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Complete Graph 

A graph is said to be complete if there is an edge between 
every pair of vertices. 
 
 
 
 
 
 
 
 
 

 

Bipartite Graph 

 
A graph is said to be bipartite if the vertices can be split into 
two sets V1 and V2 such there are no edges between two 
vertices of V1 or two vertices of V2. 
  

 

 

 

 

Uninformed Search 

Searching is a process of considering possible sequences of actions, first you have to 
formulate a goal and then use the goal to formulate a problem. 

A problem consists of four parts: the initial state, a set of operators, a goal test  
function, and a path cost function. The environment of the problem is represented by a 
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state space. A path through the state space from the initial state to a goal state is a 
solution. 

In real life most problems are ill-defined, but with some analysis, many problems can fit 
into the state space model. A single general search algorithm can be used to solve any 
problem; specific variants of the algorithm embody different strategies. Search 
algorithms are judged on the basis of completeness, optimality, time complexity, and 
space complexity. Complexity depends on b, the branching factor in the state space, 
and d, the depth of the shallowest solution. 

This 6 search type below (there are more, but we only show 6 here) classified as 
uninformed search, this means that the search have no information about the number of 
steps or the path cost from the current state to the goal - all they can do is distinguish a 
goal state from a non-goal state. Uninformed search is also sometimes called blind 
search. 

Breadth First Serach (BFS) 

Breadth-first search expands the shallowest node in the search tree first. It is complete, 
optimal for unit-cost operators, and has time and space complexity of O(b^d). The space 
complexity makes it impractical in most cases. 

Using BFS strategy, the root node is expanded first, then all the nodes generated by the 
root node are expanded next, and their successors, and so on. In general, all the nodes at 
depth d in the search tree are expanded before the nodes at depth d+1. 

Algorithmically: 

BFS(G,s) { 
  initialize vertices; 
  Q = {s]; 
  while (Q not empty) { 
    u = Dequeue(Q); 
    for each v adjacent to u do { 
      if (color[v] == WHITE) { 
        color[v] = GRAY; 
        d[v] = d[u]+1; // compute d[] 
        p[v] = u;  // build BFS tree 
        Enqueue(Q,v); 
    } 
  } 
  color[u] = BLACK; 
} 

BFS runs in O(V+E) 
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Note: BFS can compute d[v] = shortest-path distance from s to v, in terms of minimum 
number of edges from s to v (un-weighted graph). Its breadth-first tree can be used to 
represent the shortest-path. 

BFS Solution to Popular JAR Problem 

 

#include<stdio.h> 
#include<conio.h> 
#include<values.h> 
 
#define N 105 
#define MAX MAXINT 
 
int act[N][N], Q[N*20][3], cost[N][N]; 
int a, p, b, m, n, fin, na, nb, front, rear; 
 
void init() 
{ 
 front = -1, rear = -1; 
 for(int i=0; i<N; i++) 
  for(int j=0; j<N; j++) 
   cost[i][j] = MAX; 
 cost[0][0] = 0; 
} 
 
void nQ(int r, int c, int p) 
{ 
 Q[++rear][0] = r, Q[rear][1] = c, Q[rear][2] = p; 
} 
 
void dQ(int *r, int *c, int *p) 
{ 
 *r = Q[++front][0], *c = Q[front][1], *p = front; 
} 
 
void op(int i) 
{ 
 int currCapA, currCapB; 
 if(i==0) 
  na = 0, nb = b; 
 else if(i==1) 
  nb = 0, na = a; 
 else if(i==2) 
  na = m, nb = b; 
 else if(i==3) 
  nb = n, na = a; 
 else if(i==4) 
 { 
  if(!a && !b) 
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   return; 
  currCapB = n - b; 
  if(currCapB <= 0) 
   return; 
  if(a >= currCapB) 
   nb = n, na = a, na -= currCapB; 
  else 
   nb = b, nb += a, na = 0; 
 } 
 else 
 { 
  if(!a && !b) 
   return; 
  currCapA = m - a; 
  if(currCapA <= 0) 
   return; 
  if(b >= currCapA) 
   na = m, nb = b, nb -= currCapA; 
  else 
   nb = 0, na = a, na += b; 
 } 
} 
 
void bfs() 
{ 
 nQ(0, 0, -1); 
 do{ 
 
  dQ(&a, &b, &p); 
  if(a==fin) 
   break; 
  for(int i=0; i<6; i++) 
  { 
   op(i); /* na, nb will b changed for this func 
      according to values of a, b 
    */ 
   if(cost[na][nb]>cost[a][b]+1) 
   { 
    cost[na][nb]=cost[a][b]+1; 
    act[na][nb] = i; 
    nQ(na, nb, p); 
   } 
  } 
 } while (rear!=front); 
} 
 
void dfs(int p) 
{ 
 int i = act[na][nb]; 
 if(p==-1) 
  return; 
 na = Q[p][0], nb = Q[p][1]; 
 dfs(Q[p][2]); 
 if(i==0) 
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  printf("Empty A\n"); 
 else if(i==1) 
  printf("Empty B\n"); 
 else if(i==2) 
  printf("Fill A\n"); 
 else if(i==3) 
  printf("Fill B\n"); 
 else if(i==4) 
  printf("Pour A to B\n"); 
 else 
  printf("Pout B to A\n"); 
} 
 
void main() 
{ 
 clrscr(); 
 while(scanf("%d%d%d", &m, &n, &fin)!=EOF) 
 { 
  printf("\n"); 
  init(); 
  bfs(); 
  dfs(Q[p][2]); 
  printf("\n"); 
 } 
} 

 

Uniform Cost Search (UCS) 

Uniform-cost search expands the least-cost leaf node first. It is complete, and unlike 
breadth-first search is optimal even when operators have differing costs. Its space and 
time complexity are the same as for BFS. 

BFS finds the shallowest goal state, but this may not always be the least-cost solution for 
a general path cost function. UCS modifies BFS by always expanding the lowest-cost 
node on the fringe. 

Depth First Search (DFS) 

Depth-first search expands the deepest node in the search tree first. It is neither 
complete nor optimal, and has time complexity of O(b^m) and space complexity of 
O(bm), where m is the maximum depth. In search trees of large or infinite depth, the time 
complexity makes this impractical. 

DFS always expands one of the nodes at the deepest level of the tree. Only when the 
search hits a dead end (a non-goal node with no expansion) does the search go back and 
expand nodes at shallower levels. 
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Algorithmically: 

DFS(G) { 
  for each vertex u in V 
    color[u] = WHITE; 
  time = 0; // global variable 
  for each vertex u in V 

    if (color [u] == WHITE) 
      DFS_Visit(u); 
} 
 
DFS_Visit(u) { 
  color[u] = GRAY; 
  time = time + 1; // global variable 
  d[u] = time; // compute discovery time d[] 
  for each v adjacent to u 
    if (color[v] == WHITE) { 
      p[v] = u; // build DFS-tree 
      DFS_Visit(u); 
    } 
  color[u] = BLACK; 
  time = time + 1; // global variable 
  f[u] = time; // compute finishing time f[] 
} 

DFS runs in O(V+E) 

DFS can be used to classify edges of G: 

1. Tree edges: edges in the depth-first forest 
2. Back edges: edges (u,v) connecting a vertex u to an ancestor v in a depth-first tree 
3. Forward edges: non-tree edges (u,v) connecting a vertex u to a descendant v in  
    a depth-first tree 
4. Cross edges: all other edges 

An undirected graph is acyclic iff a DFS yields no back edges. 

DFS algorithm Implementation 

Form a one-element queue consisting of the root node. 

Until the queue is empty or the goal has been reached, determine if the first element in 
the queue is the goal node. If the first element is the goal node, do nothing. If the first 
element is not the goal node, remove the first element from the queue and add the first 
element's children, if any, to the front of the queue. 
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If the goal node has been found, announce success, otherwise announce failure. 

Note: This implementation differs with BFS in insertion of first element's children, DFS 
from FRONT while BFS from BACK. The worst case for DFS is the best case for BFS 
and vice versa. However, avoid using DFS when the search trees are very large or with 
infinite maximum depths. 

N Queens Problem 

Place n queens on an n x n chess board so that no queen is attacked by another 
queen.  

 

The most obvious solution to code is to add queens recursively to the board one by one, 
trying all possible queen placements. It is easy to exploit the fact that there must be 
exactly one queen in each column: at each step in the recursion, just choose where in the 
current column to put the queen. 

DFS Solution 

1 search(col) 
2    if filled all columns 
3       print solution and exit  
4    for each row 
5       if board(row, col) is not attacked 
6          place queen at (row, col) 
7          search(col+1) 
8          remove queen at (row, col)  

Calling search(0) begins the search. This runs quickly, since there are relatively few 
choices at each step: once a few queens are on the board, the number of non-attacked 
squares goes down dramatically. 

This is an example of depth first search, because the algorithm iterates down to the 
bottom of the search tree as quickly as possible: once k queens are placed on the board, 
boards with even more queens are examined before examining other possible boards with 
only k queens. This is okay but sometimes it is desirable to find the simplest solutions 
before trying more complex ones.  

Depth first search checks each node in a search tree for some property. The search tree 
might look like this:  
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The algorithm searches the tree by going down as far as 
possible and then backtracking when necessary, making 
a sort of outline of the tree as the nodes are visited. 
Pictorially, the tree is traversed in the following manner: 

 

Suppose there are d decisions that must be made. (In 
this case d=n, the number of columns we must fill.) 
Suppose further that there are C choices for each 
decision. (In this case c=n also, since any of the rows 

could potentially be chosen.) Then the entire search will take time proportional to c^d, 
i.e., an exponential amount of time. This scheme requires little space, though: since it 
only keeps track of as many decisions as there are to make, it requires only O(d) space.  

Knight Cover 

Place as few knights as possible on an n x n chess board so that every square is 
attacked. A knight is not considered to attack the square on which it sits.  

 
 

Depth First with Iterative Deepening (DF-ID) 

An alternative to breadth first search is iterative deepening. Instead of a single breadth 
first search, run D depth first searches in succession, each search allowed to go one row 
deeper than the previous one. That is, the first search is allowed only to explore to row 1, 
the second to row 2, and so on. This ``simulates'' a breadth first search at a cost in time 
but a savings in space. 
 
1 truncated_dfsearch(hnextpos, depth) 
2    if board is covered 
3       print solution and exit 
4    if depth == 0 
5       return  
6    for i from nextpos to n*n 
7       put knight at i 
8       search(i+1, depth-1) 
9       remove knight at i  
10      dfid_search 
11    for depth = 0 to max_depth 
12       truncated_dfsearch(0, depth)  
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The space complexity of iterative deepening is just the space complexity of depth first 
search: O(n). The time complexity, on the other hand, is more complex. Each truncated 
depth first search stopped at depth k takes ck time. Then if d is the maximum number of 
decisions, depth first iterative deepening takes c^0 + c^1 + c^2 + ... + c^d time.  

Which to Use? 

Once you've identified a problem as a search problem, it's important to choose the right 
type of search. Here are some things to think about.  

Search Time Space When to use 

DFS O(c^k) O(k) 
Must search tree anyway, know the level the 
answers are on, or you aren't looking for the 
shallowest number. 

BFS O(c^d) O(c^d) Know answers are very near top of tree, or 
want shallowest answer. 

DFS+ID O(c^d) O(d) Want to do BFS, don't have enough space, 
and can spare the time. 

      d is the depth of the answer,k is the depth searched,d <= k . 

Remember the ordering properties of each search. If the program needs to produce a list 
sorted shortest solution first (in terms of distance from the root node), use breadth first 
search or iterative deepening. For other orders, depth first search is the right strategy.  

If there isn't enough time to search the entire tree, use the algorithm that is more likely to 
find the answer. If the answer is expected to be in one of the rows of nodes closest to the 
root, use breadth first search or iterative deepening. Conversely, if the answer is expected 
to be in the leaves, use the simpler depth first search.  

Be sure to keep space constraints in mind. If memory is insufficient to maintain the queue 
for breadth first search but time is available, use iterative deepening. 

Depth Limited Search  

Depth-limited search places a limit on how deep a depth-first search can go. If the limit 
happens to be equal to the depth of shallowest goal state, then time and space complexity 
are minimized. 

DLS stops to go any further when the depth of search is longer than what we have 
defined. 
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Iterative  Depending Search 

Iterative deepening search calls depth-limited search with increasing limits until a goal 
is found. It is complete and optimal, and has time complexity of O(b^d) 

IDS is a strategy that sidesteps the issue of choosing the best depth limit by trying all 
possible depth limits: first depth 0, then depth 1, then depth 2, and so on. In effect, IDS 
combines the benefits of DFS and BFS. 

Bidirectional Search 

Bidirectional search can enormously reduce time complexity, but is not always 
applicable. Its memory requirements may be impractical. 

BDS simultaneously search both forward form the initial state and backward from the 
goal, and stop when the two searches meet in the middle, however search like this is not 
always possible. 

Superprime Rib 

A number is called superprime if it is prime and every number obtained by 
chopping some number of digits from the right side of the decimal expansion is 
prime. For example, 233 is a superprime, because 233, 23, and 2 are all prime. 
Print a list of all the superprime numbers of length n, for n <= 9. The number 1 is 
not a prime.  

For this problem, use depth first search, since all the answers are going to be at the nth 
level (the bottom level) of the search.  

Betsy's Tour 

A square township has been partitioned into n 2 square plots. The Farm is located in 
the upper left plot and the Market is located in the lower left plot. Betsy takes a tour 
of the township going from Farm to Market by walking through every plot exactly 
once. Write a program that will count how many unique tours Betsy can take in 
going from Farm to Market for any value of n <= 6. 
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Since the number of solutions is required, the entire tree must be searched, even if one 
solution is found quickly. So it doesn't matter from a time perspective whether DFS or 
BFS is used. Since DFS takes less space, it is the search of choice for this problem.  

Udder Travel 

The Udder Travel cow transport company is based at farm A and owns one cow 
truck which it uses to pick up and deliver cows between seven farms A, B, C, D, E, 
F, and G. The (commutative) distances between farms are given by an array. Every 
morning, Udder Travel has to decide, given a set of cow moving orders, the order 
in which to pick up and deliver cows to minimize the total distance traveled. Here 
are the rules:  

1. The truck always starts from the headquarters at farm A and must return 
there when the day's deliveries are done.  

2. The truck can only carry one cow at time.  
3. The orders are given as pairs of letters denoting where a cow is to be picked 

up followed by where the cow is to be delivered. 

Your job is to write a program that, given any set of orders, determines the shortest 
route that takes care of all the deliveries, while starting and ending at farm A.  

Since all possibilities must be tried in order to ensure the best one is found, the entire tree 
must be searched, which takes the same amount of time whether using DFS or BFS. 
Since DFS uses much less space and is conceptually easier to implement, use that.  

Desert Crossing 

A group of desert nomads is working together to try to get one of their group 
across the desert. Each nomad can carry a certain number of quarts of water, and 
each nomad drinks a certain amount of water per day, but the nomads can carry 
differing amounts of water, and require different amounts of water. Given the 
carrying capacity and drinking requirements of each nomad, find the minimum 
number of nomads required to get at least one nomad across the desert.  

All the nomads must survive, so every nomad that starts out must either turn back 
at some point, carrying enough water to get back to the start or must reach the 
other side of the desert. However, if a nomad has surplus water when it is time to 
turn back, the water can be given to their friends, if their friends can carry it.  
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This problem actually is two recursive problems: one recursing on the set of nomads to 
use, the other on when the nomads turn back. Depth-first search with iterative deepening 
works well here to determine the nomads required, trying first if any one can make it 
across by themselves, then seeing if two work together to get across, etc.  

 

Addition Chains 

An addition chain is a sequence of integers such that the first number is 1, and 
every subsequent number is the sum of some two (not necessarily unique) numbers 
that appear in the list before it. For example, 1 2 3 5 is such a chain, as 2 is 1+1, 3 
is 2+1, and 5 is 2+3. Find the minimum length chain that ends with a given 
number.  

 

Depth-first search with iterative deepening works well here, as DFS has a tendency to first 
try 1 2 3 4 5 ... n, which is really bad and the queue grows too large very quickly for BFS. 

Informed Search 

Unlike Uninformed Search, Informed Search knows some information that can be used to 
improve the path selection. Examples of Informed Search: Best First Search, Heuristic 
Search such as A*. 

Best First Search 

we define a function f(n) = g(n) where g(n) is the estimated value from node 'n' to goal. 
This search is "informed" because we do a calculation to estimate g(n) 

A* Search 

f(n) = h(n) + g(n), similar to Best First Search, it uses g(n), but also uses h(n), the total 
cost incurred so far. The best search to consider if you know how to compute g(n). 
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Components 

Given: a undirected graph (see picture on 
the right) 

The component of a graph is a maximal-
sized (though not necessarily maximum) 
subgraph which is connected.  

Calculate the component of the graph. 

This graph has three components: {1,4,8}, 
{2,5,6,7,9}, & {3}. 

 

 

Flood Fill Algorithm 

Flood fill can be performed three basic ways: depth-first, breadth-first, and breadth-first 
scanning. The basic idea is to find some node which has not been assigned to a 
component and to calculate the component which contains. The question is how to 
calculate the component.  

In the depth-first formulation, the algorithm looks at each step through all of the 
neighbors of the current node, and, for those that have not been assigned to a component 
yet, assigns them to this component and recurses on them.  

In the breadth-first formulation, instead of recursing on the newly assigned nodes, they 
are added to a queue.  

In the breadth-first scanning formulation, every node has two values: component and 
visited. When calculating the component, the algorithm goes through all of the nodes that 
have been assigned to that component but not visited yet, and assigns their neighbors to 
the current component.  
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The depth-first formulation is the easiest to code and debug, but can require a stack as big 
as the original graph. For explicit graphs, this is not so bad, but for implicit graphs, such 
as the problem presented has, the numbers of nodes can be very large.  

The breadth-formulation does a little better, as the queue is much more efficient than the 
run-time stack is, but can still run into the same problem. Both the depth-first and 
breadth-first formulations run in N + M time, where N is the number of vertices and M is 
the number of edges.  

The breadth-first scanning formulation, however, requires very little extra space. In fact, 
being a little tricky, it requires no extra space. However, it is slower, requiring up to N*N 
+ M time, where N is the number of vertices in the graph.  

Breadth-First Scanning 

# component(i) denotes the component that node i is in 
 

1 function flood_fill(new_component)  
2 do 
3    num_visited = 0 
4    for all nodes i 
5       if component(i) = -2 
6          num_visited = num_visited + 1 
7          component(i) = new_component 
8          for all neighbors j of node i 
9             if component(i) = nil 
10               component(i) = -2 
11 until num_visited = 0  
12 function find_components  
13    num_components = 0 
14    for all nodes i 
15       component(node i) = nil 
16    for all nodes i 
17       if component(node i) is nil 
18         num_components = num_components + 1 
19         component(i) = -2 
20         flood_fill(component(num_components))  

Running time of this algorithm is O(N 2), where N is the numbers of nodes. Every edge 
is traversed twice (once for each end-point), and each node is only marked once.  
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Company Ownership 

Given: A weighted directed graph, with weights between 0 and 100.  

Some vertex A ``owns'' another vertex B if: 

1. A = B  
2. There is an arc from A to B with weight more than 50.  
3. There exists some set of vertices C 1 through C k such that A owns C 1 

through C k, and each vertex has an arc of weight x 1 through x k to vertex 
B, and x 1 + x 2 + ... + x k > 50. 

    Find all (a,b) pairs such that a owns b.  

 

This can be solved via an adaptation of the calculating the vertices reachable from a 
vertex in a directed graph. To calculate which vertices vertex A owns, keep track of the 
``ownership percentage'' for each node. Initialize them all to zero. Now, at each recursive 
step, mark the node as owned by vertex A and add the weight of all outgoing arcs to the 
``ownership percentages.'' For all percentages that go above 50, recurse into those 
vertices.  

Street Race 

Given: a directed graph, and a start point and an end point.  

Find all points p that any path from the start point to the end must travel through p.  

 

The easiest algorithm is to remove each point in turn, and check to see if the end point is 
reachable from the start point. This runs in O(N (M + N)) time. Since the original 
problem stated that M <= 100, and N <= 50, this will run in time easily.  
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Cow Tours 

The diameter of a connected graph is defined as the maximum distance between 
any two nodes of the graph, where the distance between two nodes is defined as 
the length of the shortest path.  

Given a set of points in the plane, and the connections between those points, find 
the two points which are currently not in the same component, such that the 
diameter of the resulting component is minimized. 

Find the components of the original graph, using the method described above. Then, for 
each pair of points not in the same component, try placing a connection between them. 
Find the pair that minimizes the diameter.  

Connected Fields 

Farmer John contracted out the building of a new barn. Unfortunately, the builder 
mixed up the plans of Farmer John's barn with another set of plans. Farmer John's 
plans called for a barn that only had one room, but the building he got might have 
many rooms. Given a grid of the layout of the barn, tell Farmer John how many 
rooms it has.  

 

Analysis: The graph here is on the non-wall grid locations, with edge between adjacent 
non-wall locations, although the graph should be stored as the grid, and not transformed 
into some other form, as the grid is so compact and easy to work with. 

Tree 

Tree is one of the most efficient data structure used in 
a computer program. There are many types of tree. 
Binary tree is a tree that always have two branches, 
Red-Black-Trees, 2-3-4 Trees, AVL Trees, etc. A well 
balanced tree can be used to design a good searching 
algorithm.A Tree is an undirected graph that contains 
no cycles and is connected.Many trees are what is 
called rooted, where there is a notion of the "top" 
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node, which is called the root. Thus, each node has one parent, which is the adjacent 
node which is closer to the root, and may have any number of children, which are the rest 
of the nodes adjacent to it. The tree above was drawn as a rooted tree. 

Minimum Spanning Trees 

Spanning trees 

A spanning tree of a graph is just a subgraph that contains all the vertices and is a tree. A 
graph may have many spanning trees; for instance the complete graph on four vertices  

    o---o 
    |\ /| 
    | X | 
    |/ \| 
    o---o  

has sixteen spanning trees:  

    o---o    o---o    o   o    o---o 
    |   |    |        |   |        | 
    |   |    |        |   |        | 
    |   |    |        |   |        | 
    o   o    o---o    o---o    o---o 
 
    o---o    o   o    o   o    o   o 
     \ /     |\ /      \ /      \ /| 
      X      | X        X        X | 
     / \     |/ \      / \      / \| 
    o   o    o   o    o---o    o   o 
 
    o   o    o---o    o   o    o---o 
    |\  |       /     |  /|     \ 
    | \ |      /      | / |      \ 
    |  \|     /       |/  |       \ 
    o   o    o---o    o   o    o---o 
 
    o---o    o   o    o   o    o---o 
    |\       |  /      \  |       /| 
    | \      | /        \ |      / | 
    |  \     |/          \|     /  | 
    o   o    o---o    o---o    o   o  
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Minimum spanning trees 

Now suppose the edges of the graph have weights or lengths. The weight of a tree is just 
the sum of weights of its edges. Obviously, different trees have different lengths. The 
problem: how to find the minimum length spanning tree?  

Why minimum spanning trees? 

The standard application is to a problem like phone network design. You have a business 
with several offices; you want to lease phone lines to connect them up with each other; 
and the phone company charges different amounts of money to connect different pairs of 
cities. You want a set of lines that connects all your offices with a minimum total cost. It 
should be a spanning tree, since if a network isn't a tree you can always remove some 
edges and save money.  

A less obvious application is that the minimum spanning tree can be used to 
approximately solve the traveling salesman problem. A convenient formal way of 
defining this problem is to find the shortest path that visits each point at least once. 

Note that if you have a path visiting all points exactly once, it's a special kind of tree. For 
instance in the example above, twelve of sixteen spanning trees are actually paths. If you 
have a path visiting some vertices more than once, you can always drop some edges to 
get a tree. So in general the MST weight is less than the TSP weight, because it's a 
minimization over a strictly larger set. 

On the other hand, if you draw a path tracing around the minimum spanning tree, you 
trace each edge twice and visit all points, so the TSP weight is less than twice the MST 
weight. Therefore this tour is within a factor of two of optimal. 

How to find minimum spanning tree? 

The stupid method is to list all spanning trees, and find minimum of list. We already 
know how to find minima... But there are far too many trees for this to be efficient. It's 
also not really an algorithm, because you'd still need to know how to list all the trees.  

A better idea is to find some key property of the MST that lets us be sure that some edge 
is part of it, and use this property to build up the MST one edge at a time. 
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For simplicity, we assume that there is a unique minimum spanning tree. You can get 
ideas like this to work without this assumption but it becomes harder to state your 
theorems or write your algorithms precisely. 

Lemma: Let X be any subset of the vertices of G, and let edge e be the smallest edge 
connecting X to G-X. Then e is part of the minimum spanning tree.  

Proof: Suppose you have a tree T not containing e; then we want to show that T is not the 
MST. Let e=(u,v), with u in X and v not in X. Then because T is a spanning tree it 
contains a unique path from u to v, which together with e forms a cycle in G. This path 
has to include another edge f connecting X to G-X. T+e-f is another spanning tree (it has 
the same number of edges, and remains connected since you can replace any path 
containing f by one going the other way around the cycle). It has smaller weight than t 
since e has smaller weight than f. So T was not minimum, which is what we wanted to 
prove. 

Kruskal's algorithm 

We'll start with Kruskal's algorithm, which is easiest to understand and probably the best 
one for solving problems by hand.  

    Kruskal's algorithm: 
    sort the edges of G in increasing order by length 
    keep a subgraph S of G, initially empty 
    for each edge e in sorted order 
        if the endpoints of e are disconnected in S 
        add e to S 
    return S 

Note that, whenever you add an edge (u,v), it's always the smallest connecting the part of 
S reachable from u with the rest of G, so by the lemma it must be part of the MST.  

This algorithm is known as a greedy algorithm, because it chooses at each step the 
cheapest edge to add to S. You should be very careful when trying to use greedy 
algorithms to solve other problems, since it usually doesn't work. E.g. if you want to find 
a shortest path from a to b, it might be a bad idea to keep taking the shortest edges. The 
greedy idea only works in Kruskal's algorithm because of the key property we proved. 

Analysis: The line testing whether two endpoints are disconnected looks like it should be 
slow (linear time per iteration, or O(mn) total). The slowest part turns out to be the 
sorting step, which takes O(m log n) time. 
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Prim's algorithm 

Rather than build a subgraph one edge at a time, Prim's algorithm builds a tree one vertex 
at a time.  

    Prim's algorithm: 
    let T be a single vertex x 
    while (T has fewer than n vertices) { 
        find the smallest edge connecting T to G-T 
        add it to T 
    } 

Example of Prim's algorithm in C language: 

/* usedp=>how many points already used  
   p->array of structures, consisting x,y,& used/not used 
   this problem is to get the MST of graph with n vertices 
   which weight of an edge is the distance between 2 points */ 

usedp=p[0].used=1; /* select arbitrary point as starting point */ 
while (usedp<n) { 
  small=-1.0; 
 
  for (i=0;i<n;i++) if (p[i].used) 
    for (j=0;j<n;j++) if (!p[j].used) { 
      length=sqrt(pow(p[i].x-p[j].x,2) + pow(p[i].y-p[j].y,2)); 
 
      if (small==-1.0 || length<small) { 
        small=length; 
        smallp=j; 
      } 
    } 
  minLength+=small; 

  p[smallp].used=1; 
  usedp++ ; 
} 

Finding Shortest Paths using BFS 

This only applicable to graph with unweighted edges, simply do BFS from start node to 
end node, and stop the search when it encounters the first occurrence of end node. 

The relaxation process updates the costs of all the vertices, v, connected to a vertex, u, if 
we could improve the best estimate of the shortest path to v by including (u,v) in the path 
to v. The relaxation procedure proceeds as follows: 


