
S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 141

Trees
A tree is an undirected graph that is connected and acyclic. Much of what makes trees so
useful is the simplicity of their structure. For instance,

Property 2 A tree on n nodes has n− 1 edges.

This can be seen by building the tree one edge at a time, starting from an empty graph.
Initially each of the n nodes is disconnected from the others, in a connected component by
itself. As edges are added, these components merge. Since each edge unites two different
components, exactly n− 1 edges are added by the time the tree is fully formed.

In a little more detail: When a particular edge {u, v} comes up, we can be sure that u
and v lie in separate connected components, for otherwise there would already be a path
between them and this edge would create a cycle. Adding the edge then merges these two
components, thereby reducing the total number of connected components by one. Over the
course of this incremental process, the number of components decreases from n to one,
meaning that n− 1 edges must have been added along the way.

The converse is also true.

Property 3 Any connected, undirected graph G = (V,E) with |E| = |V | − 1 is a tree.

We just need to show that G is acyclic. One way to do this is to run the following iterative
procedure on it: while the graph contains a cycle, remove one edge from this cycle. The
process terminates with some graph G′ = (V,E′), E′ ⊆ E, which is acyclic and, by Property 1
(from page 139), is also connected. Therefore G′ is a tree, whereupon |E ′| = |V | − 1 by
Property 2. So E ′ = E, no edges were removed, and G was acyclic to start with.

In other words, we can tell whether a connected graph is a tree just by counting how
many edges it has. Here’s another characterization.

Property 4 An undirected graph is a tree if and only if there is a unique path between any
pair of nodes.

In a tree, any two nodes can only have one path between them; for if there were two
paths, the union of these paths would contain a cycle.

On the other hand, if a graph has a path between any two nodes, then it is connected. If
these paths are unique, then the graph is also acyclic (since a cycle has two paths between
any pair of nodes).

142 Algorithms

Figure 5.2 T ∪ {e}. The addition of e (dotted) to T (solid lines) produces a cycle. This cycle
must contain at least one other edge, shown here as e′, across the cut (S, V − S).

��

��

� ��

� �� �

�	
�

� �

����

��

��

��
��

� ��

� ��

e

S V − S

e′

5.1.2 The cut property
Say that in the process of building a minimum spanning tree (MST), we have already chosen
some edges and are so far on the right track. Which edge should we add next? The following
lemma gives us a lot of flexibility in our choice.

Cut property Suppose edges X are part of a minimum spanning tree of G = (V,E). Pick any
subset of nodes S for which X does not cross between S and V − S, and let e be the lightest
edge across this partition. Then X ∪ {e} is part of some MST.

A cut is any partition of the vertices into two groups, S and V −S. What this property says
is that it is always safe to add the lightest edge across any cut (that is, between a vertex in S
and one in V − S), provided X has no edges across the cut.

Let’s see why this holds. Edges X are part of some MST T ; if the new edge e also happens
to be part of T , then there is nothing to prove. So assume e is not in T . We will construct a
different MST T ′ containing X ∪ {e} by altering T slightly, changing just one of its edges.

Add edge e to T . Since T is connected, it already has a path between the endpoints of e, so
adding e creates a cycle. This cycle must also have some other edge e′ across the cut (S, V −S)
(Figure 8.3). If we now remove this edge, we are left with T ′ = T ∪ {e} − {e′}, which we will
show to be a tree. T ′ is connected by Property 1, since e′ is a cycle edge. And it has the same
number of edges as T ; so by Properties 2 and 3, it is also a tree.

Moreover, T ′ is a minimum spanning tree. Compare its weight to that of T :

weight(T ′) = weight(T) + w(e)− w(e′).

Both e and e′ cross between S and V − S, and e is specifically the lightest edge of this type.
Therefore w(e) ≤ w(e′), and weight(T ′) ≤ weight(T). Since T is an MST, it must be the case
that weight(T ′) = weight(T) and that T ′ is also an MST.

Figure 5.3 shows an example of the cut property. Which edge is e′?

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 143

Figure 5.3 The cut property at work. (a) An undirected graph. (b) Set X has three edges, and
is part of the MST T on the right. (c) If S = {A,B,C,D}, then one of the minimum-weight
edges across the cut (S, V − S) is e = {D,E}. X ∪ {e} is part of MST T ′, shown on the right.

(a) A

B

C E

FD

2 2 3

3

41

1

2 1

(b)

Edges X:

A

B

C E

FD

MST T :

A

B

C E

FD

(c)

The cut:

A

B

C E

FD

e

S V − S

MST T ′:

A

B

C E

FD

5.1.3 Kruskal’s algorithm
We are ready to justify Kruskal’s algorithm. At any given moment, the edges it has already
chosen form a partial solution, a collection of connected components each of which has a tree
structure. The next edge e to be added connects two of these components; call them T1 and
T2. Since e is the lightest edge that doesn’t produce a cycle, it is certain to be the lightest edge
between T1 and V − T1 and therefore satisfies the cut property.

Now we fill in some implementation details. At each stage, the algorithm chooses an edge
to add to its current partial solution. To do so, it needs to test each candidate edge u − v to
see whether the endpoints u and v lie in different components; otherwise the edge produces a
cycle. And once an edge is chosen, the corresponding components need to be merged. What
kind of data structure supports such operations?

We will model the algorithm’s state as a collection of disjoint sets, each of which contains
the nodes of a particular component. Initially each node is in a component by itself:

makeset(x): create a singleton set containing just x.

We repeatedly test pairs of nodes to see if they belong to the same set.

find(x): to which set does x belong?

144 Algorithms

Figure 5.4 Kruskal’s minimum spanning tree algorithm.
procedure kruskal(G,w)
Input: A connected undirected graph G = (V,E) with edge weights we

Output: A minimum spanning tree defined by the edges X

for all u ∈ V :
makeset(u)

X = {}
Sort the edges E by weight
for all edges {u, v} ∈ E, in increasing order of weight:

if find(u) 6= find(v):
add edge {u, v} to X
union(u, v)

And whenever we add an edge, we are merging two components.

union(x, y): merge the sets containing x and y.

The final algorithm is shown in Figure 5.4. It uses |V | makeset, 2|E| find, and |V | − 1
union operations.

5.1.4 A data structure for disjoint sets
Union by rank
One way to store a set is as a directed tree (Figure 5.5). Nodes of the tree are elements of the
set, arranged in no particular order, and each has parent pointers that eventually lead up to
the root of the tree. This root element is a convenient representative, or name, for the set. It
is distinguished from the other elements by the fact that its parent pointer is a self-loop.

Figure 5.5 A directed-tree representation of two sets {B,E} and {A,C,D, F,G,H}.

E H

B C F

A

D

G

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 145

In addition to a parent pointer π, each node also has a rank that, for the time being, should
be interpreted as the height of the subtree hanging from that node.

procedure makeset(x)
π(x) = x
rank(x) = 0

function find(x)
while x 6= π(x) : x = π(x)
return x

As can be expected, makeset is a constant-time operation. On the other hand, find follows
parent pointers to the root of the tree and therefore takes time proportional to the height of
the tree. The tree actually gets built via the third operation, union, and so we must make
sure that this procedure keeps trees shallow.

Merging two sets is easy: make the root of one point to the root of the other. But we have
a choice here. If the representatives (roots) of the sets are rx and ry, do we make rx point
to ry or the other way around? Since tree height is the main impediment to computational
efficiency, a good strategy is to make the root of the shorter tree point to the root of the taller
tree. This way, the overall height increases only if the two trees being merged are equally tall.
Instead of explicitly computing heights of trees, we will use the rank numbers of their root
nodes—which is why this scheme is called union by rank.

procedure union(x, y)
rx = find(x)
ry = find(y)
if rx = ry: return
if rank(rx) > rank(ry):

π(ry) = rx
else:

π(rx) = ry
if rank(rx) = rank(ry) : rank(ry) = rank(ry) + 1

See Figure 5.6 for an example.

By design, the rank of a node is exactly the height of the subtree rooted at that node. This
means, for instance, that as you move up a path toward a root node, the rank values along the
way are strictly increasing.

Property 1 For any x, rank(x) < rank(π(x)).

A root node with rank k is created by the merger of two trees with roots of rank k − 1. It
follows by induction (try it!) that

Property 2 Any root node of rank k has at least 2k nodes in its tree.

146 Algorithms

This extends to internal (nonroot) nodes as well: a node of rank k has at least 2k de-
scendants. After all, any internal node was once a root, and neither its rank nor its set of
descendants has changed since then. Moreover, different rank-k nodes cannot have common
descendants, since by Property 1 any element has at most one ancestor of rank k. Which
means

Property 3 If there are n elements overall, there can be at most n/2k nodes of rank k.

This last observation implies, crucially, that the maximum rank is log n. Therefore, all the
trees have height ≤ log n, and this is an upper bound on the running time of find and union.

Figure 5.6 A sequence of disjoint-set operations. Superscripts denote rank.

After makeset(A),makeset(B), . . . ,makeset(G):

A0 B0 C0 D0 E0 F0 0G

After union(A,D),union(B,E),union(C,F):

A0 B0 C0

G0F1E1D1

After union(C,G),union(E,A):

B

1

F1

C 0G

0

E

D2

A0 0

After union(B,G):

A

G0

FE1

0

C0

D2

B0

1

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 147

Path compression
With the data structure as presented so far, the total time for Kruskal’s algorithm becomes
O(|E| log |V |) for sorting the edges (remember, log |E| ≈ log |V |) plus another O(|E| log |V |) for
the union and find operations that dominate the rest of the algorithm. So there seems to be
little incentive to make our data structure any more efficient.

But what if the edges are given to us sorted? Or if the weights are small (say, O(|E|)) so
that sorting can be done in linear time? Then the data structure part becomes the bottleneck,
and it is useful to think about improving its performance beyond log n per operation. As it
turns out, the improved data structure is useful in many other applications.

But how can we perform union’s and find’s faster than log n? The answer is, by being a
little more careful to maintain our data structure in good shape. As any housekeeper knows,
a little extra effort put into routine maintenance can pay off handsomely in the long run, by
forestalling major calamities. We have in mind a particular maintenance operation for our
union-find data structure, intended to keep the trees short— during each find, when a series
of parent pointers is followed up to the root of a tree, we will change all these pointers so
that they point directly to the root (Figure 5.7). This path compression heuristic only slightly
increases the time needed for a find and is easy to code.

function find(x)
if x 6= π(x) : π(x) = find(π(x))
return π(x)

The benefit of this simple alteration is long-term rather than instantaneous and thus neces-
sitates a particular kind of analysis: we need to look at sequences of find and union opera-
tions, starting from an empty data structure, and determine the average time per operation.
This amortized cost turns out to be just barely more than O(1), down from the earlier O(log n).

Think of the data structure as having a “top level” consisting of the root nodes, and below
it, the insides of the trees. There is a division of labor: find operations (with or without path
compression) only touch the insides of trees, whereas union’s only look at the top level. Thus
path compression has no effect on union operations and leaves the top level unchanged.

We now know that the ranks of root nodes are unaltered, but what about nonroot nodes?
The key point here is that once a node ceases to be a root, it never resurfaces, and its rank
is forever fixed. Therefore the ranks of all nodes are unchanged by path compression, even
though these numbers can no longer be interpreted as tree heights. In particular, properties
1–3 (from page 145) still hold.

If there are n elements, their rank values can range from 0 to log n by Property 3. Let’s
divide the nonzero part of this range into certain carefully chosen intervals, for reasons that
will soon become clear:

{1}, {2}, {3, 4}, {5, 6, . . . , 16}, {17, 18, . . . , 216 = 65536}, {65537, 65538, . . . , 265536}, . . .

Each group is of the form {k + 1, k + 2, . . . , 2k}, where k is a power of 2. The number of groups
is log∗ n, which is defined to be the number of successive log operations that need to be applied

148 Algorithms

Figure 5.7 The effect of path compression: find(I) followed by find(K).

B0

D0

I0 J0 K0

H0

C1

1 G1

A3

F

E2

−→
B0

0D

K0

J0

I0

H0

C1 F1

G1

A3

E2

−→ B0

D H0 J 0

I0 K0 G1C1 F1E2

A

0

3

to n to bring it down to 1 (or below 1). For instance, log∗ 1000 = 4 since log log log log 1000 ≤ 1.
In practice there will just be the first five of the intervals shown; more are needed only if
n ≥ 265536, in other words never.

In a sequence of find operations, some may take longer than others. We’ll bound the
overall running time using some creative accounting. Specifically, we will give each node a
certain amount of pocket money, such that the total money doled out is at most n log∗ n dollars.
We will then show that each find takes O(log∗ n) steps, plus some additional amount of time
that can be “paid for” using the pocket money of the nodes involved—one dollar per unit of
time. Thus the overall time for m find’s is O(m log∗ n) plus at most O(n log∗ n).

In more detail, a node receives its allowance as soon as it ceases to be a root, at which point
its rank is fixed. If this rank lies in the interval {k + 1, . . . , 2k}, the node receives 2k dollars.
By Property 3, the number of nodes with rank > k is bounded by

n

2k+1
+

n

2k+2
+ · · · ≤ n

2k
.

Therefore the total money given to nodes in this particular interval is at most n dollars, and
since there are log∗ n intervals, the total money disbursed to all nodes is ≤ n log∗ n.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 149

Now, the time taken by a specific find is simply the number of pointers followed. Consider
the ascending rank values along this chain of nodes up to the root. Nodes x on the chain fall
into two categories: either the rank of π(x) is in a higher interval than the rank of x, or else
it lies in the same interval. There are at most log∗ n nodes of the first type (do you see why?),
so the work done on them takes O(log∗ n) time. The remaining nodes—whose parents’ ranks
are in the same interval as theirs—have to pay a dollar out of their pocket money for their
processing time.

This only works if the initial allowance of each node x is enough to cover all of its payments
in the sequence of find operations. Here’s the crucial observation: each time x pays a dollar,
its parent changes to one of higher rank. Therefore, if x’s rank lies in the interval {k +
1, . . . , 2k}, it has to pay at most 2k dollars before its parent’s rank is in a higher interval;
whereupon it never has to pay again.

150 Algorithms

A randomized algorithm for minimum cut
We have already seen that spanning trees and cuts are intimately related. Here is another
connection. Let’s remove the last edge that Kruskal’s algorithm adds to the spanning tree;
this breaks the tree into two components, thus defining a cut (S, S) in the graph. What
can we say about this cut? Suppose the graph we were working with was unweighted, and
that its edges were ordered uniformly at random for Kruskal’s algorithm to process them.
Here is a remarkable fact: with probability at least 1/n2, (S, S) is the minimum cut in the
graph, where the size of a cut (S, S) is the number of edges crossing between S and S. This
means that repeating the process O(n2) times and outputting the smallest cut found yields
the minimum cut in G with high probability: an O(mn2 log n) algorithm for unweighted
minimum cuts. Some further tuning gives the O(n2 log n) minimum cut algorithm, invented
by David Karger, which is the fastest known algorithm for this important problem.

So let us see why the cut found in each iteration is the minimum cut with probability at
least 1/n2. At any stage of Kruskal’s algorithm, the vertex set V is partitioned into connected
components. The only edges eligible to be added to the tree have their two endpoints in
distinct components. The number of edges incident to each component must be at least
C, the size of the minimum cut in G (since we could consider a cut that separated this
component from the rest of the graph). So if there are k components in the graph, the
number of eligible edges is at least kC/2 (each of the k components has at least C edges
leading out of it, and we need to compensate for the double-counting of each edge). Since the
edges were randomly ordered, the chance that the next eligible edge in the list is from the
minimum cut is at most C/(kC/2) = 2/k. Thus, with probability at least 1− 2/k = (k− 2)/k,
the choice leaves the minimum cut intact. But now the chance that Kruskal’s algorithm
leaves the minimum cut intact all the way up to the choice of the last spanning tree edge is
at least

n− 2

n
· n− 3

n− 1
· n− 4

n− 2
· · · 2

4
· 1
3

=
1

n(n− 1)
.

5.1.5 Prim’s algorithm
Let’s return to our discussion of minimum spanning tree algorithms. What the cut property
tells us in most general terms is that any algorithm conforming to the following greedy schema
is guaranteed to work.

X = { } (edges picked so far)
repeat until |X| = |V | − 1:
pick a set S ⊂ V for which X has no edges between S and V − S
let e ∈ E be the minimum-weight edge between S and V − S
X = X ∪ {e}

A popular alternative to Kruskal’s algorithm is Prim’s, in which the intermediate set of edges
X always forms a subtree, and S is chosen to be the set of this tree’s vertices.

On each iteration, the subtree defined by X grows by one edge, namely, the lightest edge
between a vertex in S and a vertex outside S (Figure 5.8). We can equivalently think of S as

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 151

Figure 5.8 Prim’s algorithm: the edges X form a tree, and S consists of its vertices.

��

��

� ��

� �� �

�	
�

� �

����

��

� ��

��

��

��� ��

� �� �
 ! !

" "
" "
#
#

$ $% %

e

S V − S

X

growing to include the vertex v 6∈ S of smallest cost:

cost(v) = min
u∈S

w(u, v).

This is strongly reminiscent of Dijkstra’s algorithm, and in fact the pseudocode (Figure 5.9)
is almost identical. The only difference is in the key values by which the priority queue is
ordered. In Prim’s algorithm, the value of a node is the weight of the lightest incoming edge
from set S, whereas in Dijkstra’s it is the length of an entire path to that node from the
starting point. Nonetheless, the two algorithms are similar enough that they have the same
running time, which depends on the particular priority queue implementation.

Figure 5.9 shows Prim’s algorithm at work, on a small six-node graph. Notice how the
final MST is completely specified by the prev array.

152 Algorithms

Figure 5.9 Top: Prim’s minimum spanning tree algorithm. Below: An illustration of Prim’s
algorithm, starting at node A. Also shown are a table of cost/prev values, and the final MST.
procedure prim(G,w)
Input: A connected undirected graph G = (V,E) with edge weights we

Output: A minimum spanning tree defined by the array prev

for all u ∈ V :
cost(u) =∞
prev(u) = nil

Pick any initial node u0

cost(u0) = 0

H = makequeue (V) (priority queue, using cost-values as keys)
while H is not empty:

v = deletemin(H)
for each {v, z} ∈ E:

if cost(z) > w(v, z):
cost(z) = w(v, z)
prev(z) = v
decreasekey(H, z)

B

A 6 5

3

42 FD

C E

5 41 24

B

A

FD

C E

Set S A B C D E F

{} 0/nil ∞/nil ∞/nil ∞/nil ∞/nil ∞/nil
A 5/A 6/A 4/A ∞/nil ∞/nil

A,D 2/D 2/D ∞/nil 4/D
A,D,B 1/B ∞/nil 4/D
A,D,B,C 5/C 3/C
A,D,B,C, F 4/F

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 153

5.2 Huffman encoding
In the MP3 audio compression scheme, a sound signal is encoded in three steps.

1. It is digitized by sampling at regular intervals, yielding a sequence of real numbers
s1, s2, . . . , sT . For instance, at a rate of 44,100 samples per second, a 50-minute symphony
would correspond to T = 50× 60× 44,100 ≈ 130 million measurements.1

2. Each real-valued sample st is quantized: approximated by a nearby number from a
finite set Γ. This set is carefully chosen to exploit human perceptual limitations, with
the intention that the approximating sequence is indistinguishable from s1, s2, . . . , sT by
the human ear.

3. The resulting string of length T over alphabet Γ is encoded in binary.

It is in the last step that Huffman encoding is used. To understand its role, let’s look at a toy
example in which T is 130 million and the alphabet Γ consists of just four values, denoted by
the symbols A,B,C,D. What is the most economical way to write this long string in binary?
The obvious choice is to use 2 bits per symbol—say codeword 00 for A, 01 for B, 10 for C,
and 11 for D—in which case 260 megabits are needed in total. Can there possibly be a better
encoding than this?

In search of inspiration, we take a closer look at our particular sequence and find that the
four symbols are not equally abundant.

Symbol Frequency
A 70 million
B 3 million
C 20 million
D 37 million

Is there some sort of variable-length encoding, in which just one bit is used for the frequently
occurring symbol A, possibly at the expense of needing three or more bits for less common
symbols?

A danger with having codewords of different lengths is that the resulting encoding may
not be uniquely decipherable. For instance, if the codewords are {0, 01, 11, 001}, the decoding
of strings like 001 is ambiguous. We will avoid this problem by insisting on the prefix-free
property: no codeword can be a prefix of another codeword.

Any prefix-free encoding can be represented by a full binary tree—that is, a binary tree in
which every node has either zero or two children—where the symbols are at the leaves, and
where each codeword is generated by a path from root to leaf, interpreting left as 0 and right
as 1 (Exercise 5.28). Figure 5.10 shows an example of such an encoding for the four symbols
A,B,C,D. Decoding is unique: a string of bits is decrypted by starting at the root, reading
the string from left to right to move downward, and, whenever a leaf is reached, outputting
the corresponding symbol and returning to the root. It is a simple scheme and pays off nicely

1For stereo sound, two channels would be needed, doubling the number of samples.

154 Algorithms

Figure 5.10 A prefix-free encoding. Frequencies are shown in square brackets.

Symbol Codeword
A 0
B 100
C 101
D 11

0

A [70]

1

[60]

C [20]B [3]

D [37]
[23]

for our toy example, where (under the codes of Figure 5.10) the total size of the binary string
drops to 213 megabits, a 17% improvement.

In general, how do we find the optimal coding tree, given the frequencies f1, f2, . . . , fn of
n symbols? To make the problem precise, we want a tree whose leaves each correspond to a
symbol and which minimizes the overall length of the encoding,

cost of tree =
n∑

i=1

fi · (depth of ith symbol in tree)

(the number of bits required for a symbol is exactly its depth in the tree).
There is another way to write this cost function that is very helpful. Although we are only

given frequencies for the leaves, we can define the frequency of any internal node to be the
sum of the frequencies of its descendant leaves; this is, after all, the number of times the
internal node is visited during encoding or decoding. During the encoding process, each time
we move down the tree, one bit gets output for every nonroot node through which we pass. So
the total cost—the total number of bits which are output—can also be expressed thus:

The cost of a tree is the sum of the frequencies of all leaves and internal nodes,
except the root.

The first formulation of the cost function tells us that the two symbols with the smallest
frequencies must be at the bottom of the optimal tree, as children of the lowest internal node
(this internal node has two children since the tree is full). Otherwise, swapping these two
symbols with whatever is lowest in the tree would improve the encoding.

This suggests that we start constructing the tree greedily: find the two symbols with the
smallest frequencies, say i and j, and make them children of a new node, which then has
frequency fi + fj. To keep the notation simple, let’s just assume these are f1 and f2. By the
second formulation of the cost function, any tree in which f1 and f2 are sibling-leaves has cost
f1 + f2 plus the cost for a tree with n− 1 leaves of frequencies (f1 + f2), f3, f4, . . . , fn:

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 155

f1 f2

f3f5 f4

f1 + f2

The latter problem is just a smaller version of the one we started with. So we pull f1 and f2

off the list of frequencies, insert (f1 + f2), and loop. The resulting algorithm can be described
in terms of priority queue operations (as defined on page 120) and takes O(n log n) time if a
binary heap (Section 4.5.2) is used.

procedure Huffman(f)
Input: An array f [1 · · ·n] of frequencies
Output: An encoding tree with n leaves

let H be a priority queue of integers, ordered by f
for i = 1 to n: insert(H, i)
for k = n+ 1 to 2n− 1:
i = deletemin(H), j = deletemin(H)
create a node numbered k with children i, j
f [k] = f [i] + f [j]
insert(H, k)

Returning to our toy example: can you tell if the tree of Figure 5.10 is optimal?

156 Algorithms

Entropy
The annual county horse race is bringing in three thoroughbreds who have never competed
against one another. Excited, you study their past 200 races and summarize these as prob-
ability distributions over four outcomes: first (“first place”), second, third, and other.

Outcome Aurora Whirlwind Phantasm
first 0.15 0.30 0.20
second 0.10 0.05 0.30
third 0.70 0.25 0.30
other 0.05 0.40 0.20

Which horse is the most predictable? One quantitative approach to this question is
to look at compressibility. Write down the history of each horse as a string of 200 values
(first, second, third, other). The total number of bits needed to encode these track-
record strings can then be computed using Huffman’s algorithm. This works out to 290 bits
for Aurora, 380 for Whirlwind, and 420 for Phantasm (check it!). Aurora has the shortest
encoding and is therefore in a strong sense the most predictable.

The inherent unpredictability, or randomness, of a probability distribution can be mea-
sured by the extent to which it is possible to compress data drawn from that distribution.

more compressible ≡ less random ≡ more predictable

Suppose there are n possible outcomes, with probabilities p1, p2, . . . , pn. If a sequence of m
values is drawn from the distribution, then the ith outcome will pop up roughly mpi times (if
m is large). For simplicity, assume these are exactly the observed frequencies, and moreover
that the pi’s are all powers of 2 (that is, of the form 1/2k). It can be seen by induction
(Exercise 5.19) that the number of bits needed to encode the sequence is

∑n
i=1mpi log(1/pi).

Thus the average number of bits needed to encode a single draw from the distribution is
n∑

i=1

pi log
1

pi
.

This is the entropy of the distribution, a measure of how much randomness it contains.

For example, a fair coin has two outcomes, each with probability 1/2. So its entropy is

1
2 log 2 + 1

2 log 2 = 1.

This is natural enough: the coin flip contains one bit of randomness. But what if the coin is
not fair, if it has a 3/4 chance of turning up heads? Then the entropy is

3
4 log 4

3 + 1
4 log 4 = 0.81.

A biased coin is more predictable than a fair coin, and thus has lower entropy. As the bias
becomes more pronounced, the entropy drops toward zero.

We explore these notions further in Exercise 5.18 and 5.19.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 157

5.3 Horn formulas
In order to display human-level intelligence, a computer must be able to perform at least some
modicum of logical reasoning. Horn formulas are a particular framework for doing this, for
expressing logical facts and deriving conclusions.

The most primitive object in a Horn formula is a Boolean variable, taking value either
true or false. For instance, variables x, y, and z might denote the following possibilities.

x ≡ the murder took place in the kitchen
y ≡ the butler is innocent
z ≡ the colonel was asleep at 8 pm

A literal is either a variable x or its negation x (“NOT x”). In Horn formulas, knowledge about
variables is represented by two kinds of clauses:

1. Implications, whose left-hand side is an AND of any number of positive literals and whose
right-hand side is a single positive literal. These express statements of the form “if the
conditions on the left hold, then the one on the right must also be true.” For instance,

(z ∧ w)⇒ u

might mean “if the colonel was asleep at 8 pm and the murder took place at 8 pm then
the colonel is innocent.” A degenerate type of implication is the singleton “⇒ x,” meaning
simply that x is true: “the murder definitely occurred in the kitchen.”

2. Pure negative clauses, consisting of an OR of any number of negative literals, as in

(u ∨ v ∨ y)

(“they can’t all be innocent”).

Given a set of clauses of these two types, the goal is to determine whether there is a consis-
tent explanation: an assignment of true/false values to the variables that satisfies all the
clauses. This is also called a satisfying assignment.

The two kinds of clauses pull us in different directions. The implications tell us to set
some of the variables to true, while the negative clauses encourage us to make them false.
Our strategy for solving a Horn formula is this: We start with all variables false. We then
proceed to set some of them to true, one by one, but very reluctantly, and only if we absolutely
have to because an implication would otherwise be violated. Once we are done with this phase
and all implications are satisfied, only then do we turn to the negative clauses and make sure
they are all satisfied.

In other words, our algorithm for Horn clauses is the following greedy scheme (stingy is
perhaps more descriptive):

Input: a Horn formula
Output: a satisfying assignment, if one exists

158 Algorithms

set all variables to false

while there is an implication that is not satisfied:
set the right-hand variable of the implication to true

if all pure negative clauses are satisfied: return the assignment
else: return ‘‘formula is not satisfiable’’

For instance, suppose the formula is

(w ∧ y ∧ z)⇒ x, (x ∧ z)⇒ w, x⇒ y, ⇒ x, (x ∧ y)⇒ w, (w ∨ x ∨ y), (z).

We start with everything false and then notice that x must be true on account of the sin-
gleton implication ⇒ x. Then we see that y must also be true, because of x ⇒ y. And so
on.

To see why the algorithm is correct, notice that if it returns an assignment, this assign-
ment satisfies both the implications and the negative clauses, and so it is indeed a satisfying
truth assignment of the input Horn formula. So we only have to convince ourselves that if
the algorithm finds no satisfying assignment, then there really is none. This is so because our
“stingy” rule maintains the following invariant:

If a certain set of variables is set to true, then they must be true in any satisfying
assignment.

Hence, if the truth assignment found after the while loop does not satisfy the negative clauses,
there can be no satisfying truth assignment.

Horn formulas lie at the heart of Prolog (“programming by logic”), a language in which you
program by specifying desired properties of the output, using simple logical expressions. The
workhorse of Prolog interpreters is our greedy satisfiability algorithm. Conveniently, it can
be implemented in time linear in the length of the formula; do you see how (Exercise 5.32)?

5.4 Set cover
The dots in Figure 5.11 represent a collection of towns. This county is in its early stages of
planning and is deciding where to put schools. There are only two constraints: each school
should be in a town, and no one should have to travel more than 30 miles to reach one of them.
What is the minimum number of schools needed?

This is a typical set cover problem. For each town x, let Sx be the set of towns within 30
miles of it. A school at x will essentially “cover” these other towns. The question is then, how
many sets Sx must be picked in order to cover all the towns in the county?

SET COVER

Input: A set of elements B; sets S1, . . . , Sm ⊆ B

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 159

Figure 5.11 (a) Eleven towns. (b) Towns that are within 30 miles of each other.

(a)

h

b

k

j

i

g

f
ea

c

d

(b)

h

b

k

j

i

g

f
ea

c

d

Output: A selection of the Si whose union is B.
Cost: Number of sets picked.

(In our example, the elements of B are the towns.) This problem lends itself immediately to a
greedy solution:

Repeat until all elements of B are covered:
Pick the set Si with the largest number of uncovered elements.

This is extremely natural and intuitive. Let’s see what it would do on our earlier example:
It would first place a school at town a, since this covers the largest number of other towns.
Thereafter, it would choose three more schools—c, j, and either f or g—for a total of four.
However, there exists a solution with just three schools, at b, e, and i. The greedy scheme is
not optimal!

But luckily, it isn’t too far from optimal.

Claim Suppose B contains n elements and that the optimal cover consists of k sets. Then the
greedy algorithm will use at most k lnn sets.2

Let nt be the number of elements still not covered after t iterations of the greedy algorithm
(so n0 = n). Since these remaining elements are covered by the optimal k sets, there must be
some set with at least nt/k of them. Therefore, the greedy strategy will ensure that

nt+1 ≤ nt −
nt

k
= nt

(
1− 1

k

)
,

which by repeated application implies nt ≤ n0(1 − 1/k)t. A more convenient bound can be
obtained from the useful inequality

1− x ≤ e−x for all x, with equality if and only if x = 0,
2ln means “natural logarithm,” that is, to the base e.

160 Algorithms

which is most easily proved by a picture:

x0

11− x

e−x

Thus
nt ≤ n0

(
1− 1

k

)t

< n0(e
−1/k)t = ne−t/k.

At t = k lnn, therefore, nt is strictly less than ne− lnn = 1, which means no elements remain to
be covered.

The ratio between the greedy algorithm’s solution and the optimal solution varies from
input to input but is always less than lnn. And there are certain inputs for which the ratio is
very close to lnn (Exercise 5.33). We call this maximum ratio the approximation factor of the
greedy algorithm. There seems to be a lot of room for improvement, but in fact such hopes are
unjustified: it turns out that under certain widely-held complexity assumptions (which will
be clearer when we reach Chapter 8), there is provably no polynomial-time algorithm with a
smaller approximation factor.

