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Matrix Chain Multiplication (MCM) 

Let's start by analyzing the cost of multiplying 2 matrices: 

Matrix-Multiply(A,B): 
  if columns[A] != columns[B] then 
    error "incompatible dimensions" 
  else 
    for i = 1 to rows[A] do 
      for j = 1 to columns[B] do 
        C[i,j]=0 
        for k = 1 to columns[A] do 
          C[i,j] = C[i,j] + A[i,k] * B[k,j] 
  return C 

Time complexity = O(pqr) where |A|=p x q and |B| = q x r 

|A| = 2 * 3, |B| = 3 * 1, therefore to multiply these 2 matrices, we need O(2*3*1)=O(6) 
scalar multiplication. The result is matrix C with |C| = 2 * 1 

TEST YOUR MATRIX MULTIPLICATION KNOWLEDGE 

Solve UVa problems related with Matrix Multiplication: 

442 - Matrix Chain Multiplication - Straightforward problem
 

Matrix Chain Multiplication Problem 

Input: Matrices A1,A2,...An, each Ai of size Pi-1 x Pi 
Output: Fully parenthesized product A1A2...An that minimizes the number of scalar 
multiplications 

A product of matrices is fully parenthesized if it is either 
1. a single matrix 
2. the product of 2 fully parenthesized matrix products surrounded by parentheses 

Example of MCM problem: 
We have 3 matrices and the size of each matrix: 
A1 (10 x 100), A2 (100 x 5), A3 (5 x 50) 
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We can fully parenthesized them in two ways: 
1. (A1 (A2 A3)) = 100 x 5 x 50 + 10 * 100 * 50 = 75000 
2. ((A1 A2) A3) = 10 x 100 x 5 + 10 x 5 x 50 = 7500 (10 times better) 

See how the cost of multiplying these 3 matrices differ significantly. The cost truly 
depend on the choice of the fully parenthesization of the matrices. However, exhaustively 
checking all possible parenthesizations take exponential time. 

Now let's see how MCM problem can be solved using DP. 

Step 1: characterize the optimal sub-structure of this problem. 

Let Ai..j (i < j) denote the result of multiplying AiAi+1..Aj. 
Ai..j can be obtained by splitting it into Ai..k and Ak+1..j and then multiplying the sub-
products. There are j-i possible splits (i.e. k=i,...,j-1) 

Within the optimal parenthesization of Ai..j : 
(a) the parenthesization of Ai..k must be optimal 
(b) the parenthesization of Ak+1..j must be optimal 

Because if they are not optimal, then there exist other split which is better, and we should 
choose that split and not this split. 

Step 2: Recursive formulation 

Need to find A1..n 
Let m[i,j] = minimum number of scalar multiplications needed to compute Ai..j 

Since Ai..j can be obtained by breaking it into Ai..k Ak+1..j, we have 
 

m[i,j] = 0, if i=j 
        = min i<=k<j { m[i,k]+m[k+1,j]+pi-1pkpj }, if i<j 

let s[i,j] be the value k where the optimal split occurs. 

Step 3 Computing the Optimal Costs 

Matric-Chain-Order(p) 
  n = length[p]-1 
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  for i = 1 to n do 
    m[i,i] = 0 
  for l = 2 to n do 
    for i = 1 to n-l+1 do 
      j = i+l-1 
      m[i,j] = infinity 
      for k = i to j-1 do 
        q = m[i,k] + m[k+1,j] + pi-1*pk*pj 
        if q < m[i,j] then 
          m[i,j] = q 
          s[i,j] = k 
  return m and s 

Step 4: Constructing an Optimal Solution 

Print-MCM(s,i,j) 
  if i=j then 
    print Ai 
  else 
    print "(" + Print-MCM(s,1,s[i,j]) + "*" + Print-MCM(s,s[i,j]+1,j) + 
")" 

Note: As any other DP solution, MCM also can be solved using Top 
Down recursive algorithm using memoization. Sometimes, if you cannot 
visualize the Bottom Up, approach, just modify your original Top Down 
recursive solution by including memoization. You'll save a lot of time by 
avoiding repetitive calculation of sub-problems.  

 

TEST YOUR MATRIX CHAIN MULTIPLICATION KNOWLEDGE 

Solve UVa problems related with Matrix Chain Multiplication: 

348 - Optimal Array Multiplication Sequence - Use algorithm above
 

Longest Common Subsequence (LCS) 

Input: Two sequence 
Output: A longest common subsequence of those two sequences, see details below. 

A sequence Z  is a subsequence of X <x1,x2,...,xm>, if there exists a strictly increasing 
sequence <i1,i2,...,ik> of indices of X such that for all j=1,2,..,k, we have xi=zj. example: 
X=<B,C,A,D> and Z=<C,A>. 
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A sequence Z is called common subsequence of sequence X and Y if Z is subsequence 
of both X and Y. 

longest common subsequence (LCS) is just the longest "common subsequence" of two 
sequences. 

A brute force approach of finding LCS such as enumerating all subsequences and finding 
the longest common one takes too much time. However, Computer Scientist has found a 
Dynamic Programming solution for LCS problem, we will only write the final code here, 
written in C, ready to use. Note that this code is slightly modified and we use global 
variables (yes this is not Object Oriented). 

#include <stdio.h> 
#include <string.h> 
#define MAX 100 
 
char X[MAX],Y[MAX]; 
int i,j,m,n,c[MAX][MAX],b[MAX][MAX]; 
 
int LCSlength() { 
 

  m=strlen(X); 
  n=strlen(Y); 
 
  for (i=1;i<=m;i++) c[i][0]=0; 
  for (j=0;j<=n;j++) c[0][j]=0; 
 
  for (i=1;i<=m;i++) 
    for (j=1;j<=n;j++) { 
      if (X[i-1]==Y[j-1]) { 
        c[i][j]=c[i-1][j-1]+1; 
        b[i][j]=1; /* from north west */ 
      } 
 

      else if (c[i-1][j]>=c[i][j-1]) { 
      c[i][j]=c[i-1][j]; 

       b[i][j]=2; /* from north */ 
      } 

      else { 
        c[i][j]=c[i][j-1]; 
        b[i][j]=3; /* from west */ 
      }  
    } 
  return c[m][n]; 
} 
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void printLCS(int i,int j) { 
  if (i==0 || j==0) return; 
 
  if (b[i][j]==1) { 
    printLCS(i-1,j-1); 
   printf("%c",X[i-1]);} 
  else if (b[i][j]==2) 
    printLCS(i-1,j); 
  else 
    printLCS(i,j-1); 
} 

void main() { 
  while (1) { 
    gets(X); 
    if (feof(stdin)) break; /* press ctrl+z to terminate */ 
    gets(Y); 
    printf("LCS length -> %d\n",LCSlength()); /* count length */ 
    printLCS(m,n); /* reconstruct LCS */ 
    printf("\n"); 
  } 
} 

TEST YOUR LONGEST COMMON SUBSEQUENCE KNOWLEDGE 

Solve UVa problems related with LCS: 

531 - Compromise 
10066 - The Twin Towers 
10100 - Longest Match 
10192 - Vacation 
10405 - Longest Common Subsequence 

 
 

Edit Distance 

Input: Given two string, Cost for deletion, insertion, and replace 
Output: Give the minimum actions needed to transform first string into the second one. 

Edit Distance problem is a bit similar to LCS. DP Solution for this problem is very useful 
in Computational Biology such as for comparing DNA. 

Let d(string1,string2) be the distance between these 2 strings. 
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A two-dimensional matrix, m[0..|s1|,0..|s2|] is used to hold the edit distance values, such 
that m[i,j] = d(s1[1..i], s2[1..j]). 

m[0][0] = 0; 
for (i=1; i<length(s1); i++) m[i][0] = i; 
for (j=1; j<length(s2); j++) m[0][j] = j; 

for (i=0; i<length(s1); i++) 
  for (j=0; j<length(s2); j++) { 
    val = (s1[i] == s2[j]) ? 0 : 1; 
    m[i][j] = min( m[i-1][j-1] + val, 
                   min(m[i-1][j]+1 , m[i][j-1]+1)); 
  } 

To output the trace, use another array to store our action along the way. Trace back these 
values later. 

TEST YOUR EDIT DISTANCE KNOWLEDGE 

164 - String Computer 
526 - String Distance and Edit Process 

 

Longest Inc/Dec-reasing Subsequence (LIS/LDS) 

Input: Given a sequence 
Output: The longest subsequence of the given sequence such that all values in this 
longest  subsequence is strictly increasing/decreasing. 

O(N^2) DP solution for LIS problem (this code check for increasing values): 

for i = 1 to total-1 
  for j = i+1 to total 
    if height[j] > height[i] then 
      if length[i] + 1 > length[j] then 
        length[j] = length[i] + 1 
        predecessor[j] = i 

Example of LIS 

height sequence: 1,6,2,3,5 
length initially: [1,1,1,1,1] - because max length is at least 1 rite... 
predecessor initially: [nil,nil,nil,nil,nil] - assume no predecessor so far 
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After first loop of j:  
  length: [1,2,2,2,2], because 6,2,3,5 are all > 1 
  predecessor: [nil,1,1,1,1] 
After second loop of j: (No change) 
  length: [1,2,2,2,2], because 2,3,5 are all < 6 
  predecessor: [nil,1,1,1,1] 
After third loop: 
  length: [1,2,2,3,3], because 3,5 are all > 2 
  predecessor: [nil,1,1,3,3] 

  After fourth loop: 
  length: [1,2,2,3,4], because 5 > 3 
  predecessor: [nil,1,1,3,4] 

We can reconstruct the solution using recursion and predecessor array.  

Is O(n^2) is the best algorithm to solve LIS/LDS ? 

Fortunately, the answer is “No”. 

There exist an O(n log k) algorithm to compute LIS (for LDS, this is just a reversed-LIS), 
where k is the size of the actual LIS. 

This algorithm use some invariant, where for each longest subsequence with length l, it 
will terminate with value A[l]. (Notice that by maintaining this invariant, array A will be 
naturally sorted.) Subsequent insertion (you will only do n insertions, one number at one 
time) will use binary search to find the appropriate position in this sorted array A  

0  1  2  3  4  5  6  7  8 
a    -7,10, 9, 2, 3, 8, 8, 1 

A -i  i, i, i, i, i, i, i, i (iteration number, i = infinity) 
A -i -7, i, i, i, i, i, i, i (1) 
A -i -7,10, i, i, i, i, i, i (2) 
A -i -7, 9, i, i, i, i, i, i (3) 
A -i -7, 2, i, i, i, i, i, i (4) 
A -i -7, 2, 3, i, i, i, i, i (5) 
A -i -7, 2, 3, 8, i, i, i, i (6) 
A -i -7, 2, 3, 8, i, i, i, i (7) 
A -i -7, 1, 3, 8, i, i, i, i (8) 

You can see that the length of LIS is 4, which is correct. To reconstruct the LIS, at each 
step, store the predecessor array as in standard LIS + this time remember the actual 
values, since array A only store the last element in the subsequence, not the actual values. 
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TEST YOUR LONGEST INC/DEC-REASING SUBSEQUENCE KNOWLEDGE 

111 - History Grading 
231 - Testing the CATCHER 
481 - What Goes Up - need O(n log k) LIS 
497 - Strategic Defense Initiative 
10051 - Tower of Cubes 
10131 - Is Bigger Smarter  

 

Zero-One Knapsack 

Input: N items, each with various Vi (Value) and Wi (Weight) and max Knapsack size 
MW. 
Output: Maximum value of items that one can carry, if he can either take or not-take a 
particular item. 

Let C[i][w] be the maximum value if the available items are {X1,X2,...,Xi} and the 
knapsack size is w. 

 if i == 0 or w == 0 (if no item or knapsack full), we can't take anything C[i][w] = 0 
 if Wi > w (this item too heavy for our knapsack),skip this item C[i][w] = C[i-1][w]; 
 if Wi <= w, take the maximum of "not-take" or "take" C[i][w] = max(C[i-1][w] , 

C[i-1][w-Wi]+Vi); 
 The solution can be found in C[N][W]; 

for (i=0;i<=N ;i++) C[i][0] = 0; 
for (w=0;w<=MW;w++) C[0][w] = 0; 
 
for (i=1;i<=N;i++) 
  for (w=1;w<=MW;w++) { 
    if (Wi[i] > w) 
      C[i][w] = C[i-1][w]; 
    else 
      C[i][w] = max(C[i-1][w] , C[i-1][w-Wi[i]]+Vi[i]); 
  } 
output(C[N][MW]); 

TEST YOUR 0-1 KNAPSACK KNOWLEDGE 

Solve UVa problems related with 0-1 Knapsack: 

10130 - SuperSale 
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Counting Change 

Input: A list of denominations and a value N to be changed with these denominations 
Output: Number of ways to change N 

Suppose you have coins of 1 cent, 5 cents and 10 cents. You are asked to pay 16 cents, 
therefore you have to give 1 one cent, 1 five cents, and 1 ten cents. Counting Change 
algorithm can be used to determine how many ways you can use to pay an amount of 
money. 

The number of ways to change amount A using N kinds of coins equals to: 

1. The number of ways to change amount A using all but the first kind of coins, + 
2. The number of ways to change amount A-D using all N kinds of coins, where D is 
the denomination of the first kind of coin. 

The tree recursive process will gradually reduce the value of A, then using this rule, we 
can determine how many ways to change coins. 

1. If A is exactly 0, we should count that as 1 way to make change. 
2. If A is less than 0, we should count that as 0 ways to make change. 
3. If N kinds of coins is 0, we should count that as 0 ways to make change. 

#include <stdio.h> 
#define MAXTOTAL 10000 
long long nway[MAXTOTAL+1]; 

int coin[5] = { 50,25,10,5,1 }; 
 
void main()  

{ 
  int i,j,n,v,c; 
  scanf("%d",&n); 
  v = 5; 
  nway[0] = 1; 
  for (i=0; i<v; i++) { 
    c = coin[i]; 
    for (j=c; j<=n; j++) 
      nway[j] += nway[j-c]; 
  } 
  printf("%lld\n",nway[n]); 
} 
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TEST YOUR COUNTING CHANGE KNOWLEDGE 

147 - Dollars 
357 - Let Me Count The Ways - Must use Big Integer   674 - Coin Change

 

Maximum Interval Sum 

Input: A sequence of integers 
Output: A sum of an interval starting from index i to index j (consecutive), this sum must 
be maximum among all possible sums. 

Numbers : -1 6 
Sum     : -1 6 
             ^ 
          max sum 

Numbers : 4 -5  4 -3  4  4 -4  4 -5 
Sum     : 4 -1  4  1  5  9  5  9  4 
             ^                 ^ 
            stop            max sum 

Numbers : -2 -3 -4 
Sum     : -2 -3 -4 
           ^ 
        max sum, but negative... (this is the maximum anyway) 

So, just do a linear sweep from left to right, accumulate the sum one element by one 
element, start new interval whenever you encounter partial sum < 0 (and record current 
best maximum interval encountered so far)... 

At the end, output the value of the maximum intervals. 

TEST YOUR MAXIMUM INTERVAL SUM KNOWLEDGE 

Solve UVa problems related with Maximum Interval Sum: 

507 - Jill Rides Again 
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Other Dynamic Programming Algorithms 

Problems that can be solved using Floyd Warshall and it's variant, which belong to the 
category all-pairs shortest path algorithm, can be categorized as Dynamic Programming 
solution. Explanation regarding Floyd Warshall can be found in Graph section.  

Other than that, there are a lot of ad hoc problems that can utilize DP, just remember that 
when the problem that you encountered exploits optimal sub-structure and repeating sub-
problems, apply DP techniques, it may be helpful.  

TEST YOUR DP KNOWLEDGE 

Solve UVa problems related with Ad-Hoc DP: 

108 - Maximum Sum 
836 - Largest Submatrix 
10003 - Cutting Sticks 
10465 - Homer Simpson 
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CHAPTER 12   GRAPHS 
A graph is a collection of vertices V and a collection of edges E consisting of pairs of 
vertices. Think of vertices as ``locations''. The set of vertices is the set of all the possible 
locations. In this analogy, edges represent paths between pairs of those locations. The set 
E contains all the paths between the locations.[2]  

Vertices and Edges 

 

The graph is normally represented using that 
analogy. Vertices are points or circles, edges are 
lines between them.  

In this example graph: 
V = {1, 2, 3, 4, 5, 6} 
E = {(1,3), (1,6), (2,5), (3,4), (3,6)}. 

Each vertex is a member of the set V. A vertex is 
sometimes called a node.  

Each edge is a member of the set E. Note that some vertices might not be the end point of 
any edge. Such vertices are termed ``isolated''.  

Sometimes, numerical values are associated with edges, specifying lengths or costs; such 
graphs are called edge-weighted graphs (or weighted graphs). The value associated with 
an edge is called the weight of the edge. A similar definition holds for node-weighted 
graphs. 

Telecommunication 

Given a set of computers and a set of wires running between pairs of computers, 
what is the minimum number of machines whose crash causes two given machines 
to be unable to communicate? (The two given machines will not crash.) 

 

Graph: The vertices of the graph are the computers. The edges are the wires between the 
computers. Graph problem: minimum dominating sub-graph. 
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Riding The Fences 

Farmer John owns a large number of fences, which he must periodically check for 
integrity. He keeps track of his fences by maintaining a list of points at which 
fences intersect. He records the name of the point and the one or two fence names 
that touch that point. Every fence has two end points, each at some intersection 
point, although the intersection point may be the end point of only one fence.  

Given a fence layout, calculate if there is a way for Farmer John to ride his horse to 
all of his fences without riding along a fence more than once. Farmer John can start 
and finish anywhere, but cannot cut across his fields (i.e., the only way he can 
travel between intersection points is along a fence). If there is a way, find one way.  

 

 

Graph: Farmer John starts at intersection points and travels between the points along 
fences. Thus, the vertices of the underlying graph are the intersection points, and the 
fences represent edges. Graph problem: Traveling Salesman Problem. 

 

Knight moves 

Two squares on an 8x8 chessboard. Determine the shortest sequence of knight 
moves from one square to the other.  

 

 

Graph: The graph here is harder to see. Each location on the chessboard represents a 
vertex. There is an edge between two positions if it is a legal knight move. Graph 
Problem: Single Source Shortest Path. 
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Overfencing 

Farmer John created a huge maze of fences in a field. He omitted two fence 
segments on the edges, thus creating two ``exits'' for the maze. The maze is a 
``perfect'' maze; you can find a way out of the maze from any point inside it.  

Given the layout of the maze, calculate the number of steps required to exit the 
maze from the ``worst'' point in the maze (the point that is ``farther'' from either 
exit when walking optimally to the closest exit).  

Here's what one particular W=5, H=3 maze looks like: 
 
+-+-+-+-+-+ 
|         | 
+-+ +-+ + + 
|     | | | 
+ +-+-+ + + 
| |     |   
+-+ +-+-+-+  

 

Graph: The vertices of the graph are positions in the grid. There is an edge between two 
vertices if they represent adjacent positions that are not separated by a wall.  

Terminology 

An edge is a self-loop if it is of the form (u,u). The sample graph contains no self-loops.  

A graph is simple if it neither contains self-loops nor contains an edge that is repeated in 
E. A graph is called a multigraph if it contains a given edge more than once or contain 
self-loops. For our discussions, graphs are assumed to be simple. The example graph is a 
simple graph.  

An edge (u,v) is incident to both vertex u and vertex v. For example, the edge (1,3) is 
incident to vertex 3.  

The degree of a vertex is the number of edges which are incident to it. For example, 
vertex 3 has degree 3, while vertex 4 has degree 1.  
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Vertex u is adjacent to vertex v if there is some edge to which both are incident (that is, 
there is an edge between them). For example, vertex 2 is adjacent to vertex 5.  

A graph is said to be sparse if the total number of edges is small compared to the total 
number possible ((N x (N-1))/2) and dense otherwise. For a given graph, whether it is 
dense or sparse is not well-defined.  

Directed Graph 

Graphs described thus far are called undirected, 
as the edges go `both ways'. So far, the graphs 
have connoted that if one can travel from vertex 
1 to vertex 3, one can also travel from vertex 1 to 
vertex 3. In other words, (1,3) being in the edge 
set implies (3,1) is in the edge set.  

Sometimes, however, a graph is directed, in 
which case the edges have a direction. In this 

case, the edges are called arcs.  

Directed graphs are drawn with arrows to show direction.  

The out-degree of a vertex is the number of arcs which begin at that vertex. The in-
degree of a vertex is the number of arcs which end at that vertex. For example, vertex 6 
has in-degree 2 and out-degree 1.  

A graph is assumed to be undirected unless specifically called a directed graph.  

Paths 

A path from vertex u to vertex x is a sequence of 
vertices (v 0, v 1, ..., v k) such that v 0 = u and v 
k = x and (v 0, v 1) is an edge in the graph, as is 
(v 1, v 2), (v 2, v 3), etc. The length of such a 
path is k.  

For example, in the undirected graph above, (4, 
3, 1, 6) is a path.  

This path is said to contain the vertices v 0, v 1, etc., as well as the edges (v 0, v 1), (v 1, 
v 2), etc.  
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Vertex x is said to be reachable from vertex u if a path exists from u to x.  

A path is simple if it contains no vertex more than once.  

A path is a cycle if it is a path from some vertex to that same vertex. A cycle is simple if 
it contains no vertex more than once, except the start (and end) vertex, which only 
appears as the first and last vertex in the path.  

These definitions extend similarly to directed graphs (e.g., (v 0, v 1), (v 1, v 2), etc. must 
be arcs).  

Graph Representation 

The choice of representation of a graph is important, as different representations have 
very different time and space costs.  

The vertices are generally tracked by numbering them, so that one can index them just by 
their number. Thus, the representations focus on how to store the edges.  

Edge List 

The most obvious way to keep track of the edges is to keep a list of the pairs of vertices 
representing the edges in the graph.  

This representation is easy to code, fairly easy to debug, and fairly space efficient. 
However, determining the edges incident to a given vertex is expensive, as is determining 
if two vertices are adjacent. Adding an edge is quick, but deleting one is difficult if its 
location in the list is not known.  

For weighted graphs, this representation also keeps one more number for each edge, the 
edge weight. Extending this data structure to handle directed graphs is straightforward. 
Representing multigraphs is also trivial.  

Example 

  V1 V2 
e1 4 3 
e2 1 3 
e3 2 5 
e4 6 1 
e5 3 6 
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Adjacency Matrix 

A second way to represent a graph utilized an adjacency matrix. This is a N by N array 
(N is the number of vertices). The i,j entry contains a 1 if the edge (i,j) is in the graph; 
otherwise it contains a 0. For an undirected graph, this matrix is symmetric.  

This representation is easy to code. It's much less space efficient, especially for large, 
sparse graphs. Debugging is harder, as the matrix is large. Finding all the edges incident 
to a given vertex is fairly expensive (linear in the number of vertices), but checking if two 
vertices are adjacent is very quick. Adding and removing edges are also very inexpensive 
operations.  

For weighted graphs, the value of the (i,j) entry is used to store the weight of the edge. 
For an unweighted multigraph, the (i,j) entry can maintain the number of edges between 
the vertices. For a weighted multigraph, it's harder to extend this.  

Example 

The sample undirected graph would be represented by the following adjacency matrix:  

  V1 V2 V3 V4 V5 V6 
V1 0 0 1 0 0 1 
V2 0 0 0 0 1 0 
V3 1 0 0 1 0 1 
V4 0 0 1 0 0 0 
V5 0 1 0 0 0 0 
V6 1 0 1 0 0 0 

It is sometimes helpful to use the fact that the (i,j) entry of the adjacency matrix raised to 
the k-th power gives the number of paths from vertex i to vertex j consisting of exactly k 
edges.  

Adjacency List 

The third representation of a matrix is to keep track of all the edges incident to a given 
vertex. This can be done by using an array of length N, where N is the number of 
vertices. The i-th entry in this array is a list of the edges incident to i-th vertex (edges are 
represented by the index of the other vertex incident to that edge).  
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This representation is much more difficult to code, especially if the number of edges 
incident to each vertex is not bounded, so the lists must be linked lists (or dynamically 
allocated). Debugging this is difficult, as following linked lists is more difficult. 
However, this representation uses about as much memory as the edge list. Finding the 
vertices adjacent to each node is very cheap in this structure, but checking if two vertices 
are adjacent requires checking all the edges adjacent to one of the vertices. Adding an 
edge is easy, but deleting an edge is difficult, if the locations of the edge in the 
appropriate lists are not known.  

Extend this representation to handle weighted graphs by maintaining both the weight and 
the other incident vertex for each edge instead of just the other incident vertex. 
Multigraphs are already representable. Directed graphs are also easily handled by this 
representation, in one of several ways: store only the edges in one direction, keep a 
separate list of incoming and outgoing arcs, or denote the direction of each arc in the list.  

Example 

The adjacency list representation of the example undirected graph is as follows:  

Vertex Adjacent Vertices 
1 3, 6 
2 5 
3 6, 4, 1 
4 3 
5 2 
6 3, 1 

 

Implicit Representation 

For some graphs, the graph itself does not have to be stored at all. For example, for the 
Knight moves and Overfencing problems, it is easy to calculate the neighbors of a vertex, 
check adjacency, and determine all the edges without actually storing that information, 
thus, there is no reason to actually store that information; the graph is implicit in the data 
itself.  

If it is possible to store the graph in this format, it is generally the correct thing to do, as it 
saves a lot on storage and reduces the complexity of your code, making it easy to both 
write and debug.  
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If N is the number of vertices, M the number of edges, and d max the maximum degree of 
a node, the following table summarizes the differences between the representations:  

Efficiency Edge List Adj Matrix Adj List 
Space 2*M N^2 2xM 
Adjacency Check M 1 d max 
List of Adjacent Vertices M N d max 
Add Edge 1 1 1 
Delete Edge M 2 2*d max 

 

Connectedness 

->  

 

An undirected graph is said to be connected if there is a path from every vertex to every 
other vertex. The example graph is not connected, as there is no path from vertex 2 to 
vertex 4. However, if you add an edge between vertex 5 and vertex 6, then the graph 
becomes connected. 

A component of a graph is a maximal subset of the vertices such that every vertex is 
reachable from each other vertex in the component. The original example graph has two 
components: {1, 3, 4, 6} and {2, 5}. Note that {1, 3, 4} is not a component, as it is not 
maximal.  

A directed graph is said to be strongly connected if there is a path from every vertex to 
every other vertex.  

A strongly connected component of a directed graph is a vertex u and the collection of all 
vertices v such that there is a path from u to v and a path from v to u.  
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Subgraphs 

Graph G' = (V', E') is a subgraph of G = (V, E) if V' is a subset 
of V and E' is a subset of E.  

The subgraph of G induced by V' is the graph (V', E'), where E' 
consists of all the edges of E that are between members of V'.  

For example, for V' = {1, 3, 4, 2}, the subgraph is like the one 
shown ->  

Tree 

An undirected graph is said to be a tree if it contains no cycles 
and is connected.  

 

 

 

  A rooted tree 

Many trees are what is called rooted, where there is a notion of the "top" node, which is 
called the root. Thus, each node has one parent, which is the adjacent node which is 
closer to the root, and may have any number of children, which are the rest of the nodes 
adjacent to it. The tree above was drawn as a rooted tree. 

Forest 

 
An undirected graph which contains no cycles is called a forest. 
A directed acyclic graph is often referred to as a dag. 
 


