

APPENDIX A ACM PROGRAMMING PROBLEMS

183

The Input

The input consists of a sequence of integer pairs n and p with each integer on a line by

itself. For all such pairs , and there exists an integer k,

such that .

The Output

For each integer pair n and p the value should be printed, i.e., the number k such that

.

Sample Input

2
16
3
27
7
4357186184021382204544

Sample Output

4
3
1234

 Roman Roulette

The historian Flavius Josephus relates how, in the Romano-Jewish conflict of 67 A.D., the
Romans took the town of Jotapata which he was commanding. Escaping, Jospehus found
himself trapped in a cave with 40 companions. The Romans discovered his whereabouts and
invited him to surrender, but his companions refused to allow him to do so. He therefore
suggested that they kill each other, one by one, the order to be decided by lot. Tradition has it
that the means for effecting the lot was to stand in a circle, and, beginning at some point,
count round, every third person being killed in turn. The sole survivor of this process was
Josephus, who then surrendered to the Romans. Which begs the question: had Josephus
previously practised quietly with 41 stones in a dark corner, or had he calculated
mathematically that he should adopt the 31st position in order to survive?

APPENDIX A ACM PROGRAMMING PROBLEMS

184

Having read an account of this gruesome event you become obsessed with the fear that you
will find yourself in a similar situation at some time in the future. In order to prepare yourself
for such an eventuality you decide to write a program to run on your hand-held PC which will
determine the position that the counting process should start in order to ensure that you will
be the sole survivor.

In particular, your program should be able to handle the following variation of the processes
described by Josephus. n > 0 people are initially arranged in a circle, facing inwards, and
numbered from 1 to n. The numbering from 1 to n proceeds consecutively in a clockwise
direction. Your allocated number is 1. Starting with person number i, counting starts in a
clockwise direction, until we get to person number k (k > 0), who is promptly killed. We then
proceed to count a further k people in a clockwise direction, starting with the person
immediately to the left of the victim. The person number k so selected has the job of burying
the victim, and then returning to the position in the circle that the victim had previously
occupied. Counting then proceeeds from the person to his immediate left, with the kth person
being killed, and so on, until only one person remains.

For example, when n = 5, and k = 2, and i = 1, the order of execution is 2, 5, 3, and 1. The
survivor is 4.

Input and Output

Your program must read input lines containing values for n and k (in that order), and for each
input line output the number of the person with which the counting should begin in order to
ensure that you are the sole survivor. For example, in the above case the safe starting position
is 3. Input will be terminated by a line containing values of 0 for n and k.

Your program may assume a maximum of 100 people taking part in this event.

Sample Input

1 1
1 5
0 0

Sample Output

1
1

APPENDIX A ACM PROGRAMMING PROBLEMS

185

Joseph's Cousin

The Problem

The Joseph’s problem is notoriously known. For those who are not familiar with the
problem, among n people numbered 1,2…n, standing in circle every mth is going to be
executed and only the life of the last remaining person will be saved. Joseph was smart
enough to choose the position of the last remaining person, thus saving his life to give the
message about the incident.

Although many good programmers have been saved since Joseph spread out this
information, Joseph’s Cousin introduced a new variant of the malignant game. This
insane character is known for its barbarian ideas and wishes to clean up the world from
silly programmers. We had to infiltrate some the agents of the ACM in order to know the
process in this new mortal game. In order to save yourself from this evil practice, you
must develop a tool capable of predicting which person will be saved.

The Destructive Process

 The persons are eliminated in a very peculiar order; m is a dynamical variable, which
each time takes a different value corresponding to the prime numbers’ succession
(2,3,5,7…). So in order to kill the ith person, Joseph’s cousin counts up to the ith prime.

The Input

 It consists of separate lines containing n [1..3501], and finishes with a 0.

The Output

 The output will consist in separate lines containing the position of the person which life
will be saved.

Sample Input

6
0

Sample Output

4

APPENDIX A ACM PROGRAMMING PROBLEMS

186

 Integer Inquiry

One of the first users of BIT's new supercomputer was Chip Diller. He extended his
exploration of powers of 3 to go from 0 to 333 and he explored taking various sums of those
numbers.

``This supercomputer is great,'' remarked Chip. ``I only wish Timothy were here to see these
results.'' (Chip moved to a new apartment, once one became available on the third floor of the
Lemon Sky apartments on Third Street.)

Input

The input will consist of at most 100 lines of text, each of which contains a single
VeryLongInteger. Each VeryLongInteger will be 100 or fewer characters in length, and will
only contain digits (no VeryLongInteger will be negative).

The final input line will contain a single zero on a line by itself.

Output

Your program should output the sum of the VeryLongIntegers given in the input.

Sample Input

123456789012345678901234567890
123456789012345678901234567890
123456789012345678901234567890
0

Sample Output

370370367037037036703703703670

APPENDIX A ACM PROGRAMMING PROBLEMS

187

 The Decoder

Write a complete program that will correctly decode a set of characters into a valid message.
Your program should read a given file of a simple coded set of characters and print the exact
message that the characters contain. The code key for this simple coding is a one for one
character substitution based upon a single arithmetic manipulation of the printable portion of
the ASCII character set.

Input and Output
For example: with the input file that contains:

1JKJ'pz'{ol'{yhklthyr'vm'{ol'Jvu{yvs'Kh{h'Jvywvyh{pvu5
1PIT'pz'h'{yhklthyr'vm'{ol'Pu{lyuh{pvuhs'I|zpulzz'Thjopul'Jvywvyh{pvu5
1KLJ'pz'{ol'{yhklthyr'vm'{ol'Kpnp{hs'Lx|pwtlu{'Jvywvyh{pvu5

your program should print the message:

*CDC is the trademark of the Control Data Corporation.
*IBM is a trademark of the International Business Machine Corporation.
*DEC is the trademark of the Digital Equipment Corporation.

Your program should accept all sets of characters that use the same encoding scheme and
should print the actual message of each set of characters.

Sample Input
1JKJ'pz'{ol'{yhklthyr'vm'{ol'Jvu{yvs'Kh{h'Jvywvyh{pvu5
1PIT'pz'h'{yhklthyr'vm'{ol'Pu{lyuh{pvuhs'I|zpulzz'Thjopul'Jvywvyh{pvu5
1KLJ'pz'{ol'{yhklthyr'vm'{ol'Kpnp{hs'Lx|pwtlu{'Jvywvyh{pvu5

Sample Output
*CDC is the trademark of the Control Data Corporation.
*IBM is a trademark of the International Business Machine Corporation.
*DEC is the trademark of the Digital Equipment Corporation.

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

188

APPENDIX B
COMMON CODES/ROUTINES FOR PROGRAMMING

This part of this book contains some COMMON
codes/routines/pseudocodes for programmers that one can EASILY use
during the contest hours.[10]

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

189

Finding GCD,LCM and Prime Factor

#include<iostream>
#include<vector>
#include<fstream>
using namespace std;

int gcd(int a, int b)
{
int r=1;
if(a>b)
 {
 while (r!=0)
 {
 r=a%b;
 a=b;
 b=r;
 }
return a;
}
else if (b>a)
 {
 while (r!=0)
 {
 r=b%a;
 b=a;
 a=r;
 }
return b;
}
else if (a==b)
 return a;
}

int lcm(int a, int b)
{
return a*b/gcd(a,b);
}

bool isprime(int a)
{
if(a==2) return true;
else
{
 for(int i=2;i<a/2+1;++i)
 if(a%i==0) return false;
 if(i==a/2) return true;}
} }

vector<int> primefactors(int a)
{
 vector<int> primefactors;
 for(int i=1;i<=a;++i)
 if(a%i==0&&isprime(i))
 {
 primefactors.push_back(i);
 a=a/i;i=1;
 }
 return primefactors;
}

int main()
{
int a=5,b=2500;
out<<"GCD = "<<gcd(a,b)<<endl;
out<<"LCM = "<<lcm(a,b)<<endl;
if(!isprime(b)) out<<"not
prime"<<endl;
vector <int> p =
primefactors(b);
for(int i=0;i<p.size();++i)
out<<p[i]<<endl;
return 0;
}

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

190

Recursively find the GCD by Euclid’s Algorithm

//****** GCD using recursive way **********************/
#include<stdio.h>
unsigned int Euclid_g_c_d(unsigned int a, unsigned int b){
if(b==0)
 return a;
 else
 return Euclid_g_c_d(b,a%b);
}
int main(){
 unsigned int a,b,gcd;
 while(scanf("%d%d",&a,&b)==2){
 gcd=Euclid_g_c_d(a,b);
 printf("%d",gcd);
 }
 return 0;
}

The another application of GCD is Extended Euclid’s Algorithm..We can solve the
formula d = ax + by => gcd(a,b) = ax + by. This algorithm take the
inputs a and b..and out put the d(gcd of a,b) and the value of the root x and y.

//****** Extended Euclid’s Algorithm *****************//
#include<stdio.h>
unsigned long d,x,y;
void Extended_Euclid(unsigned long a, unsigned long b){
 unsigned long x1;
 if(b>a){
 x1=a; //if b>a so I used this if condition
 a=b; // result is ok but x and y swaped
 b=x1;
 }
 if(b==0){
 d=a;
 x=1;
 y=0;
 return;
 }
 Extended_Euclid(b,a%b);
 d = d;
 x1 = x-(a/b) * y;
 x = y;
 y = x1;
}
int main(){
 unsigned long a,b; // d = gcd(a,b) = ax+by
 while(scanf("%lu %lu", &a, &b)==2){
 Extended_Euclid(a,b);
 printf("%lu %lu %lu\n",d,x,y);}return 0;}

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

191

GCD of N numbers:

This program takes a number that is for how many numbers you want to find the GCD
and show the GCD of them. This takes input until end of file.

//******** GCD for n numbers ******************//
#include<stdio.h>
int main(){
 long gcd,a,b,n,i;
 while(scanf("%ld",&n)==1){
 scanf("%ld%ld",&a,&b);
 i=2;
 while(i<n){
 gcd=g_c_d(a,b);
 a=gcd;

i++;
 scanf("%ld",&b);
 }
 gcd=g_c_d(a,b);
 printf("%ld\n",gcd);
 }
 return 0;
}

LCM (Lowest Common Multiple)

It is also a important topic in programming. Suppose different clocks are set in 12 point,
and each and every clock has their own time to complete the cycle. When every clock
again set in the 12 point.? This type of problem can be solved by LCM. LCM was
implemented by the help of GCD.

LCM (m, n) = [m / GCD(m, n)] * n;
Or, D1=m / GCD(m, n);
 D2=n / GCD(m, n);
 LCM(m, n) = D1 * D2 * GCD(m, n);

Here is the code of some int numbers LCM.

long GCD(long a, long b){
 if(b==0)
 return a;
 else
 return GCD(b,a%b);}
long LCM(long a,long b){

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

192

 return (a/GCD(a,b)*b);
}
int main(){
 long a,b;
 int n,i;
 while(scanf("%d",&n)==1){
 if(n==0) break;
 scanf("%ld",&a);
 for(i=1;i<n;i++){
 scanf("%ld",&b);
 a=LCM(a,b);
 }
 printf("%ld\n",a);
 }
 return 0;}

Factorials

n!= n * (n-1) * (n-2) * (n-3)………upto 1.
5!= 5 * (5-1) * (5-2) * (5-3) * 2 * 1 = 120.
This is a recursion process.

//*** Factorial by recurtion *************//
#include<stdio.h>
long fac(long x){
 if(x==0)
 return 1;
 return x * fac(x-1);
}
/**/
int main(){
 long n,res;
 while(scanf("%ld",& n)==1){
 res=fac(n);
 printf("%ld\n",res);
 }
 return 0;}

This is very easy, but one thing we have to know that factorials increases multiply. The
12th factorial is 479001600 which is very big so can you imagine the factorial of
1000!….? The above program can compute upto 12th factorials so for less then 12th we
can use it. But for time consideration in ACM we always try to avoids the recursion
process.

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

193

Iterative Factorial

//********* Factorial by normal multiplication *********//
#include<stdio.h>
long fac(long x){
 long i,res=1;
 for(i=1;i<=x;i++)
 res*=i;
 return res;
}
int main(){
 long n,res;
 while(scanf("%ld",&n)==1){
 res=fac(n);
 printf("%ld\n",res);
 }
 return 0;
}

So, how can we compute the factorial of big numbers? Here is a code that can show the
factorials up to 1000. And this a ACM problem (623-500!). This code is very efficient
too!. We pre-calculate all the 1000th factorials in a two dimensional array. In the main
function just takes input and then just print.

Factorial of Big Number!

#include<stdio.h>
#include<string.h>
char f[10000];
char factorial[1010][10000];
void multiply(int k){
 int cin,sum,i;
 int len = strlen(f);
 cin=0;
 i=0;
 while(i<len){
 sum=cin+(f[i] - '0') * k;
 f[i] = (sum % 10) + '0';
 i++;
 cin = sum/10;
 }
 while(cin>0){
 f[i++] = (cin%10) + '0';
 cin/=10;
 }
 f[i]='\0';
 for(int j=0;j<i;j++)
 factorial[k][j]=f[j];
 factorial[k][i]='\0';}

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

194

void fac(){
 int k;
 strcpy(f,"1");
 for(k=2;k<=1000;k++)
 multiply(k);
}
void print(int n){
 int i;
 int len = strlen(factorial[n]);
 printf("%d!\n",n);
 for(i=len-1;i>=0;i--){
 printf("%c",factorial[n][i]);
 }
 printf("\n");
}
int main(){
 int n;
 factorial[0][0]='1';
 factorial[1][0]='1';
 fac();
 while(scanf("%d",&n)==1){
 print(n);
 }
 return 0;
}

Factorial Frequencies

Now how many digits in the factorial of N numbers..? Yes we can count them by the
above process. But we can do it simply!

//********* How many digits in N factorials *******************//
#include<stdio.h>
#include<math.h>
/***/
double count_digit(long a){
 double sum;
 long i;
 if(a==0) return 1;
 else{
 sum=0;
 for(i=1;i<=a;i++){
 sum+=log10(i);
 }
 return floor(sum)+1;
 }
}
/***/
int main(){
 double sum;
 long n;

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

195

 while(scanf("%ld",&n)==1){
 sum=count_digit(n);
 printf("%.0lf\n",sum);
 }
 return 0;
}

How many trailing zeros in Factorials ?

We know that factorials of any number has so many zeros (0’s) at last…example 17! =
355687428096000. It has 3 last zero digits. So we now see how many trailing zeros have
in N factorials.

//*************** How many trailing zeros in N!
**********/*******//
#include<stdio.h>
long zero(long number,long factor){
 long total,deno;
 if(number==5) return 1;
 total=0;
 deno=factor;
 while(deno<number){
 total+=number/deno;
 deno*=factor;
 }
 return total;
}
/***/
int main(){
 long N,c2,c1;
 while(scanf("%ld",&N)==1){
 c1=zero(N,2);
 c2=zero(N,5);
 if(c1<c2) printf("%ld\n",c1);
 else printf("%ld\n",c2);
 }
 return 0;
}

Big Mod

We are not always interested in the full answers, however. Sometimes the remainder
suffices for our purposes. In that case we use Modular Arithmetic. The key to efficient
modular arithmetic is understanding how the basic operation of addition, subtraction, and
multiplication work over a given modulus.

 Addition:- (x + y)mod n…..? = ((x mod n) + (y mod n)) mod n.
 Subtraction:- (x-y) mod n....? = ((x mod n) - (y mod n)) mod n.

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

196

We can convert a negative number mod n to positive number by adding a multiple of n to
it.

 Multiplication:- xy mod n…? = (x mod n)(y mod n) mod n.

What is xy mod n…? Exponentiation is just repeated multiplication, (x mod n)y mod n.
So if the x and y are very big equal to 32 bit. Then we can also compute it without
overflow.

/* Big mod */
#include<stdio.h>
long square(long s){
 return s*s;
}
long bigmod(long b, long p, long m){
 if (p == 0)
 return 1;
 else if (p%2 == 0)
 return square(bigmod (b,p/2,m)) % m; // square(x) = x * x
 else
 return ((b % m) * bigmod(b,p-1,m)) % m;
}
int main(){
 long b,p,m,sum;
 while(scanf("%ld%ld%ld",& b,& p,& m)==3){
 sum = bigmod(b, p, m);
 printf("%ld\n", sum);
 }
 return 0;}

Number Conversions - Integer Binary

Convert an integer number into
binary number

int inttobin(unsigned int a,int
*bin)
{
 int one=0;
 unsigned int c=1;
 int i ;
 for(i=31;i>=0;i--)
 {
 one = one + (a&c);
 bin[i] = (a&c)?1:0;
 c<<=1;
 }
 return one; }

Convert a binary number into
binary number

unsigned int creatnum(int *num)
{
 int i;
 unsigned int a=0;
 for(i=0;i<32;i++)
 { a= a|num[i];
 if(i!=31)

a <<= 1;
 }
 return a;
}

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

197

Integer hex Integer

char hex[100];
int num = 4095;
sprintf(hex,”%X”,num);// convert the num in upper case hex decimal in hex
sprintf(hex,”%x”,num);// convert the num in lower case hex decimal in hex
sscanf(hex,”%x”,&num);// convert the hex number hex in integer num

Integer to any base

Following code help you to convert any integer number on any base from 2 to 36.

#include<string.h>
#include<stdio.h>
#define MAXDGT 200 /* maximum number of digit */

/* *** */
/* A general swap function that swap two object. */
/* Input : Two object. */
/* Return : None */
/* *** */
template <class T>

void swap(T &x, T &y)
{ T tmp=x; x=y; y=tmp; };

/*** */
/* A general string reverse function that reverse the */
/* passed string and store the string int to the parameter. */
/* Input : A string */
/* Return : None */
/*** */
void revstr(char *str)
{ int i=0,l=strlen(str);
 while(i<l)
 swap(str[i++],str[--l]);
}

/*** */
/* A general base conversion function */
/* Input : A number n and a base b */
/* Return : A character array which contain the number n in base b */
/* *** */
char *itob(long int n,int b=10)
{ char num[MAXDGT];
 int j,sign;
 register int i=0;

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

198

 if((sign=n) <0)
 n= -n;
do { j=n%b;
 num[i++]=(j<10) ? (j+'0'): ('A'+j-10);
 }while((n/=b)!=0);

 if(sign < 0) num[i++]='-';

 num[i]='\0';
 revstr(num);
 return num;
}

/* Sample main */
main(void)
{ printf(itob(71],36)); }

Decimal To Roman

Roman number is very useful number system. Often we need to convert a decimal
number into Roman number. In Roman number the following symbol are used.

i, v, x, l, c, m for 1, 5, 10, 50, 100 and 500 respectively.

#include<stdio.h>

/* ********************************** */
/* Convert number 1 to 10 */
/* Input : A integer number */
/* Return : None */
/* ********************************** */

void unit(int n)
{ switch(n){
 case 3 : printf("i");
 case 2 : printf("i");
 case 1 : printf("i"); break;
 case 4 : printf("i");
 case 5 : printf("v"); break;
 case 6 : printf("vi"); break;
 case 7 : printf("vii"); break;
 case 8 : printf("viii"); break;
 case 9 : printf("ix"); break;
}
}

/* ********************************** */
/* Convert number 10 to 100 */

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

199

/* Input : A integer number */
/* ********************************** */
void ten(int n)

{ switch(n){
 case 3 : printf("x");
 case 2 : printf("x");
 case 1 : printf("x"); break;
 case 4 : printf("x");
 case 5 : printf("l"); break;
 case 6 : printf("lx"); break;
 case 7 : printf("lxx"); break;
 case 8 : printf("lxxx"); break;
 case 9 : printf("xc"); break;
 }
}

/* ********************************** */
/* Convert number 100 to 500 */
/* Input : A integer number */
/* ********************************** */

void hnd(int n)
{ switch(n){
 case 3 : printf("c");
 case 2 : printf("c");
 case 1 : printf("c"); break;
 case 4 : printf("c");
 case 5 : printf("M"); break;
 }
}

/* *** */
/* Convert an integer number into roman system */
/* Input : A integer number */
/* *** */
void roman(int n)
{ int a,i;
 if(n>=500)
 { a=n/500 ;
 for(i=1;i<=a;i++)
 printf("M");
 }
 n=n%500;
 hnd(n/100);
 n=n%100;
 ten(n/10);
 unit(n%10);
} main(void)
{
roman(390);
return 0;
}

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

200

Josephus Problem

Flavius Josephus was a famous historian of the first century. Legend has it that Josephus
wouldn't have lived to become famous without his mathematical talents. During the
Jewish-Roman war, he was among a band of 41 Jewish rebels trapped in cave by the
Romans.Preferring suicide to capture, the rebels decided to form a circle and, proceeding
around it, to kill every third remaining person until no one was left. But Josephus, along
with an un-indicted co-conspirator, wanted none of this suicide nonsense; so he quickly
calculated where he and his friend stand in the vicious circle.

#include <stdio.h>
#define MAX 150

/** Implementatiom of circular queue **/

int queue[MAX];
int e,f,r;

/** _f is front; _r is rear & _e is element number **/

/* ** */
/* A general push algorithm act over queue */
/* ** */

void push(int i)
{
 r++;
 e++;
 if(r>=MAX)
 r=1;
 queue[r] = i;
}

/* ** */
/* A general pop algorithm act over queue */
/* ** */

int pop(void)
{
 e--;
 int i=queue[f];
 f++;
 if(f>=MAX)
 f = 1;
 return i;
}

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

201

/** End of circular queue **/
/* *********************************** */
/* A general joshusf function. */
/* This function start removing */
/* element from first element */
/* and return the sirviver */
/* *********************************** */

int joshups(int n,int v)
{
 register int i;
 e=n;
 for(i=1;i<=n;i++)
 queue[i] = i;
 f = 1; // 0 for serviving first element.
 r = n; // n+1 for serviving first element.
 i = 0;
 if(n > 1)
 pop();
 while(e!=1)
 {
 if(i!=v)
 {
 i++;
 push(pop());
 }
 else
 {
 pop();
 i = 0;
 }
 }
 return queue[f];
}

/*sample main function*/

main(void)
{
 int i,m;
 scanf("%d",&i);
 while(i)
 { m=1;
 while((joshups(i,m++)) != 13);
 printf("%d",m);
 putchar('\n');
 scanf("%d",&i);
 }

 return 0; }

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

202

Combinations

/* *** */
/* Calculate nCm */
/* Input : Two integer number n m */
/* Return : The nCm */
/* *** */

double nCr(int n,int m)
{
 int k;
 register int i,j;
 double c,d;

 c=d=1;
 k=(m>(n-m))?m:(n-m);
 for(j=1,i=k+1;(i<=n);i++,j++)
 {
 c*=i;
 d*=j;
 if(!fmod(c,d) && (d!=1))
 { c/=d;
 d=1;
 }
 }

 return c;
}

/* A sample main function */
main(void)
{
 int n,m;

 while(scanf("%d%d",&n,&m)!=EOF)
 printf("%.0lf\n",nCr(n,m));
 return 0;

}

Another way to calculate the nCm by using the Pascal's triangel.

#include<stdio.h>
#define MAXTRI 50

unsigned long int pas[MAXTRI][MAXTRI];

void pascals(int n)
{

