy variable 208
proposition 201
public variable 204
quantification, existential 26

universal 26
quantifier 26
queue 103, 108, 188

limited 115, 192
quitter, earliest 171
random number generator 84
range 23
rational numbers 15
rationals, extended 15
reachability 172
reaction controller 137
read cursor 131
real 33

numbers 15
time 46

reals, extended 15
record 69
recursion 42

general 76
tail 76

recursive data construction 95
program construction 98
time 48

reference parameter 80, 81
refinement 39

by cases 43
by parts 43
by steps 43
data 207
function 89
stepwise 43

reformat 197
reification 204
relation 24

abstraction 207
gluing 207
transitive 161

remainder 169
renaming 24
repetition 199
resettable variable 189
retrieve function 207
reverse 169
right side 4
roll up 161
roller coaster 60, 173
root, natural square 169
rotation, smallest 176

test 176
rule, completion 5, 6

consistency 5, 6
evaluation 5, 6
instance 5
proof 5

rulers 182
running total 165, 195
Russell's barber 159

paradox 159
satisfiable 35, 89
scale 152
schema, axiom 202
scope 23, 66
script, message 131

time 131
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search, approximate 171
binary 167, 53
linear 167, 51
ordered pair 168
pattern 168
sorted two-dimensional 168
ternary 167
two-dimensional 167
two-dimensional 72

security switch 111, 191
segment 21

almost sorted 174
longest balanced 170
longest smooth 170
maximum product 170
minimum sum 170
sum count 170

selective union 24
self-describing 21
self-reproducing 21
semi-dependent composition 194
sentence 201
sentinel 52, 113, 200
sequence, ultimately periodic 175
sequential execution 36
series, power 141, 199
set 14, 17

empty 17
shared variable 131, 136
shortest path 172
shuffle, perfect 198
side-effect 78
sieve 195
signal 133
size 14
slip 188
smallest common item 175

rotation 176
socks, Mr.Bean's 181
solution 28
sort, insertion 123

test 167
sorted list, next 169

segment, almost 174
sublist, longest 174
two-dimensional count 168
two-dimensional search 168

soundness 51, 117

space 61, 129
abstract 207
average 64
concrete 207
maximum 63
state 34

sparse array 193
specification 34

deterministic 35
implemented 41
nondeterministic 35
transitive 161
variable 208

square 164
greatest under a histogram 177
largest true 175
root, natural 169

squaring, machine 174
stack 100, 106, 187, 188
state 34

constant 36
final 34
initial 34
space 34
variable 34, 36

steps, refinement by 43
stepwise refinement 43
string 14, 17, 184

empty 17
length 17

stronger 3, 9
structure 69

data 14, 100
sublist 21

longest sorted 174
subscript 18
substitution 4, 25

law 38
successor 13, 23
sufficient postcondition 40

precondition 40
sum, alternating 166

bit 171
digit 171

summation, list 43, 67, 88, 166
suspension, variable 67
swapping partners 158
switch, security 111, 191
synchronizer 137
synchronous communication 200
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T-string 197
tail recursion 76
take a number 192
telephone 196
tennis 151
termination 34, 50

exact precondition for 166
term 201
ternary search 167
testing 145
text 19

length 168
long 177

theorem 3
thermostat 128, 136, 196
Thue string 197
time 46

bound 47, 61
execution 60
merge 199
real 46
recursive 48
script 131
transit 134
variable 46

timeout 198
total function 29
Towers of Hanoi 61, 172
transformation, data 109

incompleteness 193
interactive data 196

transformer, data 109
transit time 134
transitive closure 172

relation 161
specification 161

tree 104, 108, 189, 190
binary 192

truth table 3, 4
two-dimensional search 72, 167

search, sorted 168
ultimately periodic sequence 175
unbounded bound 178
undefined value 66
unequation 4
unexpected egg 152
unicorn 159
uniform probability 84

union 14
interval 171
selective 24

unique items 175
universal quantification 26
unsatisfiable 35, 89
update, file 200
upper bound, least 204
user's variables 106
value, undefined 66
variable 4, 23

abstract 208
bound 204, 208
boundary 126, 131
computing 36
declaration 66
ghost 208
hidden 204
implementer's 106
interactive 126, 131
mathematical 36
memory 46
private 204
prophesy 208
public 204
resettable 189
shared 131, 136
specification 208
state 34, 36
suspension 67
time 46
user's 106
visible 204

variant 206
visible variable 204
von Neumann numbers 155
vote, majority 179
wait 76
weaker 3, 9
weakest postspecification 163

precondition 204
prespecification 163

whodunit 157
wholebunch 154
widget 187
write cursor 131
z-free subtext 174
Zeno 165

                                                                                                                                            End of Index
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11.4  Laws

11.4.0  Booleans

Let  a ,  b ,  c ,  d , and  e  be boolean.

Boolean Laws Law of Double Negation
T ¬¬a  =  a
¬⊥⊥⊥⊥

Duality Laws (deMorgan)
Law of Excluded Middle (Tertium non Datur) ¬(a ∧ b)  =  ¬a ∨ ¬b

a ∨ ¬a ¬(a ∨ b)  =  ¬a ∧ ¬b

Law of Noncontradiction Laws of Exclusion
¬(a ∧ ¬a) a ⇒ ¬b  =  b ⇒ ¬a

a = ¬b  =  a  b  =  ¬a = b
Base Laws

¬(a ∧ ⊥⊥⊥⊥) Laws of Inclusion
a ∨ T a ⇒ b  =  ¬a ∨ b  (Material Implication)
a ⇒ T a ⇒ b  =  (a ∧ b  =  a)
⊥⊥⊥⊥ ⇒ a a ⇒ b  =  (a ∨ b  =  b)

Identity Laws Absorption Laws
T ∧ a  =  a a ∧ (a ∨ b)  =  a
⊥⊥⊥⊥ ∨ a  =  a a ∨ (a ∧ b)  =  a
T ⇒ a  =  a
T = a  =  a Laws of Direct Proof

(a ⇒ b) ∧ a ⇒ b            (Modus Ponens)
Idempotent Laws (a ⇒ b) ∧ ¬b ⇒ ¬a      (Modus Tollens)

a ∧ a  =  a (a ∨ b) ∧ ¬a ⇒ b(Disjunctive Syllogism)
a ∨ a  =  a

Transitive Laws
Reflexive Laws (a ∧ b) ∧ (b ∧ c) ⇒ (a ∧ c)

a ⇒ a (a ⇒ b) ∧ (b ⇒ c) ⇒ (a ⇒ c)
a = a (a = b) ∧ (b = c) ⇒ (a = c)

(a ⇒ b) ∧ (b = c) ⇒ (a ⇒ c)
Laws of Indirect Proof (a = b) ∧ (b ⇒ c) ⇒ (a ⇒ c)

¬a ⇒ ⊥⊥⊥⊥  =  a  (Reductio ad Absurdum)
¬a ⇒ a  =  a Distributive Laws (Factoring)

a ∧ (b ∧ c)  =  (a ∧ b) ∧ (a ∧ c)
Law of Specialization a ∧ (b ∨ c)  =  (a ∧ b) ∨ (a ∧ c)

a ∧ b ⇒ a a ∨ (b ∧ c)  =  (a ∨ b) ∧ (a ∨ c)
a ∨ (b ∨ c)  =  (a ∨ b) ∨ (a ∨ c)

Associative Laws a ∨ (b ⇒ c)  =  (a ∨ b) ⇒ (a ∨ c)
a ∧ (b ∧ c)  =  (a ∧ b) ∧ c a ∨ (b = c)  =  (a ∨ b) = (a ∨ c)
a ∨ (b ∨ c)  =  (a ∨ b) ∨ c a ⇒ (b ∧ c)  =  (a ⇒ b) ∧ (a ⇒ c)
a = (b = c)  =  (a = b) = c a ⇒ (b ∨ c)  =  (a ⇒ b) ∨ (a ⇒ c)
a  (b  c)  =  (a  b)  c a ⇒ (b ⇒ c)  =  (a ⇒ b) ⇒ (a ⇒ c)
a = (b  c)  =  (a = b)  c a ⇒ (b = c)  =  (a ⇒ b) = (a ⇒ c)
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Symmetry Laws (Commutative Laws) Law of Generalization
a ∧ b  =  b ∧ a a ⇒ a ∨ b
a ∨ b  =  b ∨ a
a = b  =  b = a Antidistributive Laws
a  b  =  b  a a ∧ b ⇒ c  =  (a ⇒ c) ∨ (b ⇒ c)

a ∨ b ⇒ c  =  (a ⇒ c) ∧ (b ⇒ c)
Antisymmetry Law (Double Implication)

(a ⇒ b) ∧ (b ⇒ a)  =  a = b Laws of Portation 
a ∧ b ⇒ c  =  a ⇒ (b ⇒ c)

Laws of Discharge a ∧ b ⇒ c  =  a ⇒ ¬b ∨ c
a ∧ (a ⇒ b)  =  a ∧ b
a ⇒ (a ∧ b)  =  a ⇒ b Laws of Conflation

(a ⇒ b) ∧ (c ⇒ d)  ⇒  a ∧ c ⇒ b ∧ d
Antimonotonic Law (a ⇒ b) ∧ (c ⇒ d)  ⇒  a ∨ c ⇒ b ∨ d

a ⇒ b  ⇒  (b ⇒ c) ⇒ (a ⇒ c)
Monotonic Laws

Contrapositive Law a ⇒ b  ⇒  c ∧ a ⇒ c ∧ b
a ⇒ b  =  ¬b ⇒ ¬a a ⇒ b  ⇒  c ∨ a ⇒ c ∨ b

a ⇒ b  ⇒  (c ⇒ a) ⇒ (c ⇒ b)
Law of Resolution

a ∧ c  ⇒  (a ∨ b) ∧ (¬b ∨ c)  =  (a ∧ ¬b) ∨ (b ∧ c)  ⇒  a ∨ c

Case Base Laws Case Analysis Laws
if T then a else b  =  a if a then b else c  =  (a ∧ b) ∨ (¬a ∧ c)
if ⊥⊥⊥⊥ then a else b  =  b if a then b else c = (a⇒b) ∧ (¬a ⇒ c)

One Case Laws Case Creation Laws
if a then b else T  =  a ⇒ b a  =  if b then b ⇒ a else ¬b ⇒ a
if a then b else ⊥⊥⊥⊥  =  a ∧ b a  =  if b then b ∧ a else ¬b ∧ a

a  =  if b then b = a else b  a
Case Reversal Law

     if a then b else c Case Idempotent Law
=  if ¬a then c else b if a then b else b  =  b

Case Absorption Laws
if a then b else c  =  if a then a∧b else c
if a then b else c  =  if a then a ⇒ b else c
if a then b else c  =  if a then a = b else c
if a then b else c  =  if a then b else ¬a ∧ c
if a then b else c  =  if a then b else a ∨ c
if a then b else c  =  if a then b else a  c

Case Distributive Laws (Case Factoring)
¬ if a then b else c  =  if a then ¬b else ¬c
(if a then b else c) ∧ d  =  if a then b ∧ d else c ∧ d
and similarly replacing  ∧  by any of  ∨  =    ⇒  ⇐
if a then b ∧ c else d ∧ e  =  (if a then b else d) ∧ (if a then c else e)
and similarly replacing  ∧  by any of  ∨  =    ⇒  ⇐

                                                                                                                                       End of Booleans
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11.4.1  Generic

The operators  =  if then else  apply to every type of expression, with the laws
x = x reflexivity
x=y  =  y=x symmetry
x=y ∧ y=z  ⇒  x=z transitivity
x=y  ⇒  f x = f y transparency
x y  =  ¬(x=y) unequality
if T then x else y  =  x case base
if ⊥⊥⊥⊥ then x else y  =  y case base

The operators  < ≤ > ≥  apply to numbers, characters, strings, and lists, with the laws
¬ x<x irreflexivity
¬(x<y ∧ x>y) exclusivity
¬(x<y ∧ x=y) exclusivity
x≤y ∧ y≤x = x=y antisymmetry
x<y ∧ y<z ⇒ x<z transitivity
x≤y  =  x<y ∨ x=y inclusivity
x>y  =  y<x mirror
x≥y  =  y≤x mirror
x<y ∨ x=y ∨ x>y totality, trichotomy

                                                                                                                                         End of Generic

11.4.2  Numbers

Let  d  be a sequence of (zero or more) digits, and let  x ,  y , and  z  be numbers.
d0+1 = d1 counting
d1+1 = d2 counting
d2+1 = d3 counting
d3+1 = d4 counting
d4+1 = d5 counting
d5+1 = d6 counting
d6+1 = d7 counting
d7+1 = d8 counting
d8+1 = d9 counting
d9+1 = (d+1)0 counting (see Exercise 22)
x+0 = x identity
x+y = y+x symmetry
x+(y+z)  =  (x+y)+z associativity
–∞<x<∞ ⇒ (x+y = x+z  =  y=z) cancellation
–∞<x ⇒  ∞+x = ∞ absorption
x<∞  ⇒  –∞ + x = –∞ absorption
–x  =  0 – x negation
– –x = x self-inverse
–(x+y) = –x + –y distributivity
–(x–y) = –x – –y distributivity
–(x×y) = –x × y semi-distributivity
–(x/y) = –x / y semi-distributivity
x–y = –(y–x) antisymmetry
x–y  =  x + –y subtraction

225 11 Reference



x + (y – z)  =  (x + y) – z associativity
–∞<x<∞  ⇒  (x–y = x–z  =  y=z) cancellation
–∞<x<∞  ⇒  x–x = 0 inverse
x<∞  ⇒  ∞–x = ∞ absorption
–∞<x  ⇒  –∞ – x = –∞ absorption
–∞<x<∞  ⇒  x×0 = 0 base
x×1 = x identity
x×y = y×x symmetry
x×(y+z) = x×y + x×z distributivity
x×(y×z) = (x×y)×z associativity
–∞<x<∞ ∧ x 0  ⇒  (x×y = x×z  =  y=z) cancellation
0<x  ⇒  x×∞ = ∞ absorption
0<x  ⇒  x × –∞  =  –∞ absorption
x/1 = x identity
–∞<x<∞ ∧ x 0  ⇒  x/x = 1 inverse
x×(y/z) = (x×y)/z = x/(z/y) multiplication-division
y 0  ⇒  (x/y)/z = x/(y×z) multiplication-division
–∞<x<∞  ⇒  x/∞ = 0 = x/–∞ annihilation
–∞<x<∞  ⇒  x0 = 1 base
x1 = x identity
xy+z = xy × xz exponents
xy×z = (xy)z exponents
–∞<0<1<∞ direction
x<y  =  –y<–x reflection
–∞<x<∞  ⇒  (x+y < x+z  =  y<z) cancellation, translation
0<x<∞  ⇒  (x×y < x×z  =  y<z) cancellation, scale
x<y ∨ x=y ∨ x>y trichotomy
–∞ ≤ x ≤ ∞ extremes

                                                                                                                                        End of Numbers

11.4.3  Bunches

Let  x  and  y  be elements (booleans, numbers, characters, sets, strings and lists of elements).
x: y  =  x=y elementary law
x: A,B   =   x: A  ∨  x: B compound law
A,A = A idempotence
A,B = B,A symmetry
A,(B,C) = (A,B),C associativity
A‘A = A idempotence
A‘B = B‘A symmetry
A‘(B‘C) = (A‘B)‘C associativity
A,B: C   =   A: C  ∧  B: C antidistributivity
A: B‘C   =   A: B  ∧  A: C distributivity
A: A,B generalization
A‘B: A specialization
A: A reflexivity
A: B  ∧  B: A   =   A=B antisymmetry
A: B  ∧  B: C   ⇒   A: C transitivity
¢ null = 0 size
¢x = 1 size
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¢(A, B) + ¢(A‘B) = ¢A + ¢B size
¬ x: A  ⇒  ¢(A‘x) = 0 size
A: B  ⇒  ¢A ≤ ¢B size
A,(A‘B)  =  A absorption
A‘(A,B)  =  A absorption
A: B  =  A,B = B  =  A = A‘B inclusion
A,(B,C)  =  (A,B),(A,C) distributivity
A,(B‘C)  =  (A,B)‘(A,C) distributivity
A‘(B,C)  =  (A‘B), (A‘C) distributivity
A‘(B‘C)  =  (A‘B)‘(A‘C) distributivity
A: B  ∧  C: D   ⇒   A,C: B,D conflation, monotonicity
A: B  ∧  C: D   ⇒   A‘C: B‘D conflation, monotonicity
null: A induction
A, null = A identity
A ‘ null = null base
¢A = 0   =   A = null size
x: int  ∧  y: xint  ∧  x≤y   ⇒   (i: x,..y   =   i: int  ∧  x≤i<y)
x: int  ∧  y: xint  ∧  x≤y   ⇒   ¢(x,..y)  =  y–x
–null  =  null distribution
–(A, B)  =  –A, –B distribution
A+null  =  null+A  =  null distribution
(A, B)+(C, D)  =  A+C, A+D, B+C, B+D distribution

and similarly for many other operators (see the final page of the book)
                                                                                                                                        End of Bunches

11.4.4  Sets
{A}: B  =  A: B

{~S}  =  S ${A} = ¢A
~{A}  =  A {A} ∪ {B}  =  {A, B}
{A}    A {A} ∩ {B}  =  {A ‘ B}
A ∈ {B}  =  A: B {A} = {B}  =  A = B
{A}  {B}  =  A: B {A}  {B}  =  A  B

                                                                                                                                              End of Sets

11.4.5  Strings

Let  S ,  T , and  U  be strings;  let  i  and  j  be items (booleans, numbers, characters, bunch of items, 
sets, lists, functions);  let  n  be extended natural;  let  x ,  y , and  z  be integers.

nil; S   =   S; nil   =  S ↔S<∞   ⇒   nil  ≤  S  <  S; i; T
S; (T; U)  =  (S; T); U ↔S<∞   ⇒   (i<j   =  S; i; T  <  S; j; U)
↔nil  =  0 ↔S<∞   ⇒   (i=j   =  S; i; T  =  S; j; T)
↔i  =  1 0*S  =  nil
↔(S; T)  =  ↔S + ↔T (n+1)*S  =  n*S; S
Snil  =  nil ↔S<∞   ⇒   S;i;T  ↔S  j  =  S;j;T
↔S<∞   ⇒   (S; i; T)↔S  =  i x;..x  =  nil
ST; U  =  ST; SU x;..x+1  =  x
S(TU)  =  (ST)U (x;..y)  ;  (y;..z)  =  x;..z
S{A}  =  {SA} ↔(x;..y)  =  y–x
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11.4.6  Lists

Let  S  and  T  be strings;  let  i  and  j  be items (booleans, numbers, characters, bunch of items, sets, 
lists, functions);  let  L ,  M , and  N  be lists.

[S]    S #[S]  =  ↔S
[S]  =  S S[T]  =  [ST]

[ L]  =  L [S] [T]  =  [ST]
[S] T  =  ST L {A}  =  {L A}
[S]+[T]  =  [S; T] L [S]  =  [L S]
[S] = [T]  =  S = T (L M) N  =  L (M N)
[S] < [T]  =  S < T L@nil  =  L
nil→i | L  =  i L@i  =  L i
n→i | [S]   =   [S n i] L@(S; T)  =  L@S@T
(S;T) → i | L  =  S→(T→i | L@S) | L

                                                                                                                                             End of Lists

11.4.7  Functions

Renaming Law — if  v  and  w  do not appear in  D  and  w  does not appear in  b
〈v: D→b〉  =  〈w: D→〈v: D→b〉w〉

Application Law:  if element  x: D Law of Extension
〈v: D→b〉x  =  (substitute  x  for  v  in  b ) f   =   〈w: Δf→f w〉

Domain Law Function Composition Laws:  If  ¬ f: Δg
Δ 〈v: D→b〉   =   D Δ(g f)  =  §x: Δf· fx: Δg

(g f) x  =  g (f x)
Function Inclusion Law f (g h)  =  (f g) h

f: g   =   Δg: Δf  ∧ ∀x: Δg· fx: gx
Cardinality Law

Function Equality Law ¢A   =   Σ (A→1)
f = g   =   Δf = Δg  ∧  ∀x: Δf· fx = gx

Laws of Functional Intersection
Laws of Functional Union Δ(f ‘ g)  =  Δf, Δg

Δ(f, g)  =  Δf ‘ Δg (f ‘ g) x  =  (f | g) x ‘ (g | f) x
(f, g) x  =  f x, g x

Laws of Selective Union
Laws of Selective Union Δ(f | g)  =  Δf, Δg

f | f  =  f (f | g) x  =  if x: Δf then f x else g x
(g | h) f   =   g f | h f f | (g | h)  =  (f | g) | h
〈v: A→x〉 | 〈v: B→y〉   =   〈v: A, B→if v: A then x else y〉

Distributive Laws Arrow Laws
f null  =  null f: null→A
f (A, B)  =  f A, f B A→B:  (A‘C) → (B,D)
f (§g)  =  §y: f (Δg)· ∃x: Δg· fx=y ∧ gx f: A→B   =   A: Δf  ∧  ∀a: A· fa: B
f (if b then x else y)   =  if b then f x else f y
(if b then f else g) x   =  if b then f x else g x
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11.4.8  Quantifiers

Let  x  be an element, let  a ,  b  and  c  be boolean, let  n  and  m  be numeric, let  f  and  g  be 
functions, and let  P  be a predicate.

∀v: null· b  =  T ∀v: A,B· b  =  (∀v: A· b) ∧ (∀v: B· b)
∀v: x· b  =  〈v: x→b〉 x ∀v: (§v: D· b)· c  =  ∀v: D· b ⇒ c

∃v: null· b  =  ⊥⊥⊥⊥ ∃v: A,B· b   =   (∃v: A· b) ∨ (∃v: B· b)
∃v: x· b  =  〈v: x→b〉 x ∃v: (§v: D· b)· c  =  ∃v: D· b ∧ c

Σv: null· n  =  0 (Σv: A,B· n) + (Σv: A‘B· n)  =  (Σv: A· n) + (Σv: B· n)
Σv: x· n  =  〈v: x→n〉 x Σv: (§v: D· b)· n  =  Σv: D· if b then n else 0

Πv: null· n  =  1 (Πv: A,B· n) × (Πv: A‘B· n)  =  (Πv: A· n) × (Πv: B· n)
Πv: x· n  =  〈v: x→n〉 x Πv: (§v: D· b)· n  =  Πv: D· if b then n else 1

MIN v: null· n   =   ∞ MIN v: A,B· n   =   min (MIN v: A· n) (MIN v: B· n)
MIN v: x· n  =  〈v: x→n〉 x MIN v: (§v: D· b)· n  =  MIN v: D· if b then n else ∞

MAX v: null· n   =   –∞ MAX v: A,B· n   =   max (MAX v: A· n) (MAX v: B· n)
MAX v: x· n  =  〈v: x→n〉 x MAX v:(§v: D· b)· n  =  MAX v: D· if b then n else –∞

§v: null· b   =   null
§v: x· b   =   if 〈v: x→b〉 x then x else null
§v: A,B· b   =   (§v: A· b), (§v: B· b)
§v: A‘B· b   =   (§v: A· b) ‘ (§v: B· b)
§v: (§v: D· b)· c  =  §v: D· b ∧ c

Change of Variable Laws — if  d  does not appear in  b
∀r: fD· b   =   ∀d: D· 〈r: fD→b〉 (fd)
∃r: fD· b   =   ∃d: D· 〈r: fD→b〉 (fd) Identity Laws
Σr: fD· n   =   Σd: D· 〈r: fD→n〉 (fd) ∀v· T
Πr: fD· n   =   Πd: D· 〈r: fD→n〉 (fd) ¬∃v· ⊥⊥⊥⊥
MIN r: fD· n   =   MIN d: D· 〈r: fD→n〉 (fd)
MAX r: fD· n   =   MAX d: D· 〈r: fD→n〉 (fd)

Bunch-Element Conversion Laws
V: W   =   ∀v: V· ∃w: W· v=w Distributive Laws — if  D null
fV: gW   =   ∀v: V· ∃w: W· fv=gw and  v  does not appear in  a

a ∧ ∀v: D· b   =   ∀v: D· a ∧ b
Idempotent Laws — if  D null a ∧ ∃v: D· b   =   ∃v: D· a ∧ b

and  v  does not appear in  b a ∨ ∀v: D· b   =   ∀v: D· a ∨ b
∀v: D· b   =   b a ∨ ∃v: D· b   =   ∃v: D· a ∨ b
∃v: D· b   =   b a ⇒ ∀v: D· b   =   ∀v: D· a ⇒ b

a ⇒ ∃v: D· b   =   ∃v: D· a ⇒ b
Absorption Laws — if  x: D

〈v: D→b〉 x ∧ ∃v: D· b  =  〈v: D→b〉 x Antidistributive Laws — if  D null
〈v: D→b〉 x ∨ ∀v: D· b  =  〈v: D→b〉 x and  v  does not appear in  a
〈v: D→b〉 x ∧ ∀v: D· b   =   ∀v: D· b a ⇐ ∃v: D· b   =   ∀v: D· a ⇐ b
〈v: D→b〉 x ∨ ∃v: D· b   =   ∃v: D· b a ⇐ ∀v: D· b   =   ∃v: D· a ⇐ b
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Specialization Law — if  x: D Generalization Law — if  x: D
∀v: D· b   ⇒   〈v: D→b〉x 〈v: D→b〉 x   ⇒   ∃v: D· b

One-Point Laws — if element  x: D Splitting Laws — for any fixed domain
and  v  does not appear in  x ∀v· a ∧ b   =   (∀v· a)  ∧  (∀v· b)
∀v: D· v=x ⇒ b   =   〈v: D→b〉 x ∃v· a ∧ b   ⇒   (∃v· a)  ∧  (∃v· b)
∃v: D· v=x ∧ b   =   〈v: D→b〉 x ∀v· a ∨ b   ⇐   (∀v· a)  ∨  (∀v· b)

∃v· a ∨ b   =   (∃v· a)  ∨  (∃v· b)
Duality Laws ∀v· a ⇒ b   ⇒   (∀v· a)  ⇒  (∀v· b)

¬∀v· b   =   ∃v· ¬b  (deMorgan) ∀v· a ⇒ b   ⇒   (∃v· a)  ⇒  (∃v· b)
¬∃v· b   =   ∀v· ¬b  (deMorgan) ∀v· a = b   ⇒   (∀v· a)  =  (∀v· b)
– MAX v· n   =   MIN v· –n ∀v· a = b   ⇒   (∃v· a)  =  (∃v· b)
– MIN v· n   =   MAX v· –n

Commutative Laws
Solution Laws — if  x  is an element ∀v· ∀w· b   =   ∀w· ∀v· b

§v: D· T  =  D ∃v· ∃w· b   =   ∃w· ∃v· b
(§v: D· b):  D
§v: D· ⊥⊥⊥⊥  =  null Semicommutative Laws (Skolem)
(§v· b): (§v· c)   =   ∀v· b⇒c ∃v· ∀w· b   ⇒   ∀w· ∃v· b
(§v· b), (§v· c)   =   §v· b ∨ c ∀x· ∃y· Pxy   =   ∃f· ∀x· Px(fx)
(§v· b) ‘ (§v· c)   =   §v· b ∧ c
x: §p   =   x: Δp  ∧  px Domain Change Laws
∀f  =  (§f)=(Δf) A: B  ⇒  (∀v: A· b)  ⇐  (∀v: B· b)
∃f  =  (§f) null A: B  ⇒  (∃v: A· b)  ⇒  (∃v: B· b)

∀v: A· v: B ⇒ p   =  ∀v: A‘B· p
Bounding Laws ∃v: A· v: B ∧ p   =  ∃v: A‘B· p

if  v  does not appear in  n
n > (MAX v: D· m)  ⇒  (∀v: D· n>m) Extreme Law
n < (MIN v: D· m)  ⇒  (∀v: D· n<m) ∀v· (MIN v· n) ≤ n ≤ (MAX v· n)
n ≥ (MAX v: D· m)  =  (∀v: D· n≥m)
n ≤ (MIN v: D· m)  =  (∀v: D· n≤m) Connection Laws (Galois)
n ≥ (MIN v: D· m)  ⇐  (∃v: D· n≥m) n≤m   =   ∀k·  k≤n ⇒ k≤m
n ≤ (MAX v: D· m)  ⇐  (∃v: D· n≤m) n≤m   =   ∀k·  k<n ⇒ k<m
n > (MIN v: D· m)  =  (∃v: D· n>m) n≤m   =   ∀k·  m≤k ⇒ n≤k
n < (MAX v: D· m)  =  (∃v: D· n<m) n≤m   =   ∀k·  m<k ⇒ n<k

Distributive Laws — if  D null  and  v  does not appear in  n
max n (MAX v: D· m)   =   (MAX v: D· max n m)
max n (MIN v: D· m)   =   (MIN v: D· max n m)
min n (MAX v: D· m)   =   (MAX v: D· min n m)
min n (MIN v: D· m)   =   (MIN v: D· min n m)
n + (MAX v: D· m)   =   (MAX v: D· n+m)
n + (MIN v: D· m)   =   (MIN v: D· n+m)
n – (MAX v: D· m)   =   (MIN v: D· n–m)
n – (MIN v: D· m)   =   (MAX v: D· n–m)
(MAX v: D· m) – n   =   (MAX v: D· m–n)
(MIN v: D· m) – n   =   (MIN v: D· m–n)
n≥0    ⇒    n × (MAX v: D· m)   =   (MAX v: D· n×m)
n≥0    ⇒    n × (MIN v: D· m)   =   (MIN v: D· n×m)
n≤0    ⇒    n × (MAX v: D· m)   =   (MIN v: D· n×m)
n≤0    ⇒    n × (MIN v: D· m)   =   (MAX v: D· n×m)
n × (Σv: D· m)   =   (Σv: D· n×m)
(Πv: D· m)n   =   (Πv: D· mn)
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11.4.9  Limits

(MAX m· MIN n· f(m+n))  ≤  (LIM f)  ≤  (MIN m· MAX n· f(m+n))
∃m· ∀n· p(m+n)   ⇒   LIM p   ⇒   ∀m· ∃n· p(m+n)

                                                                                                                                           End of Limits

11.4.10  Specifications and Programs

For specifications  P ,  Q ,  R , and  S , and boolean  b ,
ok   =   x′=x  ∧  y′=y  ∧ ... 
x:= e   =   x′=e  ∧  y′=y  ∧ ...
P. Q   =   ∃x′′, y′′, ...·  〈x′, y′, ...→P〉 x′′ y′′ ...  ∧  〈x, y, ...→Q〉 x′′ y′′ ...
P||Q   =   ∃tP, tQ·  〈t′→P〉tP  ∧  〈t′→Q〉tQ  ∧  t′ = max tP tQ
if b then P else Q   =   b ∧ P ∨ ¬b ∧ Q
var x: T· P   =   ∃x, x′: T· P
frame x· P   =   P  ∧  y′=y  ∧ ...
while b do P   =   t′≥t ∧ (if b then (P.  t:= t+1.  while b do P) else ok)
∀σ, σ′· (if b then (P.  W) else ok  ⇐  W)   ⇒   ∀σ, σ′· (while b do P  ⇐  W)

(Fmn   ⇐   m=n ∧ ok) ∧ (Fik   ⇐   m≤i<j<k≤n ∧ (Fij. Fjk))
⇒ (Fmn   ⇐   for i:= m;..n do m≤i<n ⇒ Fi(i+1))
Im⇒I′n   ⇐   for i:= m;..n do m≤i<n ∧ Ii ⇒ I′(i+1)
wait until w   =   t:= max t w
assert b   =   if b then ok else (print "error".  wait until ∞)
ensure b   =  b ∧ ok
x′ = (P result e)   =   P.  x′ = e
c?   =   r:= r+1
c   =   Mc rc–1
c! e   =   Mc wc = e  ∧  Tc wc = t  ∧  (wc:= wc+1)
√c   =   Tc rc + (transit time) ≤ t
ivar x: T· S   =   ∃x: time→T· S
chan c: T· P     =     ∃Mc: ∞*T· ∃Tc: ∞*xreal· var rc , wc: xnat := 0·  P
ok. P   =   P. ok   =   P identity
P. (Q. R)   =   (P. Q). R associativity
if b then P else P   =   P idempotence
if b then P else Q   =   if ¬b then Q else P case reversal
P   =   if b then b ⇒ P else ¬b ⇒ P case creation
P∨Q. R∨S   =   (P. R) ∨ (P. S) ∨ (Q. R) ∨ (Q. S) distributivity
(if b then P else Q). R   =   if b then (P. R) else (Q. R) distributivity (unprimed  b )
ok || P   =   P || ok   =   P identity
P || Q   =   Q || P symmetry
P || (Q || R)   =   (P || Q) || R associativity
P || Q∨R   =  (P || Q) ∨ (P || R) distributivity
P || if b then Q else R   =   if b then (P || Q) else (P || R) distributivity
if b then (P||Q) else (R||S)   =   if b then P else R || if b then Q else S  distributivity
x:= if b then e else f   =    if b then x:= e else x:= f functional-imperative

                                                                                                               End of Specifications and Programs
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11.4.11  Substitution

Let  x  and  y  be different boundary state variables, let  e  and  f  be expressions of the prestate, and 
let  P  be a specification.

x:= e. P   =   (for  x  substitute  e  in  P )
(x:= e || y:= f).  P   =   (for  x  substitute  e  and independently for  y  substitute  f  in  P )

                                                                                                                                   End of Substitution

11.4.12  Conditions

Let  P  and  Q  be any specifications, and let  C  be a precondition, and let  C′  be the corresponding 
postcondition (in other words,  C′  is the same as  C  but with primes on all the state variables).

C ∧ (P. Q)   ⇐   C∧P. Q
C ⇒ (P.Q)   ⇐   C⇒P. Q
(P.Q) ∧ C′   ⇐   P. Q∧C′
(P.Q) ⇐ C′   ⇐   P. Q⇐C′
P. C∧Q    ⇐   P∧C′. Q
P. Q    ⇐   P∧C′.  C⇒Q
C  is a sufficient precondition for  P  to be refined by  S

if and only if  C⇒P  is refined by  S .
C′  is a sufficient postcondition for  P  to be refined by  S

if and only if  C′⇒P  is refined by  S .
                                                                                                                                     End of Conditions

11.4.13  Refinement

Refinement by Steps  (Stepwise Refinement) (monotonicity, transitivity)
If  A  ⇐  if b then C else D  and  C ⇐ E  and  D ⇐ F  are theorems,

then  A  ⇐  if b then E else F  is a theorem.
If  A  ⇐  B.C  and  B ⇐ D  and  C ⇐ E  are theorems, then  A  ⇐  D.E is a theorem.
If  A  ⇐  B||C  and  B ⇐ D  and  C ⇐ E  are theorems, then  A  ⇐  D||E is a theorem.
If  A ⇐ B  and  B ⇐ C  are theorems, then  A ⇐ C  is a theorem.

Refinement by Parts (monotonicity, conflation)
If  A  ⇐  if b then C else D  and  E  ⇐  if b then F else G  are theorems,

then  A∧E  ⇐  if b then C∧F else D∧G  is a theorem.
If  A  ⇐  B.C  and  D  ⇐  E.F  are theorems, then  A∧D  ⇐  B∧E. C∧F  is a theorem.
If  A  ⇐  B||C  and  D  ⇐  E||F  are theorems, then  A∧D  ⇐  B∧E || C∧F is a theorem.
If  A ⇐ B  and  C ⇐ D  are theorems, then  A∧C  ⇐  B∧D  is a theorem.

Refinement by Cases
P  ⇐  if b then Q else R  is a theorem if and only if
P  ⇐  b ∧ Q  and  P  ⇐  ¬b ∧ R  are theorems.

                                                                                                                                    End of Refinement
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11.5  Names

abs:  xreal→§r: xreal· r≥0 abs r  =  if r≥0 then r else –r
bool  (the booleans) bool  =  T, ⊥⊥⊥⊥
ceil:  real→int r ≤ ceil r < r+1
char  (the characters) char  =  ..., "a", "A", ...
div:  real→(§r: real· r>0)→int div x y  =  floor (x/y)
divides:  (nat+1)→int→bool divides n i   =   i/n: int
entro:  prob→§r: xreal· r≥0 entro p   =   p × info p  +  (1–p) × info (1–p)
even:  int→bool even i  =  i/2: int

even  =  divides 2
floor:  real→int floor r ≤ r < floor r + 1
info:  prob→§r: xreal· r≥0 info p   =   – log p
int  (the integers) int  =  nat, –nat
LIM  (limit quantifier) see Laws
log:  (§r: xreal· r≥0)→xreal log (2x) = x

log (x×y)  =  log x + log y
max:  xrat→xrat→xrat max x y  =  if x≥y then x else y

– max a b  =  min (–a) (–b)
MAX  (maximum quantifier) see Laws
min:  xrat→xrat→xrat min x y  =  if x≤y then x else y

– min a b  =  max (–a) (–b)
MIN  (minimum quantifier) see Laws
mod:  real→(§r: real· r>0)→real 0 ≤ mod a d < d

a  =  div a d × d  +  mod a d
nat  (the naturals) 0, nat+1: nat

0, B+1: B  ⇒  nat: B
nil  (the empty string) ↔nil  =  0

nil; S  =  S  =  S; nil
nil ≤ S

null  (the empty bunch) ¢null  =  0
null, A  =  A  =  A, null
null: A

odd:  int→bool odd i   =   ¬ i/2: int
odd  =  ¬even

ok  (the empty program) ok   =   σ′=σ
ok.P   =   P.ok   =   ok || P   =   P || ok   =   P

prob  (probability) prob  =  §r: real· 0≤r≤1
rand  (random number) rand n: 0,..n
rat  (the rationals) rat  =  int/(nat+1)
real  (the reals) r: real  =  r: xreal  ∧  –∞<r<∞
suc:  nat→(nat+1) suc n = n+1
xint  (the extended integers) xint  =  –∞, int, ∞
xnat  (the extended naturals) xnat  =  nat, ∞
xrat  (the extended rationals) xrat  =  –∞, rat, ∞
xreal  (the extended reals) x: xreal   =   ∃f: nat→rat· x = LIM f
                                                                                                                                           End of Names

233 11 Reference



11.6  Symbols

T 3 true ( ) 4 parentheses for grouping
⊥⊥⊥⊥ 3 false { } 17 set brackets
¬ 3 not [ ] 20 list brackets
∧ 3 and 〈 〉 23 function (scope) brackets
∨ 3 or 17 power
⇒ 3 implies ¢ 14 bunch size, cardinality
⇒ 3 implies $ 17 set size, cardinality
⇐ 3 follows from, is implied by ↔ 18 string size, length
⇐ 3 follows from, is implied by # 20 list size, length
= 3 equals, if and only if | 20,24 selective union, otherwise
= 3 equals, if and only if || 118 indep't (parallel) composition

3 differs from, is unequal to ~ 17 contents of a set
< 13 less than 20 contents of a list
> 13 greater than * 18 repetition of a string
≤ 13 less than or equal to Δ 23 domain of a function
≥ 13 greater than or equal to → 23 function arrow
+ 12 plus ∈ 17 element of a set
+ 20 list catenation 17 subset
– 12 minus ∪ 17 set union
× 12 times, multiplication ∩ 17 set intersection
/ 12 divided by @ 22 index with a pointer
, 14 bunch union ∀ 26 for all, universal quantifier
,.. 16 union from (incl) to (excl) ∃ 26 there exists, existential quantifier
‘ 14 bunch intersection Σ 26 sum of, summation quantifier
; 17 string catenation Π 26 product of, product quantifier
;.. 19 catenation from (incl) to (excl) § 28 those, solution quantifier
: 14 is in, are in, bunch inclusion ′ 34 x′  is final value of state var  x
:: 89 includes " 13,19 "hello"  is a text or string of chars
:= 36 assignment ab 12 exponentiation
. 36 dep't (sequential) composition ab 18 string indexing
· 26 quantifier abbreviation a b 20,31 indexing,application,composition
! 133 output  18 string modification
? 133 input ∞ 12 infinity
√ 133 input check

assert 77 ivar 126
chan 138 loop end 71
ensure 77 or 77
exit when 71 result 78
for do 74 var 66
frame 67 wait until 76
go to 76 while do 69
if then else 4
                                                                                                                                        End of Symbols
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11.7  Precedence

0 T   ⊥⊥⊥⊥   ( )   { }   [ ]   〈 〉   loop end   numbers   characters   texts   names

1 @   juxtaposition

2 prefix–   ¢   $   ↔   #   *   ~         Δ   →   √   superscript   subscript

3 ×   /   ∩
4 +   infix–   +   ∪
5 ;   ;..   ‘
6 ,   ,..   |    
7 =      <   >   ≤   ≥   :   ::   ∈   
8 ¬
9 ∧
10 ∨
11 ⇒   ⇐
12 :=   !   ?
13 if then else   while do   exit when   for do   go to   wait until   assert   ensure   or
14 .   ||   result
15 ∀·   ∃·   Σ·   Π·   §·   LIM·   MAX·   MIN·  var·  ivar·  chan·   frame·
16 =   ⇒   ⇐

On level 2, superscripting and subscripting serve to bracket all operations within them.

Juxtaposition associates from left to right, so  a b c  means the same as  (a b) c .  The infix 
operators  @  /  –  associate from left to right.  The infix operators  *  →  associate from right to 
left.  The infix operators  ×  ∩  +  +  ∪  ;  ‘  ,  |  ∧  ∨  .  ||  are associative (they associate in both 
directions).

On levels 7, 11, and 16 the operators are continuing.  For example,  a = b = c  neither associates to 
the left nor associates to the right, but means the same as  a = b  ∧  b = c .  On any one of these 
levels, a mixture of continuing operators can be used.  For example,  a ≤ b < c  means the same as  
a ≤ b  ∧  b < c .

On levels 13 and 15, the precedence applies to the final operand (and to both operands of  or ), not 
to operands that are surrounded by the operator.

The operators   =   ⇒   ⇐   are identical to   =   ⇒   ⇐   except for precedence.
                                                                                                                                     End of Precedence

11.8  Distribution

The operators in the following expressions distribute over bunch union in any operand:
[A]    A@B    A B    –A    $A    ↔A    #A    ~A    A    
AB    AB    A×B    A/B    A∩B    A+B    A–B    A+B    A∪B    A;B    A‘B   
¬A    A∧B    A∨B   

The operator in  A*B  distributes over bunch union in its left operand only.
                                                                                                                                   End of Distribution

                                                                                                                                       End of Reference

                                                                                                       End of a Practical Theory of Programming
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