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2. Pull out the sqrt call 

The first optimization was to pull the sqrt call out of the limit test, just in case the 
compiler wasn't optimizing that correctly, this one is faster:  

int is_prime(int n) { 
  long lim = (int) sqrt(n); 
  for (int i=2; i<=lim; i++) if (n%i == 0) return 0; return 1;} 

3. Restatement of sqrt. 

int is_prime(int n) { 
  for (int i=2; i*i<=n; i++) if (n%i == 0) return 0; 
  return 1; 
} 

4. We don't need to check even numbers 

int is_prime(int n) { 
  if (n == 1) return 0;         // 1 is NOT a prime 
  if (n == 2) return 1;         // 2 is a prime 
  if (n%2 == 0) return 0;       // NO prime is EVEN, except 2 
  for (int i=3; i*i<=n; i+=2)   // start from 3, jump 2 numbers 
    if (n%i == 0)               //  no need to check even numbers 
      return 0; 
  return 1; 
} 

5. Other prime properties 

A (very) little bit of thought should tell you that no prime can end in 0,2,4,5,6, or 8, 
leaving only 1,3,7, and 9. It's fast & easy. Memorize this technique. It'll be very helpful 
for your programming assignments dealing with relatively small prime numbers (16-bit 
integer 1-32767). This divisibility check (step 1 to 5) will not be suitable for bigger 
numbers. First prime and the only even prime: 2.Largest prime in 32-bit integer range: 
2^31 - 1 = 2,147,483,647 

6. Divisibility check using smaller primes below sqrt(N): 

Actually, we can improve divisibility check for bigger numbers. Further investigation 
concludes that a number N is a prime if and only if no primes below sqrt(N) can divide N. 
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How to do this ? 

1. Create a large array. How large?  
2. Suppose max primes generated will not greater than 2^31-1 
(2,147,483,647), maximum 32-bit integer. 
3. Since you need smaller primes below sqrt(N), you only need to 

store primes from 1 to sqrt(2^31) 
4. Quick calculation will show that of sqrt(2^31) = 46340.95. 
5. After some calculation, you'll find out that there will be at most 4792 primes in the 
range 1 to 46340.95. So you only need about array of size (roughly) 4800 elements. 
6. Generate that prime numbers from 1 to 46340.955. This will take time, but when you 
already have those 4792 primes in hand, you'll be able to use those values to determine 
whether a bigger number is a prime or not. 
7. Now you have 4792 first primes in hand. All you have to do next is to check whether 
a big number N a prime or not by dividing it with small primes up to sqrt(N). If you can 
find at least one small primes can divide N, then N is not prime, otherwise N is prime. 

Fermat Little Test: 

This is a probabilistic algorithm so you cannot guarantee the possibility of getting correct 
answer. In a range as big as 1-1000000, Fermat Little Test can be fooled by (only) 255 
Carmichael numbers (numbers that can fool Fermat Little Test, see Carmichael numbers 
above). However, you can do multiple random checks to increase this probability. 

Fermat Algorithm  

If 2^N modulo N = 2 then N has a high probability to be a prime number. 

Example: 
let N=3 (we know that 3 is a prime). 
2^3 mod 3 = 8 mod 3 = 2, then N has a high probability to be a prime number... and in 
fact, it is really prime. 

Another example: 
let N=11 (we know that 11 is a prime). 
2^11 mod 11 = 2048 mod 11 = 2, then N has a high probability to be a prime number... 
again, this is also really prime. 
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Sieve of Eratosthenes: 

Sieve is the best prime generator algorithm. It will generate a list of primes very quickly, 
but it will need a very big memory. You can use Boolean flags to do this (Boolean is only 
1 byte). 

Algorithm for Sieve of Eratosthenes to find the prime numbers within a range L,U 
(inclusive), where must be L<=U. 

void sieve(int L,int U) { 
  int i,j,d; 
  d=U-L+1; /* from range L to U, we have d=U-L+1 numbers. */ 
  /* use flag[i] to mark whether (L+i) is a prime number or not. */ 

  bool *flag=new bool[d]; 
  for (i=0;i<d;i++) flag[i]=true; /* default: mark all to be true */ 
 
  for (i=(L%2!=0);i<d;i+=2) flag[i]=false;  

 
  /* sieve by prime factors staring from 3 till sqrt(U) */ 
  for (i=3;i<=sqrt(U);i+=2) { 
    if (i>L && !flag[i-L]) continue; 
 
    /* choose the first number to be sieved -- >=L, 
       divisible by i, and not i itself! */ 
    j=L/i*i;    if (j<L) j+=i; 
    if (j==i) j+=i; /* if j is a prime number, have to start form next 
one */ 
 
    j-=L; /* change j to the index representing j */ 
    for (;j<d;j+=i) flag[j]=false; 
  } 
 
  if (L<=1) flag[1-L]=false; 
  if (L<=2) flag[2-L]=true; 
 
  for (i=0;i<d;i++) if (flag[i]) cout << (L+i) << " "; 
  cout << endl; 
} 
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CHAPTER 8    SORTING  

Definition of a sorting problem 

Input: A sequence of N numbers (a1,a2,...,aN) 
Output: A permutation (a1',a2',...,aN') of the input sequence such that a1' <= a2' <=... <= aN' 

Things to be considered in Sorting 

These are the difficulties in sorting that can also happen in real life: 

A. Size of the list to be ordered is the main concern. Sometimes, the computer emory 
is not sufficient to store all data. You may only be able to hold part of the data 
inside the computer at any time, the rest will probably have to stay on disc or 
tape. This is known as the problem of external sorting. However, rest assured, 
that almost all programming contests problem size will never be extremely big 
such that you need to access disc or tape to perform external sorting... (such 
hardware access is usually forbidden during contests). 

B. Another problem is the stability of the sorting method. Example: suppose you are 
an airline. You have a list of the passengers for the day's flights. Associated to 
each passenger is the number of his/her flight. You will probably want to sort the 
list into alphabetical order. No problem... Then, you want to re-sort the list by 
flight number so as to get lists of passengers for each flight. Again, "no 
problem"... - except that it would be very nice if, for each flight list, the names 
were still in alphabetical order. This is the problem of stable sorting. 

C. To be a bit more mathematical about it, suppose we have a list of items {xi} with 
xa equal to xb as far as the sorting comparison is concerned and with xa before xb 
in the list. The sorting method is stable if xa is sure to come before xb in the sorted 
list.  

Finally, we have the problem of key sorting. The individual items to be sorted might be 
very large objects (e.g. complicated record cards). All sorting methods naturally involve a 
lot of moving around of the things being sorted. If the things are very large this might 
take up a lot of computing time -- much more than that taken just to switch two integers 
in an array.  

Comparison-based sorting algorithms 

Comparison-based sorting algorithms involves comparison between two object a and b to 
determine one of the three possible relationship between them: less than, equal, or greater 
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than. These sorting algorithms are dealing with how to use this comparison effectively, so 
that we minimize the amount of such comparison. Lets start from the most naive version 
to the most sophisticated comparison-based sorting algorithms. 

Bubble Sort 

Speed: O(n^2), extremely slow 
Space: The size of initial array 
Coding Complexity: Simple 

This is the simplest and (unfortunately) the worst sorting algorithm. This sort will do 
double pass on the array and swap 2 values when necessary. 

 

BubbleSort(A) 
  for i <- length[A]-1 down to 1 
    for j <- 0 to i-1 
      if (A[j] > A[j+1]) // change ">" to "<" to do a descending sort 
        temp <- A[j] 
        A[j] <- A[j+1] 
        A[j+1] <- temp 

Slow motion run of Bubble Sort (Bold == sorted region): 

5 2 3 1 4 
2 3 1 4 5 
2 1 3 4 5 
1 2 3 4 5 
1 2 3 4 5 
1 2 3 4 5 >> done 

 

 
TEST YOUR BUBBLE SORT KNOWLEDGE 

Solve UVa problems related with Bubble sort: 

299 - Train Swapping 
612 - DNA Sorting 
10327 - Flip Sort 

 



 
 
 
 
 
 
       CHAPTER 8                                                                               SORTING 

 

108

Quick Sort 

Speed: O(n log n), one of the best sorting algorithm. 
Space: The size of initial array 
Coding Complexity: Complex, using Divide & Conquer approach 

One of the best sorting algorithm known. Quick sort use Divide & Conquer approach and 
partition each subset. Partitioning a set is to divide a set into a collection of mutually 
disjoint sets. This sort is much quicker compared to "stupid but simple" bubble sort. 
Quick sort was invented by C.A.R Hoare.  

Quick Sort - basic idea 

Partition the array in O(n) 
Recursively sort left array in O(log2 n) best/average case 
Recursively sort right array in O(log2 n) best/average case 

Quick sort pseudo code: 

QuickSort(A,p,r) 
  if p < r 
    q <- Partition(A,p,r) 
    QuickSort(A,p,q) 
    QuickSort(A,q+1,r) 

Quick Sort for C/C++ User 

C/C++ standard library <stdlib.h> contains qsort function. 

This is not the best quick sort implementation in the world but it fast enough and VERY 
EASY to be used... therefore if you are using C/C++ and need to sort something, you can 
simply call this built in function: 

qsort(<arrayname>,<size>,sizeof(<elementsize>),compare_function); 

The only thing that you need to implement is the compare_function, which takes in two 
arguments of type "const void", which can be cast to appropriate data structure, and then 
return one of these three values: 

 negative, if a should be before b 
 0, if a equal to b 
 positive, if a should be after b 
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1. Comparing a list of integers 

simply cast a and b to integers 
if x < y, x-y is negative, x == y, x-y = 0, x > y, x-y is positive 
x-y is a shortcut way to do it :) 
reverse *x - *y to *y - *x for sorting in decreasing order 
 

int compare_function(const void *a,const void *b) { 
  int *x = (int *) a; 
  int *y = (int *) b; 
  return *x - *y;  
} 

2. Comparing a list of strings 

For comparing string, you need strcmp function inside string.h lib. 
strcmp will by default return -ve,0,ve appropriately... to sort in reverse order, just reverse 
the sign returned by strcmp 

#include <string.h> 
 
int compare_function(const void *a,const void *b) { 
   return (strcmp((char *)a,(char *)b)); 
} 

3. Comparing floating point numbers 

int compare_function(const void *a,const void *b) { 
  double *x = (double *) a; 
  double *y = (double *) b; 
  // return *x - *y; // this is WRONG... 
  if (*x < *y) return -1; 
  else if (*x > *y) return 1;  return 0; 
} 

4. Comparing records based on a key 

Sometimes you need to sort a more complex stuffs, such as record. Here is the simplest 
way to do it using qsort library 

typedef struct { 
  int key; 
  double value; 
} the_record; 
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int compare_function(const void *a,const void *b) { 
  the_record *x = (the_record *) a; 
  the_record *y = (the_record *) b; 
  return x->key - y->key; 
} 

Multi field sorting, advanced sorting technique 

Sometimes sorting is not based on one key only. 

For example sorting birthday list. First you sort by month, then if the month ties, sort by 
date (obviously), then finally by year. 

For example I have an unsorted birthday list like this: 

24 - 05 - 1982 - Sunny 
24 - 05 - 1980 - Cecilia  
31 - 12 - 1999 - End of 20th century 
01 - 01 - 0001 - Start of modern calendar 

I will have a sorted list like this: 

01 - 01 - 0001 - Start of modern calendar 
24 - 05 - 1980 - Cecilia  
24 - 05 - 1982 - Sunny 
31 - 12 - 1999 - End of 20th century 

To do multi field sorting like this, traditionally one will choose multiple sort using sorting 
algorithm which has "stable-sort" property.  

The better way to do multi field sorting is to modify the compare_function in such a way 
that you break ties accordingly... I'll give you an example using birthday list again. 

typedef struct { 
  int day,month,year; 
  char *name; 
} birthday; 

int compare_function(const void *a,const void *b) { 
  birthday *x = (birthday *) a; 
  birthday *y = (birthday *) b; 

  if (x->month != y->month) // months different 
    return x->month - y->month; // sort by month 
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  else { // months equal..., try the 2nd field... day 
    if (x->day != y->day) // days different 

      return x->day - y->day; // sort by day 
    else // days equal, try the 3rd field... year 
      return x->year - y->year; // sort by year 
  } 
} 

TEST YOUR MULTI FIELD SORTING KNOWLEDGE 

10194 - Football (aka Soccer)
 

Linear-time Sorting 

a. Lower bound of comparison-based sort is O(n log n) 

The sorting algorithms that we see above are comparison-based sort, they use comparison 
function such as <, <=, =, >, >=, etc to compare 2 elements. We can model this 
comparison sort using decision tree model, and we can proof that the shortest height of 
this tree is O(n log n).  

b. Counting Sort 

For Counting Sort, we assume that the numbers are in the range [0..k], where k is at most 
O(n). We set up a counter array which counts how many duplicates inside the input, and 
the reorder the output accordingly, without any comparison at all. Complexity is O(n+k). 

c. Radix Sort 

For Radix Sort, we assume that the input are n d-digits number, where d is reasonably 
limited. 

Radix Sort will then sorts these number digit by digit, starting with the least significant 
digit to the most significant digit. It usually use a stable sort algorithm to sort the digits, 
such as Counting Sort above. 

Example: 

input: 
321 
257 
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113 
622 

sort by third (last) digit: 
321 
622 
113 
257 

after this phase, the third (last) digit is sorted. 

sort by second digit: 
113 
321 
622 
257 
after this phase, the second and third (last) digit are sorted. 

sort by second digit: 
113 
257 
321 
622 
after this phase, all digits are sorted. 

For a set of n d-digits numbers, we will do d pass of counting sort which have complexity 
O(n+k), therefore, the complexity of Radix Sort is O(d(n+k)).  
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CHAPTER 9    SEARCHING  
Searching is very important in computer science. It is very closely related to sorting. We 
usually search after sorting the data. Remember Binary Search? This is the best example 
of an algorithm which utilizes both Sorting and Searching.[2] 

Search algorithm depends on the data structure used. If we want to search a graph, then 
we have a set of well known algorithms such as DFS, BFS, etc 

Binary Search 

The most common application of binary search is to find a specific value in a sorted list. 
The search begins by examining the value in the center of the list; because the values are 
sorted, it then knows whether the value occurs before or after the center value, and 
searches through the correct half in the same way. Here is simple pseudocode which 
determines the index of a given value in a sorted list a between indices left and right: 

function binarySearch(a, value, left, right) 
    if right < left 
        return not found 
    mid := floor((left+right)/2) 
    if a[mid] = value 
        return mid 
    if value < a[mid] 
        binarySearch(a, value, left, mid-1) 
    else 
        binarySearch(a, value, mid+1, right) 

In both cases, the algorithm terminates because on each recursive call or iteration, the 
range of indexes right minus left always gets smaller, and so must eventually become 
negative. 

Binary search is a logarithmic algorithm and executes in O(log n) time. Specifically, 1 + 
log2N iterations are needed to return an answer. It is considerably faster than a linear 
search. It can be implemented using recursion or iteration, as shown above, although in 
many languages it is more elegantly expressed recursively. 

Binary Search Tree 

Binary Search Tree (BST) enable you to search a collection of objects (each with a real or 
integer value) quickly to determine if a given value exists in the collection.  
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Basically, a binary search tree is a node-weighted, rooted binary ordered tree. That 
collection of adjectives means that each node in the tree might have no child, one left 
child, one right child, or both left and right child. In addition, each node has an object 
associated with it, and the weight of the node is the value of the object. 

The binary search tree also has the property that each 
node's left child and descendants of its left child have a 
value less than that of the node, and each node's right child 
and its descendants have a value greater or equal to it.  
Binary Search Tree 

The nodes are generally represented as a structure with 
four fields, a pointer to the node's left child, a pointer to 
the node's right child, the weight of the object stored at 
this node, and a pointer to the object itself. Sometimes, for 
easier access, people add pointer to the parent too.  

Why are Binary Search Tree useful? 

Given a collection of n objects, a binary search tree takes only O(height) time to find an 
objects, assuming that the tree is not really poor (unbalanced), O(height) is O(log n). In 
addition, unlike just keeping a sorted array, inserting and deleting objects only takes 
O(log n) time as well. You also can get all the keys in a Binary Search Tree in a sorted 
order by traversing it using O(n) inorder traversal. 

Variations on Binary Trees 

There are several variants that ensure that the trees are never poor. Splay trees, Red-black 
trees, B-trees, and AVL trees are some of the more common examples. They are all much 
more complicated to code, and random trees are generally good, so it's generally not 
worth it. 

Tips: If you're concerned that the tree you created might be bad (it's being created by 
inserting elements from an input file, for example), then randomly order the elements 
before insertion. 

Dictionary  

A dictionary, or hash table, stores data with a very quick way to do lookups. Let's say 
there is a collection of objects and a data structure must quickly answer the question: 'Is 
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this object in the data structure?' (e.g., is this word in the dictionary?). A hash table does 
this in less time than it takes to do binary search.  

The idea is this: find a function that maps the elements of the collection to an integer 
between 1 and x (where x, in this explanation, is larger than the number of elements in 
your collection). Keep an array indexed from 1 to x, and store each element at the 
position that the function evaluates the element as. Then, to determine if something is in 
your collection, just plug it into the function and see whether or not that position is 
empty. If it is not check the element there to see if it is the same as the something you're 
holding,  

For example, presume the function is defined over 3-character words, and is (first letter + 
(second letter * 3) + (third letter * 7)) mod 11 (A=1, B=2, etc.), and the words are 'CAT', 
'CAR', and 'COB'. When using ASCII, this function takes 'CAT' and maps it to 3, maps 
'CAR' to 0, and maps 'COB' to 7, so the hash table would look like this: 

0: CAR 
1 
2 
3: CAT 
4 
5 
6 
7: COB 
8 
9 
10  

Now, to see if 'BAT' is in there, plug it into the hash function to get 2. This position in the 
hash table is empty, so it is not in the collection. 'ACT', on the other hand, returns the 
value 7, so the program must check to see if that entry, 'COB', is the same as 'ACT' (no, 
so 'ACT' is not in the dictionary either). In the other hand, if the search input is 'CAR', 
'CAT', 'COB', the dictionary will return true. 

Collision Handling 

This glossed over a slight problem that arises. What can be done if two entries map to the 
same value (e.g.,we wanted to add 'ACT' and 'COB')? This is called a collision. There are 
couple ways to correct collisions, but this document will focus on one method, called 
chaining.  

Instead of having one entry at each position, maintain a linked list of entries with the 
same hash value. Thus, whenever an element is added, find its position and add it to the 
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beginning (or tail) of that list. Thus, to have both 'ACT' and 'COB' in the table, it would 
look something like this: 

0: CAR 
1 
2 
3: CAT 
4 
5 
6 
7: COB -> ACT 
8 
9 
10  

Now, to check an entry, all elements in the linked list must be examined to find out the 
element is not in the collection. This, of course, decreases the efficiency of using the hash 
table, but it's often quite handy. 

Hash Table variations 

It is often quite useful to store more information that just the value. One example is when 
searching a small subset of a large subset, and using the hash table to store locations 
visited, you may want the value for searching a location in the hash table with it. 



 
 
 
 
 
 

CHAPTER 10                                                                GREEDY ALGORITHMS 

 

117

CHAPTER 10   GREEDY ALGORITHMS 
Greedy algorithms are algorithms which follow the problem solving meta-heuristic of 
making the locally optimum choice at each stage with the hope of finding the global 
optimum. For instance, applying the greedy strategy to the traveling salesman problem 
yields the following algorithm: "At each stage visit the nearest unvisited city to the 
current city".[Wiki Encyclopedia] 

Greedy algorithms do not consistently find the globally optimal solution, because they 
usually do not operate exhaustively on all the data. They can make commitments to 
certain choices too early which prevent them from finding the best overall solution later. 
For example, all known greedy algorithms for the graph coloring problem and all other 
NP-complete problems do not consistently find optimum solutions. Nevertheless, they are 
useful because they are quick to think up and often give good approximations to the 
optimum. 

If a greedy algorithm can be proven to yield the global optimum for a given problem 
class, it typically becomes the method of choice. Examples of such greedy algorithms are 
Kruskal's algorithm and Prim's algorithm for finding minimum spanning trees and the 
algorithm for finding optimum Huffman trees. The theory of matroids, as well as the even 
more general theory of greedoids, provide whole classes of such algorithms. 

In general, greedy algorithms have five pillars: 

♦ A candidate set, from which a solution is created  
♦ A selection function, which chooses the best candidate to be added to the solution  
♦ A feasibility function, that is used to determine if a candidate can be used to 
contribute to a solution  
♦ An objective function, which assigns a value to a solution, or a partial solution, and  
♦ A solution function, which will indicate when we have discovered a complete 
solution 

Barn Repair 

There is a long list of stalls, some of which need to be covered with boards. You can use 
up to N (1 <= N <= 50) boards, each of which may cover any number of consecutive 
stalls. Cover all the necessary stalls, while covering as few total stalls as possible. How 
will you solve it?  
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The basic idea behind greedy algorithms is to build large solutions up from smaller ones. 
Unlike other approaches, however, greedy algorithms keep only the best solution they 
find as they go along. Thus, for the sample problem, to build the answer for N = 5, they 
find the best solution for N = 4, and then alter it to get a solution for N = 5. No other 
solution for N = 4 is ever considered.  

Greedy algorithms are fast, generally linear to quadratic and require little extra memory. 
Unfortunately, they usually aren't correct. But when they do work, they are often easy to 
implement and fast enough to execute.  

Problems with Greedy algorithms 

There are two basic problems to greedy algorithms.  

1. How to Build 

How does one create larger solutions from smaller ones? In general, this is a function of 
the problem. For the sample problem, the most obvious way to go from four boards to 
five boards is to pick a board and remove a section, thus creating two boards from one. 
You should choose to remove the largest section from any board which covers only stalls 
which don't need covering (so as to minimize the total number of stalls covered).  

To remove a section of covered stalls, take the board which spans those stalls, and make 
into two boards: one of which covers the stalls before the section, one of which covers 
the stalls after the second.  

2. Does it work? 

The real challenge for the programmer lies in the fact that greedy solutions don't always 
work. Even if they seem to work for the sample input, random input, and all the cases you 
can think of, if there's a case where it won't work, at least one (if not more!) of the judges' 
test cases will be of that form.  

For the sample problem, to see that the greedy algorithm described above works, consider 
the following:  

Assume that the answer doesn't contain the large gap which the algorithm removed, but 
does contain a gap which is smaller. By combining the two boards at the end of the 
smaller gap and splitting the board across the larger gap, an answer is obtained which 
uses as many boards as the original solution but which covers fewer stalls. This new 
answer is better, so therefore the assumption is wrong and we should always choose to 
remove the largest gap.  
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If the answer doesn't contain this particular gap but does contain another gap which is just 
as large, doing the same transformation yields an answer which uses as many boards and 
covers as many stalls as the other answer. This new answer is just as good as the original 
solution but no better, so we may choose either.  

Thus, there exists an optimal answer which contains the large gap, so at each step, there 
is always an optimal answer which is a superset of the current state. Thus, the final 
answer is optimal.  

If a greedy solution exists, use it. They are easy to code, easy to debug, run quickly, and 
use little memory, basically defining a good algorithm in contest terms. The only missing 
element from that list is correctness. If the greedy algorithm finds the correct answer, go 
for it, but don't get suckered into thinking the greedy solution will work for all problems.  

Sorting a three-valued sequence  

You are given a three-valued (1, 2, or 3) sequence of length up to 1000. Find a 
minimum set of exchanges to put the sequence in sorted order.  

The sequence has three parts: the part which will be 1 when in sorted order, 2 
when in sorted order, and 3 when in sorted order. The greedy algorithm swaps as 
many as possible of the 1's in the 2 part with 2's in the 1 part, as many as possible 
1's in the 3 part with 3's in the 1 part, and 2's in the 3 part with 3's in the 2 part. 
Once none of these types remains, the remaining elements out of place need to be 
rotated one way or the other in sets of 3. You can optimally sort these by swapping 
all the 1's into place and then all the 2's into place.  

 

Analysis: Obviously, a swap can put at most two elements in place, so all the swaps of 
the first type are optimal. Also, it is clear that they use different types of elements, so 
there is no ``interference'' between those types. This means the order does not matter. 
Once those swaps have been performed, the best you can do is two swaps for every three 
elements not in the correct location, which is what the second part will achieve (for 
example, all the 1's are put in place but no others; then all that remains are 2's in the 3's 
place and vice-versa, and which can be swapped).  

Topological Sort 

Given a collection of objects, along with some ordering constraints, such as "A must be 
before B," find an order of the objects such that all the ordering constraints hold.  
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Algorithm: Create a directed graph over the objects, where there is an arc from A to B if 
"A must be before B." Make a pass through the objects in arbitrary order. Each time you 
find an object with in-degree of 0, greedily place it on the end of the current ordering, 
delete all of its out-arcs, and recurse on its (former) children, performing the same check. 
If this algorithm gets through all the objects without putting every object in the ordering, 
there is no ordering which satisfies the constraints. 

TEST YOUR GREEDY KNOWLEDGE 

Solve UVa problems related which utilizes Greedy algorithms: 

10020 - Minimal Coverage 
10340 - All in All 
10440 - Ferry Loading (II) 
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CHAPTER 11    DYNAMIC PROGRAMMING 

Dynamic Programming (shortened as DP) is a programming technique that can 
dramatically reduces the runtime of some algorithms (but not all problem has DP 
characteristics) from exponential to polynomial. Many (and still increasing) real world 
problems only solvable within reasonable time using DP. 

To be able to use DP, the original problem must have: 

1. Optimal sub-structure property: 
    Optimal solution to the problem contains within it optimal solutions to sub-problems 
2. Overlapping sub-problems property 
    We accidentally recalculate the same problem twice or more. 

There are 2 types of DP: We can either build up solutions of sub-problems from small to 
large (bottom up) or we can save results of solutions of sub-problems in a table (top down 
+ memoization). 

Let's start with a sample of Dynamic Programming (DP) technique. We will examine the 
simplest form of overlapping sub-problems. Remember Fibonacci? A popular problem 
which creates a lot of redundancy if you use standard recursion fn = fn-1 + fn-2. 

Top-down Fibonacci DP solution will record the each Fibonacci calculation in a table so 
it won't have to re-compute the value again when you need it, a simple table-lookup is 
enough (memorization), whereas Bottom-up DP solution will build the solution from 
smaller numbers. 

Now let's see the comparison between Non-DP solution versus DP solution (both bottom-
up and top-down), given in the C source code below, along with the appropriate 
comments 

#include <stdio.h> 

#define MAX 20 // to test with bigger number, adjust this value 

int memo[MAX]; // array to store the previous calculations 

// the slowest, unnecessary computation is repeated 
int Non_DP(int n) { 
  if (n==1 || n==2) 
    return 1; 
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else 
    return Non_DP(n-1) + Non_DP(n-2); 
} 

// top down DP 
int DP_Top_Down(int n) { 
  // base case 
  if (n == 1 || n == 2) 
    return 1; 

  // immediately return the previously computed result 
  if (memo[n] != 0) 
    return memo[n]; 

  // otherwise, do the same as Non_DP 
  memo[n] = DP_Top_Down(n-1) + DP_Top_Down(n-2); 
  return memo[n]; 
} 

// fastest DP, bottom up, store the previous results in array 
int DP_Bottom_Up(int n) { 
  memo[1] = memo[2] = 1; // default values for DP algorithm 

  // from 3 to n (we already know that fib(1) and fib(2) = 1 
  for (int i=3; i<=n; i++) 
    memo[i] = memo[i-1] + memo[i-2]; 

  return memo[n]; 
} 

void main() { 
  int z; 

  // this will be the slowest 
  for (z=1; z<MAX; z++) printf("%d-",Non_DP(z)); 
  printf("\n\n"); 

  // this will be much faster than the first 
  for (z=0; z<MAX; z++) memo[z] = 0; 
  for (z=1; z<MAX; z++) printf("%d-",DP_Top_Down(z)); 
  printf("\n\n"); 

  /* this normally will be the fastest */ 
  for (z=0; z<MAX; z++) memo[z] = 0; 
  for (z=1; z<MAX; z++) printf("%d-",DP_Bottom_Up(z)); 
  printf("\n\n"); 
} 

 


