
   



                                                                 

ART OF PROGRAMMING CONTEST 

                   C Programming Tutorials | Data Structures | Algorithms  

Compiled by 

Ahmed Shamsul Arefin 
Graduate Student,  

Institute of Information and Comunicaion Technology 
Bangladesh University of Engineering and Technology (BUET) 

BSc. in Computer Science and Engineering, CUET 
 
 

Reviewed By 
Steven Halim 

School of Computing, National University of Singapore 
Singapore. 

Dr. M. Lutfar Rahman 
Professor, Departent of Computer Science and Engineering 

University of Dhaka. 
 
 
 

Foreworded By 
Professor Miguel  A.  Revilla 

ACM-ICPC International Steering Committee Member and Problem Archivist 
University of Valladolid, 

 Spain. 
http://acmicpc-live-archive.uva.es 

http://online-judge.uva.es 

 

Gyankosh Prokashoni, Bangladesh 
 

ISBN 984-32-3382-4



 

 

 

 

 

DEDICATED TO 

 
Shahriar Manzoor  

Judge ACM/ICPC World Finals 2003-2006 
(Whose mails, posts and problems are invaluable to all programmers) 

 
And  

My loving parents and colleagues 
 
 

 

 



ACKNOWLEDGEMENTS 
I would like to thank following people for supporting me and helping me for the significant 
improvement of my humble works. Infact, this list is still incomplete.  
 

Professor Miguel A. Revilla University of Valladolid, Spain. 
Dr. M Kaykobad North South University, Bangladesh 
Dr. M. Zafar Iqbal Shahjalal University of Science and 

Technology, Bangladesh 
Dr. M. Lutfar Rahman University of Dhaka, Bangladesh 
Dr. Abu Taher Daffodil International University 
Howard Cheng University of Lethbridge, Canada 
Steven Halim National University of Singapore, 

Singapore 
Shahriar Manzoor South East University, Bangladesh 
Carlos Marcelino Casas Cuadrado  University of Valladolid, Spain 
Mahbub Murshed Suman Arizona State University, USA 
Salahuddin Mohammad Masum Daffodil International University 
Samiran Mahmud Dhaka University of  Engineering and 

Technology 
M H Rasel Chittagong University of  Engineering and 

Technology 
Sadiq M. Alam National University of Singapore, 

Singapore 
Mehedi Bakht Bangladesh University of  Engineering and 

Technology 
Ahsan Raja Chowdhury University of Dhaka 
Mohammad Rubaiyat Ferdous Jewel University of Toronto, Canada 
KM Hasan North South University 
Monirul Islam Sharif Georgia Institute of Technology,USA 
Gahangir Hossain Chittagong University of  Engineering and 

Technology 
S.M Saif Shams Shahjalal University of Science and 

Technology 
Shah Md. Shamsul Alam Daffodil International University 

 

Author’s Biography: Ahmed Shamsul Arefin is completing his Masters from  
Bangladesh University of Engineering & Technology (BUET) and has completed 
BSc. in Coputer Science and Eningeering from CUET. In Computer Science and 
Engineering . He participated in the 2001 ACM Regional Contest in Dhaka, and his 
team was ranked 10th. He became contest organizer at Valladolid online judge  by 
arranging “Rockford Programming Contest 2001” and local Contest at several 
universities. His Programming Contest Training Website “ACMSolver.org” has 
been linked with ACM UVa , USU and Polish Online Judge – Sphere. 

His research interests are Contests, Algorithms, Graph Theory and Web-based applications. His 
Contact E-mail : asarefin@yahoo.com Web: http://www.daffodilvarsity.edu.bd/acmsolver/asarefin/ 



 
 
 
 
 
   

 

Preface to 2nd Edition 
I am happy to be able to introduce the 2nd Edition of this book to the readers. The objective 
of this edition is not only to assist the contestants during the contest hours but also describing 
the core subjects of Computer Science such as C Programming, Data Structures and 
Algorithms. This edition is an improvement to the previous edition. Few more programming 
techniques like STL (Standard Template Library), manipulating strings and handling 
mathematical functions are introduced here.  
 
It is hoped that the new edition will be welcomed by all those for whom it is meant and this 
will become an essential book for Computer Science students. 

Preface to 1st Edition 

Why do programmers love Programming Contest? Because young computer programmers 
like to battle for fame, money, and they love algorithms. The first ACM-ICPC (International 
Collegiate Programming Contest) Asia Regional Contest Bangladesh was held at North South 
University in the year 1997. Except the year 2000, our country hosted this contest each year 
and our invaluable programmers have participated the world final every year from 1997. 

Our performance in ACM/ICPC is boosting up day by day. The attention and time we are 
spending on solving moderate and difficult problems is noticeable. BUET, University of 
Dhaka, NSU and AIUB has produced many programmers who fought for World Finals. 
Institutions looking for boosting the performance of their teams in the programming contests 
may consider them as prospective coaches/trainers. Some universities have recently adopted 
another strategy. They are offering 1-credit courses for students interested in improving their 
problem-solving and programming skills. 

I am very much grateful to our mentors, Dr. M Kaykobad who was honored with the “Best 
Coach” award in the World Finals in Honolulu. Under his dynamic presence our country 
teams became champion several times in the ACM/ICPC Asia Regional. Dr. M. Zafar Iqbal, 
Chief Judge of our ACM/ICPC Regional Contests. Dr. Abul L Haque, who first contacted 
Dr. C.J. Hwang (Asia Contests Director and Professor at Texas State University, San 
Marcos, USA) and wanted to have a n ACM/ICPC regional site at Dhaka back in 1997. Also 
a big thank should go to Mr. Shahriar Manzoor, our renown Problem Setter, Judging 
Director for ACM/ICPC Regional (Dhaka Site) and World Final Judge and Problem Setter. I 
would like to thank him personally because, he showed me the right way several times when I 
was setting problems for Valladolid Online Judge in “Rockford Programming Contest 2001” 
and while developing my Programming Contest Training Site “ACMSolver.org”. 



 
 
 
 
 
   

 

Thanks to Professor Miguel A. Revilla, University of Valladolid, Spain for linking my 
ACMSolver (http://www.acmsolver.org) site with his world famous Valladolid Online Judge 
(http://acm.uva.es/p) and making me ACM Valladolid Online Judge Algorithmic Team 
Member for helping them to add some problems at live archive. 

And also invaluable thanks to Steven Halim, a PhD Student of NUS, Singapore for the 
permission of using his website (http://www.comp.nus.edu.sg/~stevenha/) contents. A major 
part of this book is compiled from his renowned website. Of course, it is mentionable that his 
website is based upon USACO Training page located at (http://ace.delos.com/) 

I am grateful to Daffodil International University, especially to honorable Vice-Chancellor 
Professor Aminul Islam and Dean, Faculty of Science and Informaion Technology Dr. M. 
Lutfar Rahman and all my colleagues at Department of Computer Science and 
Engineering here, for providing me the golden opportunity of doing something on ACM 
Programming Contest and other researches.  

Furthermore, since this project is a collection of tutorials from several sources so all the 
authors of tutorials are acknowledged in the Reference section of this book. Tracking down 
the original authors of some of these tutorials is much difficult. I have tried to identify case 
by case and in each case asked permission. I apologize in advance if there are any oversights. 
If so, please let me know so that I can mention the name in future edition.  

Finally I would like to add a line at the end of this preface, for last few years while making 
and maintaining my site on ACM Programming Contest, I have got few experiences. I felt 
that there should be some guideline for beginners to enter into the world of programming. So, 
I started collecting tutorials and compiling them to my site. Furthermore, this is another 
attempt to make Programming Contest in our country, as I have tried to put all my collections 
in a printed form. Your suggestions will be cordially accepted. 

Best regards, 

Ahmed Shamsul Arefin. 



 
 
 
 
 
   

 

         
 

Foreword Note 
 
 
As the main resposible of the University of Valladolid Online Judge I has the feeling that this 
book is not only a recollection of tutorials as the author says in the preface, but also will be an 
essential part of the help sections of the UVa site, as it put together a lot of  scattered 
information of the Online Judge, that may help to many programmers around the world, 
mainly to the newcomers, what is very important for us. The author proves a special interest 
in guiding the reader, and his tips must be considered almost as orders, as they are a result of 
a great experience as solver of problems as well as a problemsetter. Of course, the book is 
much more that an Online Judge user manual and contains very important information 
missing in our web, as the very interesting clasification of a lot of problems by categories, 
that analyze in detail and with examples. I think it is a book all our users should be allowed to 
access to, as is a perfect complement to our Online Judge. 
 
 
 
 
Miguel A. Revilla 
ACM-ICPC International Steering Committee Member and Problem Archivist 
University of Valladolid, Spain. 
http://acmicpc-live-archive.uva.es 
http://online-judge.uva.es 



 
 
 
 
 
   

 

 
 

Review Note 
 

 
 
 
A Computer programming contest is a pleasurable event for the budding programmers, but 
only a few books are available as a training manual for programming competitions. 
 
This book is designed to serve as a textbook for an algorithm course focusing on 
programming as well as a programming course focusing on algorithms. The book is specially 
designed to train students to participate in competitions such as the ACM International 
Collegiate Programming Contest. 
 
The book covers several important topics related to the development of programming skills 
such as, fundamental concepts of contest, game plan for a contest, essential data structures for 
contest, Input/output techniques, brute force method, mathematics, sorting, searching, greedy 
algorithms, dynamic programming, graphs, computational geometry, Valladolid Online Judge 
problem category, selected ACM programming problems, common codes/routines for 
programming, Standard Template Library (STL), PC2 contest administration and team 
guide.The book also lists some important websites/books for ACM/ICPC Programmers. 
 
I believe that the book will be book will be of immense use for young programmers interested 
in taking part in programming competitions. 
 
 

 
Dr. M. Lutfar Rahman 
Professor, Department of Computer Science and Engineering (CSE) 
University of Dhaka. 
Bangladesh. 



 
 
 
 
 
   

 

 
 

N o t e s   f r o m   S t e v e n   H a l i m  
 

 
 
When I created my own website World of Seven few years back 
(http://www.comp.nus.edu.sg/~stevenha), my aim was to promote understanding of data 
structures and algorithms especially in the context of programming contest and to motivate 
more programmers to be more competitive by giving a lot of hints for many University of 
Valladolid (UVa) Online Judge problems. However, due to my busyness, I never managed to 
set aside a time to properly publicize the content of my website in a book format. Thus, I am 
glad that Ahmed compiled this book and he got my permission to do so. Hopefully, this book 
will be beneficial for the programmers in general, but especially to the Bangladeshi 
programmers where this book will be sold. 
 
 
 

 
Steven Halim 
National University of Singapore (NUS) 
Singapore. 
 
 
 



 
 
 
 
 
   

 

Contents 
 

 

Chapter 1 Fundamental Concepts 14 
Chapter 2 Game Plan For a Contest  19 
Chapter 3 Programming In C: a Tutorial 27 
Chapter 4 Essential Data Structures for Contest 72 
Chapter 5 Input/Output Techniques  81 
Chapter 6 Brute Force Method 85 
Chapter 7 Mathematics 91 
Chapter 8 Sorting 106 
Chapter 9 Searching 113 
Chapter 10 Greedy Algorithms 117 
Chapter 11 Dynamic Programming 121 
Chapter 12 Graphs 134 
Chapter 13 Computational Geometry 172 
Chapter 14 Valladolid OJ Problem Category 174 
Appendix A ACM Programming Problems 176 
Appendix B Common Codes/Routines For Programming 188 
Appendix C Standard Template Library (STL) 230 
Appendix D PC2 Contest Administration And Team Guide 235 
Appendix E Important Websites/Books for ACM 

Programmers 
242 

 



 
 
 
 
 
   

 

 
 

What is the ACM Programming Contest? 
 
 
 
The Association for Computing Machinery (ACM) sponsors a yearly programming contest, 
recently with the sponsorship of IBM. The contest is both well-known and highly regarded: 
last year 2400 teams competed from more than 100 nations competed at the regional levels. 
Sixty of these went on to the international finals. This contest is known as ACM 
International Collegiate Programming Contest (ICPC). 
 
The regional contest itself is typically held in November, with the finals in March. Teams of 
three students use C, C++, or Java to solve six to eight problems within five hours. One 
machine is provided to each team, leaving one or two team members free to work out an 
approach. Often, deciding which problems to attack first is the most important skill in the 
contest. The problems test the identification of underlying algorithms as much as 
programming savvy and speed.  
 
 



 
 
 
 
 
 

CHAPTER 1                                                              FUNDAMENTAL CONCEPTS 
   

 

14

CHAPTER 1    FUNDAMENTAL CONCEPTS 
Programming Contest is a delightful playground for the exploration of intelligence of 
programmers. To start solving problems in contests, first of all, you have to fix your aim. 
Some contestants want to increase the number of problems solved by them and the other 
contestants want to solve less problems but with more efficiency. Choose any of the two 
categories and then start. A contestant without any aim can never prosper in 24 hours 
online judge contests. So, think about your aim.[1] 

If you are a beginner, first try to find the easier problems.Try to solve them within short 
time. At first, you may need more and more time to solve even simple problems. But do 
not be pessimistic. It is for your lack of practice. Try to solve easier problems as they 
increase your programming ability. Many beginners spend a lot of time for coding the 
program in a particular language but to be a great programmer you should not spend 
more times for coding, rather you should spend more time for debugging and thinking 
about the algorithm for the particular problem. A good programmer spends 10% time for 
coding and 45% time for thinking and the rest of the time for debugging. So to decrease 
the time for coding you should practice to solve easier problems first. 

Do not try to use input file for input and even any output file for output when sending the 
program to online judges. All input and output parts should be done using standard input 
and outputs. If you are a C or C++ programmer try this, while coding and debugging for 
errors add the lines at the first line of the main procedure i.e.  

#include <stdio.h> 
main () 
{ 
freopen(“FILE_NAME_FOR_INPUT”,”r”,stdin); 
freopen(“FILE_NAME_FOR OUTPUT”,”w”,stdout); 
Rest of the codes… 
return 0;} 

But while sending to online judges remove the two lines with freopen to avoid restricted 
function errors. If you use the first freopen above, it will cause your program to take 
input from the file “FILE_NAME_FOR_INPUT”. Write down the inputs in the file to 
avoid entering input several times for debugging. It saves a lot of time. But as the 
function opens input file which can be a cause of hacking the websites of online judges 
they don’t allow using the function and if you use it they will give compilation error 
(Restricted Function). The second freopen is for generating the output of your program in 
a specified file named “FILE_NAME_FOR_OUTPUT” on the machine. It is very 
helpful when the output can’t be justified just viewing the output window (Especially for 
String Manipulation Problem where even a single space character can be a cause of 



 
 
 
 
 
 

CHAPTER 1                                                              FUNDAMENTAL CONCEPTS 
   

 

15

Wrong answer). To learn about the function more check Microsoft Developer Network 
(MSDN Collection) and C programming helps. 

Programming languages and dirty debugging 

Most of the time a beginner faces this problem of deciding which programming language 
to be used to solve the problems. So, sometimes he uses such a programming language 
which he doesn’t know deeply. That is why; he debugs for finding the faults for hour 
after hour and at last can understand that his problem is not in the algorithm, rather it is 
in the code written in that particular language. To avoid this, try to learn only one 
programming language very deeply and then to explore other flexible programming 
languages. The most commonly used languages are C, C++, PASCAL and JAVA. Java is 
the least used programming language among the other languages. Avoid dirty debugging. 

Avoid Compilation Errors 

The most common reply to the beginner from 24 hours online judge is COMPILATION 
ERROR (CE). The advices are, 

1) When you use a function check the help and see whether it is available in Standard 
Form of the language. For example, do not use strrev function of string.h header file of C 
and C++ as it is not ANSI C, C++ standard. You should make the function manually if 
you need it. Code manually or avoid those functions that are available in your particular 
compiler but not in Standard Form of the languages. 

2) Don’t use input and output file for your program. Take all the inputs for standard input 
and write all the outputs on standard output (normally on the console window). Check 
my previous topics. 

3) Do not use conio.h header file in C or C++ as it is not available in Standard C and 
C++. Usually don’t use any functions available in <conio.h> header file. It is the great 
cause of Compilation Error for the programmers that use Turbo C++ type compiler.  

4) built-in functions and packages are not allowed for using in online judge. 

5) Don’t mail your program i.e. don’t use yahoo, hotmail etc. for sending your program 
to judge as it is a complex method—write judge id, problems number etc. Rather use 
submit-system of the online judge for example, Submit page of Valladolid. Using the 
former will give you CE most of the time as they include there advertisements at the 
beginning and end of your program. So the judge can’t recognize the extra characters 
concatenated in your sent code and gives you CE. About 90% CE we ever got is for this 



 
 
 
 
 
 

CHAPTER 1                                                              FUNDAMENTAL CONCEPTS 
   

 

16

reason. The mail system also breaks your programs into several lines causing Wrong 
Answer or Other Errors though your program was correct indeed. 

There are many famous online judges that can judge your solution codes 24 hours. Some 
of them are: 

 Valladolid OJ (http://acm.uva.es/p)  
 Ural OJ  (http://acm.timus.ru) 
 Saratov OJ (http://acm.sgu.ru)  
 ZJU OJ (http://acm.zju.edu.cn) 
 Official ACM Live Archive (http://cii-judge.baylor.edu/) 
 Peking University Online Judge (http://acm.pku.edu.cn/JudgeOnline/) 
 Programming Challenges (http://www.programming-challenges.com) 

 

Forget Efficiency and start solving easier problems  

Sometimes, you may notice that many programmers solved many problems but they 
made very few submissions (they are geniuses!). At first, you may think that I should try 
to solve the problems as less try as possible. So, after solving a problem, you will not 
want to try it again with other algorithm (may be far far better than the previous 
algorithm you used to solve that problem) to update your rank in the rank lists. But my 
opinion is that if you think so you are in a wrong track. You should try other ways as in 
that and only that way you can know that which of the algorithms is better. Again in that 
way you will be able to know about various errors than can occur. If you don’t submit, 
you can’t know it. Perhaps a problem that you solved may be solved with less time in 
other way. So, my opinion is to try all the ways you know. In a word, if you are a 
beginner forget about efficiency. 

Find the easier problems.Those problems are called ADHOC problems. You can find the 
list of those problems available in 24 OJ in S. Halim’s, acmbeginner’s, acmsolver’s 
websites. Try to solve these problems and in that way you can increase your 
programming capability.  

Learn algorithms  

Most of the problems of  Online Judges are dependent on various algorithms. An 
algorithm is a definite way to solve a particular problem. If you are now skilled in coding 
and solving easier problems, read the books of algorithms next. Of course, you should 
have a very good mathematical skill to understand various algorithms. Otherwise, there 
is no other way but just to skip the topics of the books. If you have skill in math, read the 
algorithms one by one, try to understand. Aft er understanding the algorithms, try to 
write it in the programming language you have learnt (This is because, most of the 



 
 
 
 
 
 

CHAPTER 1                                                              FUNDAMENTAL CONCEPTS 
   

 

17

algorithms are described in Pseudocode). If you can write it without any errors, try to 
find the problems related to the algorithm, try to solve them. There are many famous 
books of algorithms. Try to make modified algorithm from the given algorithms in the 
book to solve the problems. 

Use simple algorithms, that are guaranteed to solve the problem in question, even if they 
are not the optimum or the most elegant solution. Use them even if they are the most 
stupid solution, provided they work and they are not exponential. You are not competing 
for algorithm elegance or efficiency. You just need a correct algorithm, and you need it 
now. The simplest the algorithm, the more the chances are that you will code it correctly 
with your first shot at it. 

This is the most important tip to follow in a programming contest. You don’t have the 
time to design complex algorithms once you have an algorithm that will do your job. 
Judging on the size of your input you can implement the stupidest of algorithms and have 
a working solution in no time. Don’t underestimate today’s CPUs. A for loop of 10 
million repetitions will execute in no time. And even if it takes 2 or 3 seconds you 
needn’t bother. You just want a program that will finish in a couple of seconds. Usually 
the timeout for solutions is set to 30 seconds or more. Experience shows that if your 
algorithm takes more than 10 seconds to finish then it is probably exponential and you 
should do something better. 

Obviously this tip should not be followed when writing critical code that needs to be as 
optimized as possible. However in my few years of experience we have only come to 
meet such critical code in device drivers. We are talking about routines that will execute 
thousands of time per second. In such a case every instruction counts. Otherwise it is not 
worth the while spending 5 hours for a 50% improvement on a routine that takes 10 
milliseconds to complete and is called whenever the user presses a button. Nobody will 
ever notice the difference. Only you will know. 

Simple Coding  

1.  Avoid the usage of the ++ or -- operators inside expressions or function calls. Always 
use them in a separate instruction. If you do this there is no chance that you introduce an 
error due to post-increment or pre-increment. Remember it makes no difference to the 
output code produced. 

2.   Avoid expressions of the form *p++. 

3.   Avoid pointer arithmetic. Instead of (p+5) use p[5]. 

4.   Never code like : 



 
 
 
 
 
 

CHAPTER 1                                                              FUNDAMENTAL CONCEPTS 
   

 

18

return (x*y)+Func(t)/(1-s); 

but like : 

temp = func(t); 
RetVal = (x*y) + temp/(1-s); 
return RetVal; 

This way you can check with your debugger what was the return value of Func(t) and 
what will be the return code of your function. 

5.   Avoid using the = operator. Instead of : 

return (((x*8-111)%7)>5) ? y : 8-x; 

Rather use :         

Temp = ((x*8-111)%7);     if (5<Temp) return y; else  return 8-x;  

If you follow those rules then you eliminate all chances for trivial errors, and if you need 
to debug the code it will be much easier to do so. 

·     NAMING 1 : Don’t use small and similar names for your variables. If you have three 
pointer variables don’t name them p1, p2 and p3. Use descriptive names. Remember that 
your task is to write code that when you read it it says what it does. Using names like 
Index, RightMost, and Retries is much better than i, rm and rt. The time you waste by the 
extra typing is nothing compared to the gain of having a code that speaks for itself. 

·     NAMING 2 : Use hungarian naming, but to a certain extent. Even if you oppose it 
(which, whether you like it or not, is a sign of immaturity) it is of immense help. 

·     NAMING 3 : Don’t use names like {i,j,k} for loop control variables. Use {I,K,M}. It 
is very easy to mistake a j for an i when you read code or “copy, paste & change” code, 
but there is no chance that you mistake I for K or M.  

Last words  
 
Practice makes a man perfect. So, try to solve more and more problems. A genius can’t 
be built in a day. It is you who may be one of the first ten of the rank lists after someday. 
So, get a pc, install a programming language and start solving problem at once.[1]  



 
 
 
 
 
 

CHAPTER 2                                                              GAME PLAN FOR A CONTEST 

 

19

CHAPTER 2   GAME PLAN FOR A CONTEST 
During a real time contest, teams consisting of three students and one computer are to 
solve as many of the given problems as possible within 5 hours. The team with the most 
problems solved wins, where ``solved'' means producing the right outputs for a set of 
(secret) test inputs. Though the individual skills of the team members are important, in 
order to be a top team it is necessary to make use of synergy within the team.[2] 

However, to make full use of a strategy, it is also important that your individual skills are 
as honed as possible. You do not have to be a genius as practicing can take you quite far. 
In our philosophy, there are three factors crucial for being a good programming team:  

 Knowledge of standard algorithms and the ability to find an appropriate algorithm 
for every problem in the set;  

 Ability to code an algorithm into a working program; and  
 Having a strategy of cooperation with your teammates.  

What is an Algorithm? 

"A good algorithm is like a sharp knife - it does exactly what it is supposed to do with a minimum amount of 
applied effort. Using the wrong algorithm to solve a problem is trying to cut a steak with a screwdriver: you may 
eventually get a digestible result, but you will expend considerable more effort than necessary, and the result is 

unlikely to be aesthetically pleasing."  

Algorithm is a step-by-step sequence of instructions for the computer to follow. 

To be able to do something competitive in programming contests, you need to know a lot 
of well-known algorithms and ability to identify which algorithms is suitable for a 
particular problem (if the problem is straightforward), or which combinations or variants 
of algorithms (if the problem is a bit more complex). 

A good and correct algorithm according to the judges in programming contests: 

1. Must terminate  
   [otherwise: Time Limit/Memory Limit/Output Limit Exceeded will be given] 
2. When it terminate, it must produce a correct output 
   [otherwise: the famous Wrong Answer reply will be given] 
3. It should be as efficient as possible 
   [otherwise: Time Limit Exceeded will be given]  



 
 
 
 
 
 

CHAPTER 2                                                              GAME PLAN FOR A CONTEST 

 

20

Ability to quickly identify problem types 

In all programming contests, there are only three types of problems: 
1. I haven't see this one before 

2. I have seen this type before, but haven't or can't solve it 
3. I have solve this type before 

In programming contests, you will be dealing with a set of problems, not only one 
problem. The ability to quickly identify problems into the above mentioned contest-
classifications (haven't see, have seen, have solved) will be one of key factor to do well in 
programming contests. 

Mathematics Prime Number 
 Big Integer 
 Permutation 
 Number Theory 
 Factorial 
 Fibonacci 
 Sequences 
 Modulus 
Dynmic Programming Longest Common Subsequence 
 Longest Increasing Subsequence 
 Edit Distance 
 0/1 Knapsack 
 Coin Change 
 Matrix Chain Multiplication 
 Max Interval Sum 
Graph Traversal 
 Flood Fill 
 Floyed Warshal 
 MST 
 Max Bipertite Matching 
 Network Flow 
 Aritculation Point 
Sorting Bubble Sort 
 Quick Sort 
 Merge Sort (DAndC) 
 Selection Sort 
 Radix Sort 
 Bucket Sort 
Searching Complete Search, Brute Force 
 Binary Search (DAndC) 
 BST 
Simulation Josephus 
String Processing String Matching 
 Pattern Matching 
Computational Geometry Convex Hull 
AdHoc Trivial Problems 



 
 
 
 
 
 

CHAPTER 2                                                              GAME PLAN FOR A CONTEST 

 

21

Sometimes, the algorithm may be 'nested' inside a loop of another algorithm. Such as 
binary search inside a DP algorithm, making the problem type identification not so trivial. 

If you want to be able to compete well in programming contests, you must be able to 
know all that we listed above, with some precautions to ad-hoc problems. 

'Ad Hoc' problems are those whose algorithms do not fall into standard categories with 
well-studied solutions. Each Ad Hoc problem is different... No specific or general 
techniques exist to solve them. This makes the problems the 'fun' ones (and sometimes 
frustrating), since each one presents a new challenge. 

The solutions might require a novel data structure or an unusual set of loops or 
conditionals. Sometimes they require special combinations that are rare or at least rarely 
encountered. It usually requires careful problem description reading and usually yield to 
an attack that revolves around carefully sequencing the instructions given in the problem. 
Ad Hoc problems can still require reasonable optimizations and at least a degree of 
analysis that enables one to avoid loops nested five deep, for example.  

Ability to analyze your algorithm 

You have identified your problem. You think you know how to solve it. The question that 
you must ask now is simple: Given the maximum input bound (usually given in problem 
description), can my algorithm, with the complexity that I can compute, pass the time 
limit given in the programming contest. 

Usually, there are more than one way to solve a problem. However, some of them may be 
incorrect and some of them is not fast enough. However, the rule of thumb is: 
Brainstorm many possible algorithms - then pick the stupidest that works! 

Things to learn in algorithm 

1. Proof of algorithm correctness (especially for Greedy algorithms) 
2. Time/Space complexity analysis for non recursive algorithms. 
3. For recursive algorithms, the knowledge of computing recurrence relations and analyze 
them: iterative method, substitution method, recursion tree method and finally, Master 
Theorem 
4. Analysis of randomized algorithm which involves probabilistic knowledge, e.g: Random 
variable, Expectation, etc.  
5. Amortized analysis.  
6. Output-sensitive analysis, to analyze algorithm which depends on output size, example: 
O(n log k) LIS algorithm, which depends on k, which is output size not input size. 



 
 
 
 
 
 

CHAPTER 2                                                              GAME PLAN FOR A CONTEST 

 

22

Table 1: Time comparison of different order of growth 
We assume our computer can compute 1000 elements in 1 seconds (1000 ms) 

Order of Growth n Time (ms) Comment 

O(1) 1000 1 Excellent, almost impossible for most 
cases 

O(log n) 1000 9.96 Very good, example: Binary Search 
O(n) 1000 1000 Normal, Linear time algorithm 

O(n log n) 1000 9960 Average, this is usually found in 
sorting algorithm such as Quick sort 

O(n^2) 1000 1000000 Slow 

O(n^3) 1000 10^9 Slow, btw, All Pairs Shortest Paths 
algorithm: Floyd Warshall, is O(N^3) 

O(2^n) 1000 2^1000 
Poor, exponential growth... try to 
avoid this. Use Dynamic 
Programming if you can. 

O(n!) 1000 uncountable Typical NP-Complete problems. 

Table 2: Limit of maximum input size under 60 seconds time limit (with 
assumptions) 

Order of Growth Time (ms) Max Possible n Comment 
O(1) 60.000 ms Virtually infinite Best 
O(log n) 60.000 ms 6^18.000 A very very large number 
O(n) 60.000 ms 60.000 Still a very big number 

O(n log n) 60.000 ms ~ 5.000 Moderate, average real life 
size 

O(n^2) 60.000 ms 244 small 
O(n^3) 60.000 ms 39 very small 
O(2^n)  60.000 ms 16 avoid if you can 
O(n!)  60.000 ms 8 extremely too small. 

It may be useful to memorize the following ordering for quickly determine which 
algorithm perform better asymptotically: constant < log n < n < n log n < n^2 < n^3 < 
2^n < n! 

Some rules of thumb 
 
1. Biggest built in data structure "long long" is 2^63-1: 9*10^18 (up to 18 digits) 
2. If you have k nested loops running about n iterations each, the program has O(n*k) 

complexity 
3. If your program is recursive with b recursive calls per level and has l levels, the 

program O(b*l) complexity 
4. Bear in mind that there are n! permutations and 2^n subsets or combinations of n 

elements when dealing with those kinds of algorithms 


