

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

223

void bfs()
{
 for(r=0, c=0; r<m; r++)
 nQ(r, c, -1, mat[r][c]);
 do
 {
 dQ(&r, &c, &p, &s);
 if(c<n-1)
 for(i=-1; i<2; i++)
 {
 nr=(m+r+i)%m, nc=c+1;
 if(M[nr][nc] > s+mat[nr][nc])
 nQ(nr, nc, p, s+mat[nr][nc]), M[nr][nc] = s+mat[nr][nc];
 }
 else if(s<finalSum)
 finalSum = s, leaf = p;
 } while(rear!=front);
}

void dfs(int leaf)
{
 if(Q[leaf][2]==-1)
 {
 printf(" <%d, %d>", Q[leaf][0]+1, Q[leaf][1]+1);
 return;
 }
 dfs(Q[leaf][2]);
 printf(" <%d, %d>", Q[leaf][0]+1, Q[leaf][1]+1);

}

void main()

{

 clrscr();
 int i, j, t;
 init();
 freopen("in.txt", "r", stdin);
 scanf("%d%d", &m, &n);
 for(i=0; i<m; i++)
 for(j=0; j<n; j++)
 {
 scanf("%d", &t);
 mat[i][j] = t;
 }
 bfs();

 printf("Final sum: %d\nPath:", finalSum);

 dfs(leaf);

}

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

224

Floyed Warshal

Input

5 7
1 2 4
1 3 1
1 5 6
2 5 3
2 4 1
3 2 1
4 5 1
0 0

Code :

#include<stdio.h>
#include<values.h>

#define N 100
#define INF MAXINT

int mat[N][N], path[N][N], n, e;

void initMat()
{
 for(int i=1; i<=n; i++)
 for(int j=1; j<=n; j++)
 mat[i][j] = INF;
}

void initPath()
{
 for(int i=1; i<=n; i++)
 for(int j=1; j<=n; j++)
 if(mat[i][j]!=INF)
 path[i][j] = j;
 else
 path[i][j] = 0;
}

void floyd_warshall()
{
 for(int k=1; k<=n; k++)
 for(int i=1; i<=n; i++)
 for(int j=1; j<=n; j++)
 if(mat[i][k]!=INF && mat[k][j]!=INF)
 if(mat[i][k]+mat[k][j] < mat[i][j])
 mat[i][j] = mat[i][k] + mat[k][j],
path[i][j] = path[i][k];

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

225

}

void showPath(int i, int j)
{
 if(i==j)
 {
 printf("->%d", i);
 return;
 }
 printf("->%d", i);
 showPath(path[i][j], j);
}

void main()

{

 while(scanf("%d%d", &n, &e) && n && e)

 {
 initMat();
 for(int i, j, c, k=0; k<e; k++)
 {
 scanf("%d%d%d", &i, &j, &c);
 mat[i][j] = c;
 }
 initPath();
 floyd_warshall();
 for(i=1; i<=n; i++)
 {
 for(j=1; j<=n; j++)
 if(path[i][j])
 {
 printf("%d", i);
 showPath(path[i][j], j);
 printf("\n");
 }
 printf("\n");
 }
 }

}

Graph Coloring

#include<stdio.h>
int a[20][20],x[20],n,m;
void next(int k)
{
 int j;
 while(1)

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

226

 {
 x[k]=(x[k]+1)%(m+1);
 if(x[k]==0)
 return;
 for(j=1;j<=n;j++)
 if(a[k][j]!=0&&x[k]==x[j])
 break;
 if(j==n+1)
 return;
 }
}
void mcolor(int k)
{
 int j;
 while(1)
 {
 next(k);
 if(x[k]==0)
 return;
 if(k==n)
 {
 printf(" ");
 for(j=1;j<=n;j++)
 printf("%2d",x[j]);
 }
 else
 mcolor(k+1);
 }
}
void main()
{
 int i,u,v;
 printf("\n\n Enter how many colors : ");
 scanf("%d",&m);
 printf("\n\n Enter how many nodes(0<n<20) :");
 scanf("%d",&n);
 printf("\n\n Enter your edges(ex- u sp v)(press 'e' for end) : \n");
 for(i=1;i<=(n*n)/2;i++)
 {
 if(getchar()=='e')
 break;
 scanf("%d%d",&u,&v);
 a[u][v]=a[v][u]=1;
 }mcolor(1); printf("\n\n");}

Cycle Detection (Hamiltonian)

#include<stdio.h>
int a[20][20],x[20],n;
void next(int k)
{
 int j;

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

227

 while(1)
 {
 x[k]=(x[k]+1)%(n+1);
 if(x[k]==0)
 return;
 if((a[x[k-1]][x[k]])!=0)
 {
 for(j=1;j<=k-1;j++)
 if(x[k]==x[j])
 break;
 if(j==k)
 if((k<n)||(k==n&&a[x[n]][x[1]]!=0))
 return;
 }
 }
}
void hamilt(int k)
{
 int j;
 while(1)
 {
 next(k);
 if(x[k]==0)
 return;
 if(k==n)
 {
 printf(" ");
 for(j=1;j<=n;j++)
 printf("%2d",x[j]);
 }
 else
 hamilt(k+1);
 }
}
void main()
{
 int i,u,v;
 x[1]=1;
 printf("\n\n Enter how many nodes(0<n<20) :");
 scanf("%d",&n);
 printf("\n\n Enter your edges(ex- u sp v)(press 'e' for end) : \n");
 for(i=1;i<=(n*n)/2;i++)
 {
 if(getchar()=='e')
 break;
 scanf("%d%d",&u,&v);
 a[u][v]=a[v][u]=1;
 }
 hamilt(2);
 printf("\n\n");
}

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

228

Finding Articulation Point

#include<stdio.h>
int d[11],num=1,b[11][11],l[11],at[11],s=1;
void art(int u,int v)
{
 int i,j=1,w,f=0;
 d[u]=num;
 l[u]=num;
 num++;
 for(i=1;b[u][i]!=0;i++)
 {
 w=b[u][i];
 if(d[w]==0)
 {
 art(w,u);
 l[u]=(l[u]<l[w])?l[u]:l[w];
 }
 else if(w!=v)
 l[u]=(l[u]<d[w])?l[u]:d[w];
 if(d[u]<=l[w])
 f=1;
 }
 if(f)
 at[s++]=u;
}
void main()
{
 int i,j,a[11][11],n,u,v,k,f=0;
 for(i=1;i<11;i++)
 for(j=1;j<11;j++)
 a[i][j]=0;
 printf("\n\n Enter how many nodes(0<n<11) :");
 scanf("%d",&n);
 printf("\n\n Enter your edges(ex- u sp v)(press 'e' for end) : ");
 for(i=1;i<=(n*n)/2;i++)
 {
 if(getchar()=='e')
 break;
 scanf("%d%d",&u,&v);
 a[u][v]=a[v][u]=1;
 }
 for(i=1;i<=n;i++)
 {
 k=1;
 for(j=1;j<=n;j++)
 if(a[i][j])
 {
 b[i][k]=j;
 k++;
 }

APPENDIX B COMMON CODES/ROUTINES FOR PROGRAMMING

229

 b[i][k]=0;
 }
 for(j=1,i=1;b[1][j]!=0;j++)
 {
 k=b[1][j];
 if(b[k][2])
 i++;
 }
 if(j==i)
 f=1;
 art(1,1);
 at[s]=-9;
 printf("\n\n Articulation points are : ");
 if(!f)
 for(i=1;at[i]!=-9;i++)
 printf("%3d",at[i]);
 if(f)
 for(i=1;at[i]!=1;i++)
 printf("%3d",at[i]);
 printf("\n\n");
}

APPENDIX C INTRODUCTION TO STL

230

APPENDIX C
STANDARD TEMPLETE LIBRARY (STL)

The programming languages for the contest will be C, C++, Pascal, and
Java and the scanf()/printf() family of functions. The C++ string library and
Standard Template Library (STL) is also available. This part of this book
contains an introductory note about STL[9] .

APPENDIX C INTRODUCTION TO STL

231

Standard Template Library (STL)

The Standard Template Library, or STL, is a C++ library of container classes, algorithms,
and iterators; it provides many of the basic algorithms and data structures of computer
science. The STL is a generic library, meaning that its components are heavily
parameterized: almost every component in the STL is a template. You should make sure
that you understand how templates work in C++ before you use the STL.

Containers and algorithms

Like many class libraries, the STL includes container classes: classes whose purpose is to
contain other objects. The STL includes the classes vector, list, deque, set, multiset, map,
multimap, hash_set, hash_multiset, hash_map, and hash_multimap. Each of these classes
is a template, and can be instantiated to contain any type of object. You can, for example,
use a vector<int> in much the same way as you would use an ordinary C array, except
that vector eliminates the chore of managing dynamic memory allocation by hand.

 vector<int> v(3); // Declare a vector of 3 elements.
 v[0] = 7;
 v[1] = v[0] + 3;
 v[2] = v[0] + v[1]; // v[0] == 7, v[1] == 10, v[2] == 17

The STL also includes a large collection of algorithms that manipulate the data stored in
containers. You can reverse the order of elements in a vector, for example, by using the
reverse algorithm.

 reverse(v.begin(), v.end()); // v[0] == 17, v[1] == 10, v[2] == 7

There are two important points to notice about this call to reverse. First, it is a global
function, not a member function. Second, it takes two arguments rather than one: it
operates on a range of elements, rather than on a container. In this particular case the
range happens to be the entire container v.

The reason for both of these facts is the same: reverse, like other STL algorithms, is
decoupled from the STL container classes.

 double A[6] = { 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 };
 reverse(A, A + 6);
 for (int i = 0; i < 6; ++i)
 cout << "A[" << i << "] = " << A[i];

This example uses a range, just like the example of reversing a vector: the first argument
to reverse is a pointer to the beginning of the range, and the second argument points one

APPENDIX C INTRODUCTION TO STL

232

element past the end of the range. This range is denoted [A, A + 6); the asymmetrical
notation is a reminder that the two endpoints are different, that the first is the beginning
of the range and the second is one past the end of the range.

Website for downloading STL

http://www.sgi.com/tech/stl/download.htm

Individual files in STL

algo.h hash_
map.h numeric stdexcept stl_heap.h stl_slist.h

algobase.h hash_s
et pair.h stl_algo.h stl_iterator.h stl_stack.h

algorithm hash_s
et.h pthread_alloc stl_algoba

se.h
stl_iterator_ba
se.h

stl_string_f
wd.h

alloc.h hashta
ble.h

pthread_alloc.
h stl_alloc.h stl_list.h stl_tempbu

f.h

bitset heap.h queue stl_bvecto
r.h stl_map.h stl_threads

.h

bvector.h iterator rope stl_config.
h stl_multimap.h stl_tree.h

char_traits.h iterator.
h rope.h stl_constr

uct.h stl_multiset.h stl_uninitial
ized.h

concept_chec
ks.h limits ropeimpl.h stl_ctraits

_fns.h stl_numeric.h stl_vector.h

container_con
cepts.h list sequence_con

cepts.h
stl_deque.
h stl_pair.h string

defalloc.h list.h set stl_except
ion.h stl_queue.h tempbuf.h

deque map set.h stl_functio
n.h

stl_range_error
s.h tree.h

deque.h map.h slist stl_hash_f
un.h

stl_raw_storag
e_iter.h

type_traits.
h

function.h memor
y slist.h stl_hash_

map.h stl_relops.h utility

functional multima
p.h stack stl_hash_

set.h stl_rope.h valarray

hash_map multiset
.h stack.h stl_hashta

ble.h stl_set.h vector

APPENDIX C INTRODUCTION TO STL

233

Which compilers are supported?

The STL has been tested on these compilers: SGI 7.1 and later, or 7.0 with the -n32 or -
64 flag; gcc 2.8 or egcs 1.x; Microsoft 5.0 and later. (But see below.) Boris Fomitchev
distributes a port for some other compilers.

If you succeed in using the SGI STL with some other compiler, please let us know, and
please tell us what modifications (if any) you had to make. We expect that most of the
changes will be restricted to the <stl_config.h> header.

STL EXAMPLES

Search

 const char S1[] = "Hello, world!";
 const char S2[] = "world";
 const int N1 = sizeof(S1) - 1;
 const int N2 = sizeof(S2) - 1;

 const char* p = search(S1, S1 + N1, S2, S2 + N2);
 printf("Found subsequence \"%s\" at character %d of sequence
\"%s\".\n",
 S2, p - S1, S1);

Queue

int main() {
 queue<int> Q;
 Q.push(8);
 Q.push(7);
 Q.push(6);
 Q.push(2);

 assert(Q.size() == 4);
 assert(Q.back() == 2);

 assert(Q.front() == 8);
 Q.pop();

 assert(Q.front() == 7);
 Q.pop();

 assert(Q.front() == 6);
 Q.pop();
 assert(Q.front() == 2);
 Q.pop();
 assert(Q.empty());}

APPENDIX C INTRODUCTION TO STL

234

Doubly linked list

list<int> L;
L.push_back(0);
L.push_front(1);
L.insert(++L.begin(), 2);
copy(L.begin(), L.end(), ostream_iterator<int>(cout, " "));
// The values that are printed are 1 2 0

Sort

int A[] = {1, 4, 2, 8, 5, 7};
const int N = sizeof(A) / sizeof(int);
sort(A, A + N);
copy(A, A + N, ostream_iterator<int>(cout, " "));
// The output is " 1 2 4 5 7 8".

Complexity
O(N log(N)) comparisons (both average and worst-case), where N is last -
first.

Binary Search

int main()
{
 int A[] = { 1, 2, 3, 3, 3, 5, 8 };
 const int N = sizeof(A) / sizeof(int);

 for (int i = 1; i <= 10; ++i) {
 cout << "Searching for " << i << ": "
 << (binary_search(A, A + N, i) ? "present" : "not present") <<
endl;
 }
}

The output

Searching for 1: present
Searching for 2: present
Searching for 3: present
Searching for 4: not present
Searching for 5: present
Searching for 6: not present
Searching for 7: not present
Searching for 8: present
Searching for 9: not present
Searching for 10: not present

APPENDIX D PC2 CONTEST ADMINISTRATION AND TEAM GUIDE

235

APPENDIX D
PC2 CONTEST ADMINISTRATION AND TEAM GUIDE

PC2 is a dynamic, distributed real-time system designed to manage and
control Programming Contests. It includes support for multi-site contests,
heterogeneous platform operations including mixed Windows and Unix in
a single contest, and dynamic real-time updates of contest status and
standings to all sites. Here we describe the steps required to install,

configure, and run a contest using PC2. Further information on PC2, including how to
obtain a copy of the system, can be found at http://www.ecs.csus.edu/pc2.

APPENDIX D PC2 CONTEST ADMINISTRATION AND TEAM GUIDE

236

 Programming Contest Judge Software - PC2

PC2 operates using a client-server architecture. Each site in a contest runs a single PC2
server, and also runs multiple PC2 clients which communicate with the site server.
Logging into a client using one of several different types of PC2 accounts (Administrator,
Team, Judge, or Scoreboard) enables that client to perform common contest operations
associated with the account type, such as contest configuration and control
(Administrator), submitting contestant programs (Team), judging submissions (Judge),
and maintaining the current contest standings (Scoreboard).

PC2 clients communicate only with the server at their site, regardless of the number of
sites in the contest. In a multi-site contest, site servers communicate not only with their
own clients but also with other site servers, in order to keep track of global contest state.
The following communication requirements must therefore be met in order to run a
contest using PC2: (1) a machine running a PC2 server must be able to communicate via
TCP/IP with every machine running a PC2 client at its site; and (2) in a multi-site contest,
every machine running a PC2 server must be able to communicate via TCP/IP with the
machines running PC2 servers at every other site1[1]. In particular, there must not be any
firewalls which prohibit these communication paths; the system will not operate if this
communication is blocked. It is not necessary for client machines to be able to contact
machines at other sites.

Each PC2 module (server or client) reads one or more .ini initialization files when it starts;
these files are used to configure the module at startup. The client module also tailors its
configuration when a user (Team, Judge, etc.) logs in. In a typical PC2 contest
configuration, each Team, Judge, etc. uses a separate physical machine, and each of these
machines runs exactly one client module.It is possible to have multiple clients running on
the same physical machine, for example by having different users logging in to different
accounts on a shared machine. In this case, each user (Team, Judge, etc.) will be
executing their own Java Virtual Machine (JVM), and must have their own separate
directory structure including their own separate copy of the PC2 initialization files in
their account.

PC2 Setup for Administrator

For those people who hate to read manuals and would rather take a chance with a shortcut
list, here is a very terse summary of the steps necessary to install PC2 and get it running.
Please note that this is provided as a convenience for geniuses (or gluttons for
punishment). The remainder of the manual was written to help everyone else. If you have

* For further information about PC2 please check : http://www.ecs.csus.edu/pc2

APPENDIX D PC2 CONTEST ADMINISTRATION AND TEAM GUIDE

237

problems after following this list, please read the rest of the manual before sending us a
request for help.

 Install Java (version 1.3.1 or greater) ;

 Install PC2 by unzipping the PC2 distribution to the PC2 installation directory;

 Add the Java bin directory and the PC2 installation directory to the PATH;

 Add java/lib, and the PC2 installation directory to the CLASSPATH;

 Modify the sitelist.ini file as necessary to specify each site server name.

 Edit the pc2v8.ini file to point servers and clients to the server IP:port and to
specify the appropriate site server name; put the modified .ini file on every server and
client machine;
sample pc2v8.ini file for site named Site

[client]
tell the client what site it belongs to
and where to find its server (IP and port)
site=Site1
server=192.168.1.117:50002

[server]
tell the server which site it is serving
site=Site1

 Start a PC2 server using the command pc2server and answer the prompted
question.

 Start a PC2 Admin client using the command pc2admin and login using the name
root and password root.

APPENDIX D PC2 CONTEST ADMINISTRATION AND TEAM GUIDE

238

 Configure at least the following contest items via the Admin:

 Accounts (generate the necessary accounts);

 Problems (create one or more contest problems, specifying the problem input
data file if there is one);

 Languages (create contest languages, specifying the language name, compile
command line, executable filename, and execution command line).

 Language Parameter for Turbo C/C++ : tcc –Ic:\tc3\bin –Lc:\tc3\lib {:mainfile}

APPENDIX D PC2 CONTEST ADMINISTRATION AND TEAM GUIDE

239

 Press the Start Contest button on the Admin Time/Reset tab;

 Start a PC2 client on each Team and Judge machine and log in using the Admin-
created accounts and passwords.

 Start a PC2 client on the Scoreboard machine and log in using the board1
Scoreboard account/password; arrange for the scoreboard-generated HTML files to
be accessible to users browsers.

PC2 Team Guide (For Contestants)

This guide is intended to familiarize you with the process of submitting programs to
Contest Judges using the PC2 (“P-C-Squared”) Programming Contest Control system.
Starting PC2 will bring up the PC2 login screen, shown below:

APPENDIX D PC2 CONTEST ADMINISTRATION AND TEAM GUIDE

240

To login to PC2, click once on the Name box on the login screen, enter your assigned
team ID, press the TAB key or click on the Password box, then enter your assigned
password. Your team ID will be of the form teamxx, where xx is your assigned team
number (for example, “team3” or “team12”). After entering your team name and
password, click on the Logon button.

Submitting a Program to the Judges

Once the system accepts your login, you will be at the PC2 Main Menu screen, shown
below. Note that the team ID (“team1” in this case) and the team’s site location (“CSUS”
in this case) are displayed in the title bar.

APPENDIX D PC2 CONTEST ADMINISTRATION AND TEAM GUIDE

241

Clicking on the SUBMIT tab near the top of the screen displays the Submit Run screen,
which is shown above.

Clicking in the Problem field will display a list of the contest problems; choose the
problem for which you wish to submit a program (“run”) to the Judges (in the example, a
problem named “Bowling” has been chosen).

Clicking in the Language field will display a list of the programming languages allowed
in the contest; choose the language used by the program that you wish to submit to the
Judges (in the example, “Java” has been chosen).

To submit a program to the Judges, you must specify the name of the file containing your
main program. Click on the Select button to invoke the “File Dialog” which lets you
locate and select your main file. The Dialog lets you automatically navigate to the correct
path and file location (in the example, the main program file “C:\work\bowling.java” has
been selected).

If your program consists of more than one file, you must enter the additional file names
in the Additional Files box. Click the Add button to invoke the dialog which lets you
locate and select your additional files; select a file in the box and click the Remove
button to remove a previously-selected file.

Important: you must specify the name of your main program file in the Main File field,
not in the Additional Files box! Select only source code files for submission to the
Judges. Do not submit data files or executable files.

PC2 Uninstall

To uninstall PC2 it is only necessary to undo the above installation steps; that is,
remove the $PC2HOME directory and its contents and restore the system environment
variables to their former values . PC2 itself does not make any changes to any machine
locations outside those listed above either during installation or execution. In particular,
for example, it makes no entries in the registry in a Windows environment, nor does it
copy any files to locations outside the installation directories in any environment.

APPENDIX E IMPORTANT WEBSITES/BOOKS FOR ACM/ICPC PROGRAMMERS

242

APPENDIX E
IMPORTANT WEBSITES/ FOR ACM/ICPC PROGRAMMERS

Now a days the world is open for learners and the Internet makes the world
inside our room. There are many websites now on the Internet for the
beginners as well as programmers. Some sites are for contest and tutorial,
some for books, some sites are for programming language. Mathematics is
one of the essential for programming and there are a lot of mathematical

site in the net. The pioneers also publish their ideas and advice on the Internet for us. In
this page you will find the link of those pages.[10]

