
C Sharp Programming

C Sharp Programming

http://en.wikibooks.org/wiki/C_Sharp_Programming

This Book Is Generated By WikiType

using

RenderX DiType, XML to PDF XSL-FO Formatter

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.2 or any later version published by the Free Software

Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of
the license is included in the section entitled "GNU Free Documentation License".

12 June 2008

http://en.wikibooks.org/wiki/C_Sharp_Programming
http://dash-of-pepper.com/wikitype
http://www.renderx.com
http://www.renderx.net

Table of Contents

1. C Sharp Programming...12
Introduction. 12

Language Basics. 13

Classes. 13

The .NET Framework. 14

Advanced Object-Orientation Concepts. 14

Keywords. 15

External links. 16

2. Intro...17
Introduction. 17

3. Basics...18
Basics. 18

4. Structure...19
Structure. 19

5. The .NET Framework..20
The .NET Framework. 20

Console Programming...21
Console Programming. 21

Output. 21

Input. 22

Error. 22

Command line arguments. 23

Windows Forms..25
6. Advanced..26

Advanced. 26

7. Index..27
8. Foreword...28

C Sharp Programming

- 3 -

by , XML to PDF XSL-FO Formatter

Introduction. 28

Standard. 29

History. 29

9. Introduction..30
10. Naming..33

Reasoning. 33

Conventions. 33

Namespace. 33

Assemblies. 34

Classes and Structures. 34

Exception Classes. 34

Interfaces. 34

Functions. 34

Properties and Public Member Variables. 34

Parameters and Procedure-level Variables. 35

Class-level Private and Protected Variables. 35

Controls on Forms. 35

Constants. 35

Example. 35

11. Syntax...37
Statements. 37

Statement blocks. 38

Comments. 39

Case sensitivity. 40

12. Variables..41
Fields, Local Variables, and Parameters. 41

Fields. 42

Local variables. 42

Parameter. 42

C Sharp Programming

- 4 -

by , XML to PDF XSL-FO Formatter

Types. 43

Integral types. 43

Custom types. 47

Conversion. 48

Scope and extent. 48

13. Operators...49
Arithmetic. 49

Logical. 50

Bitwise shifting. 52

Relational. 52

Assignment. 53

Short-hand Assignment. 54

Type information. 55

Pointer manipulation. 55

Overflow exception control. 56

Others. 56

14. Data structures..57
Enumerations. 57

Structs. 58

Arrays. 60

15. Control..62
Conditional statements. 62

The if statement. 62

The switch statement. 63

Iteration statements. 65

The do...while loop. 65

The for loop. 66

The foreach loop. 67

The while loop. 67

C Sharp Programming

- 5 -

by , XML to PDF XSL-FO Formatter

Jump statements. 68

16. Exceptions..69
References. 71

17. Namespaces...72
Nested namespaces. 73

18. Classes...75
Methods. 76

Constructors. 76

Finalizers. 78

Properties. 79

Indexers. 80

Events. 80

Operator. 81

Structures. 81

Static classes. 82

19. Objects..83
Introduction. 83

Reference and Value Types. 84

System.Object. 85

Object basics. 85

Constructors. 85

Destructors. 88

Abstract Class. 89

Sub-heading. 89

20. Encapsulation..90
Protection Levels. 91

Private. 91

Protected. 91

Public. 91

C Sharp Programming

- 6 -

by , XML to PDF XSL-FO Formatter

Internal. 91

21. NET Framework overview...92
Introduction. 92

Background. 93

22. Inheritance...94
Inheritance. 94

Subtyping Inheritance. 94

Inheritance keywords. 96

23. Interfaces...97
Additional Details. 99

24. Delegates and Events..100
Introduction. 100

Delegates. 101

Events. 103

25. Abstract classes...105
26. Partial classes..108

Partial Classes. 108

27. Collections..110
Lists. 110

LinkedLists. 110

Queues. 110

Stacks. 111

Dictionaries. 111

28. Generics..112
Generic Interfaces. 112

Generic Classes. 112

Generic lists. 115

Generic linked lists. 117

Generic queues. 117

C Sharp Programming

- 7 -

by , XML to PDF XSL-FO Formatter

Generic stacks. 117

Generic dictionaries. 117

Generic Methods. 117

Generic Delegates. 117

Generic Events. 117

29. Object Lifetime...118
Introduction. 118

Garbage Collector. 118

Managed Resources. 119

Unmanaged Resources. 119

Applications. 120

Resource Acquisition Is Initialisation. 122

30. Design Patterns..123
Table Of Contents (TOC). 123

Factory Pattern. 123

Singleton. 126

31. abstract..128
32. as...129

See also. 129

33. base..130
34. bool..132
35. break...133
36. byte...134
37. case..135
38. catch...136
39. char..137
40. class...138
41. const...139
42. continue...140

C Sharp Programming

- 8 -

by , XML to PDF XSL-FO Formatter

43. decimal..141
44. default...142
45. delegate...143
46. do...144
47. double...145
48. else...146
49. enum...148
50. event...149
51. explicit...150

General. 150

Keyword. 151

52. extern..152
53. false..154
54. finally...155
55. fixed..156
56. float..157
57. for...158
58. foreach..159
59. goto..160
60. if..161
61. implicit...163

General. 163

Keyword. 163

62. in..165
63. int...166
64. interface...167
65. internal..168
66. is..169
67. long..170

C Sharp Programming

- 9 -

by , XML to PDF XSL-FO Formatter

68. namespace...171
69. new...172
70. null...173
71. object..174
72. out..175
73. override..176
74. params..177
75. private...180
76. protected..181
77. public..182
78. readonly...183
79. ref..184
80. return..186
81. sbyte...187
82. sealed...188
83. short...189
84. sizeof..190
85. stackalloc..191
86. static...192
87. string...193
88. struct...194
89. switch..195
90. this...196
91. throw...197
92. true...198
93. try...199
94. typeof..200
95. uint...202
96. ulong...203

C Sharp Programming

- 10 -

by , XML to PDF XSL-FO Formatter

97. unchecked..204
98. unsafe...205
99. ushort..206
100. using...207

The directive. 207

The statement. 208

101. virtual...209
102. void...210
103. volatile..211
104. while..212
105. alias..213
106. get..214
107. partial..215
108. set..216
109. value..217
110. yield..218
GNU Free Documentation License. .219

C Sharp Programming

- 11 -

by , XML to PDF XSL-FO Formatter

C Sharp Programming

| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

C# (pronounced "See Sharp") is a multi-purpose computerprogramming languagesuitable
for all development needs. This WikiBook introduces C# language fundamentals and covers a
variety of the base class libraries (BCL) provided by the Microsoft .NET Framework.

Introduction

Main introduction: C Sharp Programming/Foreword

Although C# is derived from theC programming language, it has features such asgarbage
collection that allow beginners to become proficient in C# more quickly than inCorC++. Similar
to Java, it is object-oriented, comes with an extensiveclass library, and supports exception han-
dling, multiple types ofpolymorphism, and separation of interfaces from implementations. Those
features, combined with its powerful development tools, multi-platform support, andgenerics,
make C# a good choice for many types of software development projects:rapid application devel-
opmentprojects, projects implemented by individuals or large or small teams, Internet applica-
tions, and projects with strict reliability requirements. Testing frameworks such asNUnit make
C# amenable totest-driven developmentand thus a good language for use withExtreme Program-
ming (XP). Its strong typinghelps to prevent many programming errors that are common in
weakly typed languages.

Foreword
A description of the C# language and introduction to this Wikibook.

C Sharp Programming

- 12 -

by , XML to PDF XSL-FO Formatter

http://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29
http://en.wikipedia.org/wiki/programming_language
http://en.wikipedia.org/wiki/C_programming_language
http://en.wikibooks.org/wiki/C_Programming
http://en.wikibooks.org/wiki/C++
http://en.wikipedia.org/wiki/Java_programming_language
http://en.wikipedia.org/wiki/object-oriented_programming
http://en.wikipedia.org/wiki/polymorphism_%28computer_science%29
http://en.wikipedia.org/wiki/Rapid_application_development
http://en.wikipedia.org/wiki/Rapid_application_development
http://en.wikipedia.org/wiki/NUnit
http://en.wikipedia.org/wiki/test-driven_development
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Strongly-typed_programming_language

Getting started with C#
A simple C# program and where to get tools to compile it.

Language Basics

Naming conventions
Quickly describes the generally accepted naming conventions for C#.

Basic syntax
Describes the basics in how the applications you write will be interpreted.

Variables
The entities used to store data of various shapes.

Operators
Summarizes the operators, such as the '+' in addition, available in C#.

Data structures
Enumerations, structs, and more.

Control statements
Loops, conditions, and more. How the program flow is controlled.

Exceptions
Responding to errors that can occur.

Classes

Namespaces
Giving your code its own space to live in.

Classes
The blueprints of objects that describes how they should work.

C Sharp Programming

- 13 -

by , XML to PDF XSL-FO Formatter

Objects
Cornerstones of any object-oriented programming language, objects are the tools you use
to perform work.

Encapsulation and accessor levels
Explains protection of object states byencapsulation.

The .NET Framework

.NET Framework Overview
An overview of the .NET class library used in C#.

Console Programming
Input and Output using the console.

Windows Forms
GUI Programming with Windows Forms.

Advanced Object-Orientation Concepts

Inheritance
Re-using existing code to improve or specialise the functionality of an object.

Interfaces
Define a template, in which to base sub-classes from.

Delegates and Events
Be informed about when an event happens and choose what method to call when it happens
with delegates.

Abstract classes
Build partially implemented classes.

Partial classes
Split a class over several files to allow multiple users to develop, but also to stop code
generators interfering with source code.

C Sharp Programming

- 14 -

by , XML to PDF XSL-FO Formatter

Collections
Effectively manage (add, remove, find, iterate, etc.) large sets of data.

Generics
Allow commonly used collections and classes to appear to have specialisation for your
custom class.

Object Lifetime
Learn about the lifetime of objects, where they are allocated and learn about garbage collec-
tion.

Design Patterns
Learn commonly used design methodologies to simplify and/or improve your development
framework.

Keywords

C Sharp Programming

- 15 -

by , XML to PDF XSL-FO Formatter

External links

• Learning Visual C# in 5 minutesA simple tutorial that teaches you a few basics.
• A C# Tutorialstarts from basics and gives source code.
• An Introduction to Mono Developmentby Andrew Troelsen
• Sharp Develop IDE: A free IDE for C#, VB.NET and Boo projects on Microsoft's

.NET platform.
• Microsoft Visual C# Express Edition: A free development environment created by

Microsoft for writing C# Applications.
• Mono Project: A C# Development Environment for Linux, Windows, and other plat-

forms.
• Mono IDE : An GNOME based IDE for Mono on Linux platforms.
• C# Online.NET- free, wiki-based C# and .NET encyclopedia and forums
• C# Language Specificationdownload page at ECMA
• C# Environment setupVisual C# environment setup details from MSDN
• C# FAQC# FAQ, Blogs and Forums.
• Premium C# Tutorial- A collection of complete programming tutorials
• DotGNU Portable.NET- A CLI/.NET built in accordance with the requirements of the

GNU Project capable of running C# programs on many platforms and architectures.
• .NET Book Zero by Charles Petzold- free downloadable book on C# and .NET

framework by one of the world's foremost authorities on Windows programming,
Charles Petzold.

C Sharp Programming

- 16 -

by , XML to PDF XSL-FO Formatter

http://nystic.com/?p=14
http://www.visualbuilder.com/csharp/tutorial/
http://www.devx.com/opensource/Article/31741/1954
http://sharpdevelop.net/OpenSource/SD/Default.aspx
http://msdn.microsoft.com/vstudio/express/visualcsharp/
http://www.mono-project.com/Main_Page
http://www.monodevelop.com/Main_Page
http://en.csharp-online.net/
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://msdn2.microsoft.com/en-us/vcsharp/default.aspx
http://blogs.msdn.com/csharpfaq/
http://www.meshplex.org
http://dotgnu.org/pnet.html
http://www.charlespetzold.com/dotnet/index.html

Intro

C# Programming
Cover| |Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Introduction

Foreword
A description of the C# and introduction to this Wikibook.

Getting started with C#
A simple C# program and where to get tools to compile it.

C Sharp Programming

- 17 -

by , XML to PDF XSL-FO Formatter

Basics

C# Programming
Cover| Introduction| |Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Basics

Basic syntax
Describes the basics in how the applications you write will be interpreted.

Variables
The entities used to store data of various shapes.

Operators
Summarizes the operators, such as the '+' in addition, available in C#.

Data structures
Enumerations, structs, and more.

Control statements
Loops, conditions, and more. How the program flow is controlled.

C Sharp Programming

- 18 -

by , XML to PDF XSL-FO Formatter

Structure

C# Programming
Cover| Introduction| Basics| |The .NET Framework| Advanced Topics| Index

C sharp musical note

Structure

Namespaces
Giving your code its own space to live in.

Classes
The blueprints of objects that describes how they should work.

Objects
Cornerstones of any object-oriented programming language, objects are the tools you use
to perform work.

Encapsulation and accessor levels
Explains protection of object states byencapsulation.

C Sharp Programming

- 19 -

by , XML to PDF XSL-FO Formatter

The .NET Framework

C# Programming
Cover| Introduction| Basics| Classes| |Advanced Topics| Index

C sharp musical note

The .NET Framework

.NET Framework Overview
An overview of the .NET class library used in C#.

Console Programming
Input and Output using the console.

Windows Forms
GUI Programming with Windows Forms.

C Sharp Programming

- 20 -

by , XML to PDF XSL-FO Formatter

Console Programming

Console Programming

Output

The example program below shows a couple of ways to output text:

using System;
public class HelloWorld
{

public static void Main()
{

Console.WriteLine("Hello World!"); // relies on "using
System;"

Console.Write("This is");
Console.Write("... my first program!\n");
System.Console.WriteLine("Goodbye World!"); // no "using" statement

required
}

}

The above code displays the following text:

Hello World!
This is... my first program!
Goodbye World!

That text is output using the System.Console class. The using statement at the top allows
the compiler to find the Console class without specifying the System namespace each time it is
used.

C Sharp Programming

- 21 -

by , XML to PDF XSL-FO Formatter

The middle lines use the Write() method, which does not automatically create a new line.
To specify a new line, we can use the sequence backslash-n (\n). If for whatever reason we
wanted to really show the \n character instead, we add a second backslash (\\n). The backslash
is known as the escape character in C# because it is not treated as a normal character, but allows
us to encode certain special characters (like a new line character).

Input

Input can be gathered in a similar method to outputing data using the Read() and ReadLine
methods of that same System.Console class:

using System;
public class ExampleClass
{

public static void Main()
{

Console.WriteLine("Greetings! What is your name?");
Console.Write("My name is: ");
string name = Console.ReadLine();
Console.WriteLine("Nice to meet you, " + name);
Console.Read();

}
}

The above program requests the user's name and displays it back. The final Console.Read()
waits for the user to enter a key before exiting the program.

Error

The Error output is used to divert error specific messages to the console. To a novice user
this may seem fairly pointless, as this achieves the same asOutput(as above). If you decide to
write an application that runs another application (for example a scheduler), you may wish to
monitor the output of that program - more specifically, you may only wish to be notified only of
the errors that occur. If you coded your program to write to the Console.Error stream whenever
an error occurred, you can tell your scheduler program to monitor this stream, and feedback any
information that is sent to it. Instead of the Console appearing with the Error messages, your
program may wish to log these to a file.

C Sharp Programming

- 22 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/w/index.php?title=Output&action=edit&redlink=1

You may wish to revisit this after studying Streams and after learning about the Process
class.

Command line arguments

Command line arguments are values that are passed to a console program before execution.
For example, the Windows command prompt includes acopy command that takes two command
line arguments. The first argument is the original file and the second is the location or name for
the new copy. Custom console applications can have arguments as well.

using System;
public class ExampleClass
{

public static void Main(string [] args)
{

Console.WriteLine("First Name: " + args[0]);
Console.WriteLine("Last Name: " + args[1]);
Console.Read();

}
}

If the program above code is compiled to a program calledusername.exe, it can be executed
from the command line using two arguments, e.g. "Bill" and "Gates":

C:\>username.exe Bill Gates

Notice how the Main() method above has a string array parameter. The program assumes
that there will be two arguments. That assumption makes the program unsafe. If it is run without
the expected number of command line arguments, it will crash when it attempts to access the
missing argument. To make the program more robust, we make we can check to see if the user
entered all the required arguments.

using System;
public class Test
{

public static void Main(string [] args)
{

if (args.Length >= 1)

C Sharp Programming

- 23 -

by , XML to PDF XSL-FO Formatter

Console.WriteLine(args[0]);
if (args.Length >= 2)

Console.WriteLine(args[1]);
}

}

Try running the program with only entering your first name or no name at all. The
string.Length property returns the total number of arguments. If no arguments are given, it will
return zero.

You are also able to group a single argument together by using the "" quote marks. This is
particularly useful if you are expecting many parameters, but there is a requirement for including
spaces (e.g. file locations, file names, full names etc)

using System;

class Test
{

public static void Main(string[] args)
{

for(int index =0 ;index < args.Length; index++)
{

Console.WriteLine((index+1) + ": " + args[index]);
}

}
}

C:\> Test.exe Separate words "grouped together"
1: Separate
2: words
3: grouped together

C Sharp Programming

- 24 -

by , XML to PDF XSL-FO Formatter

Windows Forms

The System.Windows.Forms namespace allows us to create Windows applications easily.
The Form class is a particularly important part of that namespace because the form is the key
graphical building block of Windows applications. It provides the visual frame that holds buttons,
menus, icons, and title bars together. Integrated development environments (IDEs) like Visual
C# and SharpDevelop can help create graphical applications, but it is important to know how to
do so manually:

using System.Windows.Forms;
public class ExampleForm : Form // inherits from System.Windows.Forms.Form

{
public static void Main()
{

ExampleForm wikibooksForm = new ExampleForm();
wikibooksForm.Text = "I Love Wikibooks";// specify title of the form
wikibooksForm.Width = 400; // width of the window in pix-

els
wikibooksForm.Height = 300; // height in pixels
Application.Run(wikibooksForm); // display the form

}
}

The example above creates a simple Window with the text "I Love Wikibooks" in the title
bar. Custom form classes like the example above inherit from the System.Windows.Forms.Form
class. Setting any of the properties Text, Width, and Height is optional. Your program will
compile and run successfully if you comment these lines out, but they allow us to add extra
control to our form.

C Sharp Programming

- 25 -

by , XML to PDF XSL-FO Formatter

Advanced

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| | Index

C sharp musical note

Advanced

Inheritance
Interfaces
Abstract Classes
Partial Classes
Generics
Object Lifetime

C Sharp Programming

- 26 -

by , XML to PDF XSL-FO Formatter

Index

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics|

C sharp musical note

C Sharp Programming

- 27 -

by , XML to PDF XSL-FO Formatter

Foreword

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

C# (pronounced "See Sharp") is a multi-purpose computerprogramming languagesuitable
for all development needs.

Introduction

Although C# is derived from theC programming language, it has features such asgarbage
collectionthat allow beginners to become proficient in C# more quickly than inCorC++. Similar
to Java, it is object-oriented, comes with an extensiveclass library, and supports exception han-
dling, multiple types ofpolymorphism, and separation of interfaces from implementations. Those
features, combined with its powerful development tools, multi-platform support, andgenerics,
make C# a good choice for many types of software development projects:rapid application devel-
opmentprojects, projects implemented by individuals or large or small teams, Internet applica-
tions, and projects with strict reliability requirements. Testing frameworks such asNUnit make
C# amenable totest-driven developmentand thus a good language for use withExtreme Program-
ming (XP). Its strong typinghelps to prevent many programming errors that are common in
weakly typed languages.

A large part of the power of C# (as with other .NET languages), comes with the common
.NET Framework API, which provides a large set of classes, including ones for encryption,
TCP/IP socket programming, and graphics. Developers can thus write part of an application in
C# and another part in another .NET language (e.g. VB .NET), keeping the tools, library, and
object-oriented development model while only having to learn the new language syntax.

C Sharp Programming

- 28 -

by , XML to PDF XSL-FO Formatter

http://en.wikipedia.org/wiki/C_sharp
http://en.wikipedia.org/wiki/programming_anguage
http://en.wikipedia.org/wiki/C_programming_language
http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29
http://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29
http://en.wikibooks.org/wiki/Programming:C
http://en.wikibooks.org/wiki/Programming:C_plus_plus
http://en.wikipedia.org/wiki/Java_programming_language
http://en.wikipedia.org/wiki/object-oriented_programming
http://en.wikipedia.org/wiki/polymorphism_%28computer_science%29
http://en.wikipedia.org/wiki/Rapid_application_development
http://en.wikipedia.org/wiki/Rapid_application_development
http://en.wikipedia.org/wiki/NUnit
http://en.wikipedia.org/wiki/test-driven_development
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Strongly-typed_programming_language

Because of the similarities between C# and the C family of languages, as well asJava, a
developer with a background in object-oriented languages like C++ may find C# structure and
syntax intuitive.

Standard

Microsoft, with Anders Hejlsbergas Chief Engineer, created C# as part of their.NET initia-
tive and subsequently opened itsspecificationvia theECMA. Thus, the language is open to imple-
mentation by other parties. Other implementations includeMonoandDotGNU.

C# and other .NET languages rely on an implementation of thevirtual machinespecified in
theCommon Language Infrastructure, like Microsoft'sCommon Language Runtime (CLR). That
virtual machine manages memory, handles object references, and performs Just-In-Time (JIT)
compiling ofCommon Intermediate Languagecode. The virtual machine makes C# programs
safer than those that must manage their own memory and is one of the reasons .NET language
code is referred to asmanaged code. More like Java than C and C++, C# discourages explicit
use of pointers, which could otherwise allow software bugs to corrupt system memory and force
the operating system to halt the program forcibly with nondescript error messages.

History

Microsoft's original plan was to create a rival to Java, named J++ but this was abandoned to
create C#, codenamed "Cool".

Microsoft submitted C# to the ECMA standards group mid-2000.

C# 2.0 was released in late-2005 as part of Microsoft's development suite, Visual Studio
2005. The 2.0 version of C# includes such new features as generics, partial classes, and iterators.

[1][2]

C Sharp Programming

- 29 -

by , XML to PDF XSL-FO Formatter

http://en.wikipedia.org/wiki/Java_programming_language
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Anders_Hejlsberg
http://en.wikipedia.org/wiki/Microsoft_.Net
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://en.wikipedia.org/wiki/ECMA_International
http://en.wikipedia.org/wiki/Mono_development_platform
http://en.wikipedia.org/wiki/DotGNU
http://en.wikipedia.org/wiki/virtual_machine
http://en.wikipedia.org/wiki/Common_Language_Infrastructure
http://en.wikipedia.org/wiki/Common_Language_Runtime
http://en.wikipedia.org/wiki/Common_Intermediate_Language
http://www.microsoft-watch.com/article2/0,2180,1837434,00.asp
http://www.hitmill.com/programming/dotNET/csharp.html

Introduction

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

To compile your first C# application, you will need a copy of a .NET Framework SDK in-
stalled on your PC.

There are two .NET frameworks available: Microsoft's and Mono's.

Microsoft
For Windows, the .NET Framework SDK can be downloaded from Microsoft's.NET
Framework Developer Center. If the default Windows directory (the directory where
Windows or WinNT is installed) is C:\WINDOWS, the .Net Framework SDK installation
places the Visual C# .NET Compiler (csc) in the C:\WINDOWS\Microsoft.NET\Frame-
work\v1.0.3705 directory for version 1.0, the C:\WINDOWS\Microsoft.NET\Frame-
work\v1.1.4322 directory for version 1.1,or the C:\WINDOWS\Microsoft.NET\Frame-
work\v2.0.50727 directory for version 2.0.

Mono
For Windows, Linux, or other Operating Systems, an installer can be downloaded from the
Mono website.

For Linux, a good compiler is cscc which can be downloaded for free fromthe DotGNU
Portable.Net projectpage. The compiled programs can then be run with ilrun.

If you are working on Windows it is a good idea to add the path to the folders that contain
cs.exe or mcs.exe to the Path environment variable so that you do not need to type the full path
each time you want to compile.

For writing C#.NET code, there are plenty of editors that are available. It's entirely possible
to write C#.NET programs with a simple text editor, but it should be noted that this requires you

C Sharp Programming

- 30 -

by , XML to PDF XSL-FO Formatter

http://msdn.microsoft.com/netframework/
http://msdn.microsoft.com/netframework/
http://www.mono-project.com/Downloads
http://www.mono-project.com/Downloads
http://dotgnu.org/pnet.html
http://dotgnu.org/pnet.html

to compile the code yourself. Microsoft offers a wide range of code editing programs under the
Visual Studio line that offer syntax highlighting as well as compiling and debugging capabilities.
Currently C#.NET can be compiled in Visual Studio 2002 and 2003 (only supports the .NET
Framework version 1.0 and 1.1) and Visual Studio 2005 (supports the .NET Framework 2.0 and
earlier versions with some tweaking). Microsoft offers , four of which cost money. The Visual
Studio C# Express Edition can be downloaded and used for free fromMicrosoft's website.

The code below will demonstrate a C# program written in a simple text editor. Start by sav-
ing the following code to a text file called hello.cs:

using System;

namespace MyConsoleApplication
{

class MyFirstClass
{

static void Main(string [] args)
{

System.Console.WriteLine("Hello,");
Console.WriteLine("World!");

Console.ReadLine();
}

}
}

To compile hello.cs, run the following from the command line:

• For standard Microsoft installations of .NET 2.0, run C:\WINDOWS\Mi-
crosoft.NET\Framework\v2.0.50727\csc.exe hello.cs

• For Mono run mcs hello.cs.
• For users of cscc, compile with "cscc -o <name>.exe <name>.cs".

Doing so will produce hello.exe. The following command will run hello.exe:

• On Windows, use hello.exe.
• On Linux, use mono hello.exe or "ilrun <name>.exe".

Alternatively, in Visual C# express, you could just hit F5 or the green play button to run the
code, even though that is for debugging.

Running hello.exe will produce the following output:

C Sharp Programming

- 31 -

by , XML to PDF XSL-FO Formatter

http://go.microsoft.com/?linkid=7653518

Hello,
World!

The program will then wait for you to strike 'enter' before returning to the command prompt.

Note that the example above includes the System namespace via the using keyword. That
inclusion allows direct references to any member of the System namespace without specifying
its fully qualified name.

The first call to the WriteLine method of the Console class uses a fully qualified reference.

System.Console.WriteLine("Hello,");

The second call to that method shortens the reference to the Console class by taking advan-
tage of the fact that the System namespace is included (with using System).

Console.WriteLine("World!");

C# is a fully object-oriented language. The following sections explain the syntax of the C#
language as a beginner's course for programming in the language. Note that much of the power
of the language comes from the classes provided with the .NET framework, which are not part
of the C# language syntaxper se.

C Sharp Programming

- 32 -

by , XML to PDF XSL-FO Formatter

Naming

This section will define the naming conventions that are generally accepted by the C# devel-
opment community. Some companies may define naming conventions that differ from this, but
that is done on an individual basis and is generally discouraged. Some of the objects discussed
in this section may be beyond the reader's knowledge at this point, but this section can be referred
back to later.

Reasoning

Much of the naming standards are derived from Microsoft's .NET Framework libraries.
These standards have proven to make names readable and understandable "at a glance". By using
the correct conventions when naming objects, you ensure that other C# programmers who read
your code will easily understand what objects are without having to search your code for their
definition.

Conventions

Namespace

Namespaces are named using Pascal Case with no underscores. This means the first letter
of every word in the name is capitalized. For example: MyNewNamespace. Also, note that Pascal
Case also denotes that acronyms of three or more letters should only have the first letter capital-
ized (MyXmlNamespace instead of MyXMLNamespace)

C Sharp Programming

- 33 -

by , XML to PDF XSL-FO Formatter

Assemblies

If an assembly contains only one namespace, they should use the same name. Otherwise,
Assembles should follow the normal Pascal Case format.

Classes and Structures

Pascal Case, no underscores or leading "C", "cls", or "I". Classes should not have the same
name as the namespace in which they reside. Any acronyms of three or more letters should be
pascal case, not all caps. Try to avoid abbreviations, and try to always use nouns.

Exception Classes

Follow class naming conventions, but add Exception to the end of the name. In .Net 2.0, all
classes should inherit from theSystem.Exception base class, and not inherit from theSystem.Appli-
cationException.

Interfaces

Follow class naming conventions, but start the name with "I" and capitalize the letter follow-
ing the "I". Example: IFoo The "I" prefix helps to differentiate between Interfaces and classes
and also to avoid name collisions.

Functions

Pascal Case, no underscores except in the event handlers. Try to avoid abbreviations. Many
programmers have a nasty habit of overly abbreviating everything. This should be discouraged.

Properties and Public Member Variables

Pascal Case, no underscores. Try to avoid abbreviations.

C Sharp Programming

- 34 -

by , XML to PDF XSL-FO Formatter

Parameters and Procedure-level Variables

Camel Case. Try to avoid abbreviations. Camel Case is the same as Pascal case, but the first
letter of the first word is lowercased.

Class-level Private and Protected Variables

Camel Case with a leading underscore. Always indicate 'Protected' or 'Private' in the declara-
tion. The leading underscore is the only controversial thing in this document. The leading charac-
ter helps to prevent name collisions in constructors (a parameter and a private variable have the
same name).

Controls on Forms

Pascal Case with a prefix that identifies it as being part of the UI instead of a purely coded
control (ex. a temporary variable). Many developers use "ui" as the prefix followed by a descrip-
tive name such as "UserNameTextBox"

Constants

Pascal Case. The use of SCREAMING_CAPS is discouraged. This is a large change from
earlier conventions. Most developers now realize that in using SCREAMING_CAPS they betray
more implementation than is necessary. A large portion of the .NET Framework Design Guide-
lines is dedicated to this discussion.

Example

Here is an example of a class that uses all of these naming conventions combined.

using System;

namespace MyExampleNamespace
{

C Sharp Programming

- 35 -

by , XML to PDF XSL-FO Formatter

public class Customer : IDisposable
{

private string _customerName;
public string CustomerName
{

get
{

return _customerName;
}
set
{

_customerName = value;
_lastUpdated = DateTime.Now;

}
}

private DateTime _lastUpdated;

public DateTime LastUpdated
{

get
{

return _lastUpdated;
}
private set
{

_lastUpdated = value;
}

}

public void UpdateCustomer(string newName)
{

if(!newName.Equals(customerName))
{

CustomerName = newName;
}

}

public void Dispose()
{

//Do nothing
}

}
}

C Sharp Programming

- 36 -

by , XML to PDF XSL-FO Formatter

Syntax

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

C# syntax looks quite similar to the syntax of Java because both inherit much of their syntax
from C and C++.The object-oriented nature of C# requires the high-level structure of a C#
program to be defined in terms ofclasses, whose detailed behaviors are defined by theirstate-
ments.

Statements

The basic unit of execution in a C# program is thestatement. A statement can declare a
variable, define an expression, perform a simple action by calling a method,control the flow of
executionof other statements, create an object, or assign a value to a variable, property, or field.
Statements are usually terminated by a semicolon.

Statements can be grouped into comma-separated statement lists or brace-enclosed statement
blocks.

Examples:

int sampleVariable; // declaring a variable
sampleVariable = 5; // assigning a value
Method(); // calling an instance method
SampleClass sampleObject = new SampleClass(); // creating a new instance of
an object
sampleObject.ObjectMethod(); // calling a member function of

an object

C Sharp Programming

- 37 -

by , XML to PDF XSL-FO Formatter

// executing a "for" loop with an embedded "if" statement
for(int i = 0; i < upperLimit; i++)
{

if (SampleClass.SampleStaticMethodReturningBoolean(i))
{

sum += sampleObject.SampleMethodReturningInteger(i);
}

}

Statement blocks

A series of statements surrounded by curly braces form ablock of code. Among other purpos-
es, code blocks serve to limit the scope of variables defined within them. Code blocks can be
nested and often appear as the bodies of methods.

private void MyMethod(int value)
{ // This block of code is the body of "MyMethod()"

// The 'value' integer parameter is accessible to everything in the method

int methodLevelVariable; // This variable is accessible to everything in
the method

if (value == 2)
{

// methodLevelVariable is still accessible here

int limitedVariable; // This variable is only accessible to code in the
if block

DoSomeWork(limitedVariable);
}

// limitedVariable is no longer accessible here

} // Here ends the code block for the body of "MyMethod()".

C Sharp Programming

- 38 -

by , XML to PDF XSL-FO Formatter

Comments

Comments allow inline documentation of source code. The C# compiler ignores comments.
Three styles of comments are allowed in C#:

Single-line comments
The "//" character sequence marks the following text as a single-line comment. Single-line
comments, as one would expect, end at the first end-of-line following the "//" comment
marker.

Multiple-line comments
Comments can span multiple lines by using the multiple-line comment style. Such com-
ments start with "/*" and end with "*/". The text between those multi-line comment markers
is the comment.

//This style of a comment is restricted to one line.
/*

This is another style of a comment.
It allows multiple lines.

*/

XML Documentation-line comments
This comment is used to generate XML documentation. Each line of the comment begins
with "///".

/// <summary> documentation here </summary>

This is the most recommended type. Avoid using butterfly style comments. For example:

//**************************
// Butterfly style documentation comments like this are not recommend-

ed.
//**************************

C Sharp Programming

- 39 -

by , XML to PDF XSL-FO Formatter

Case sensitivity

C# iscase-sensitive, including its variable and method names.

The variables myInteger and MyInteger below are distinct because C# is case-sensitive:

int myInteger = 3;
int MyInteger = 5;

For example, C# defines a class Console to handle most operations with the console window.
Writing the following code would result in a compiler error unless an object named console had
been previously defined.

// Compiler error!
console.writeline("Hello");

The following corrected code compiles as expected because it uses the correct case:

Console.WriteLine("Hello");

C Sharp Programming

- 40 -

by , XML to PDF XSL-FO Formatter

http://en.wikipedia.org/wiki/case-sensitive

Variables

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Variables are used to store values. More technically, a variablebindsanobject(in the gener-
al sense of the term, i.e. a specific value) to an identifier (the variable's name) so that the object
can be accessed later. Variables can, for example, store a value for later use:

string name = "Dr. Jones";
Console.WriteLine("Good morning " + name);

In this example "name" is the identifier and "Dr. Jones" is the value that we bound to it. Also,
each variable is declared with an explicittype. Only values whose types are compatible with the
variable's declared type can be bound to (stored in) the variable. In the above example we stored
"Dr. Jones" into a variable of the type string. This is a legal statement. However, if we had said
int name = "Dr. Jones", the compiler would have thrown an error telling us that you cannot implic-
itly convert between int and string. There are methods for doing this, but we will talk about them
later.

Fields, Local Variables, and Parameters

C# supports several program elements corresponding to the general programming concept
of variable: fields, parameters, andlocal variables.

C Sharp Programming

- 41 -

by , XML to PDF XSL-FO Formatter

http://en.wikipedia.org/wiki/variable#Computer_programming
http://en.wikipedia.org/wiki/Name_binding
http://en.wikipedia.org/wiki/object_%28computer_science%29

Fields

Fields, sometimes called class-level variables, are variables associated with classes or
structures. Aninstance variable is a field associated with an instance of the class or structure,
while astatic variable, declared with thestatickeyword, is a field associated with the type itself.
Fields can also be associated with their class by making themconstants (const), which requires
a declaration assignment of a constant value and prevents subsequent changes to the field.

Each field has a visibility ofpublic, protected, internal, protected internal, or private (from
most visible to least visible).

Local variables

Like fields, local variables can optionally beconstant (const). Constant local variables are
stored in the assembly data region, while non-constant local variables are stored (or referenced
from) the stack. They thus have both a scope and an extent of the method or statement block that
declares them.

Parameter

Parameters are variables associated with a method.

An in parameter may either have its value passed in from the callee to the method's environ-
ment, so that changes to the parameter by the method do not affect the value of the callee's vari-
able, or passed in by reference, so that changes to the variables will affect the value of the callee's
variable. Value types (int, double, string) are passed in "by value" while reference types (objects)
are passed in "by reference." Since this is the default for the C# compiler, it is not necessary to
use .

An out parameter does not have its value copied, thus changes to the variable's value within
the method's environment directly affect the value from the callee's environment. Such a variable
is considered by the compiler to beunbound upon method entry, thus it is illegal to reference an
out parameter before assigning it a value. It alsomust be assigned by the method in each valid
(non-exceptional) code path through the method in order for the method to compile.

A reference parameter is similar to anout parameter, except that it isbound before the
method call and it need not be assigned by the method.

C Sharp Programming

- 42 -

by , XML to PDF XSL-FO Formatter

A params parameter represents a variable number of parameters. If a method signature in-
cludes one, theparams argument must be the last argument in the signature.

// Each pair of lines is what the definition of a method and a call of a
// method with each of the parameters types would look like.
// In param:
void MethodOne(int param1) //definition
MethodOne(variable); //call

// Out param:
void MethodTwo(out string message) //definition
MethodTwo(out variable); //call

// Reference param;
void MethodThree(ref int someFlag) //definition
MethodThree(ref theFlag) //call

// Params
void MethodFour(params string[] names) //definition
MethodFour("Matthew", "Mark", "Luke", "John"); //call

Types

Eachtype in C# is either avalue type or areference type. C# has several predefined ("built-
in") types and allows for declaration of custom value types and reference types.

Integral types

Because the type system in C# is unified with other languages that are CLI-compliant, each
integral C# type is actually an alias for a corresponding type in the .NET framework. Although
the names of the aliases vary between .NET languages, the underlying types in the .NET frame-
work remain the same. Thus, objects created in assemblies written in other languages of the .NET
Framework can be bound to C# variables of any type to which the value can be converted, per
the conversion rules below. The following illustrates the cross-language compatibility of types
by comparing C# code with the equivalent Visual Basic .NET code:

// C#
public void UsingCSharpTypeAlias()
{

C Sharp Programming

- 43 -

by , XML to PDF XSL-FO Formatter

int i = 42;
}
public void EquivalentCodeWithoutAlias()
{

System.Int32 i = 42;
}

' Visual Basic .NET
Public Sub UsingVisualBasicTypeAlias()

Dim i As Integer = 42
End Sub
Public Sub EquivalentCodeWithoutAlias()

Dim i As System.Int32 = 42
End Sub

Using the language-specific type aliases is often considered more readable than using the
fully-qualified .NET Framework type names.

The fact that each C# type corresponds to a type in the unified type system gives eachvalue
type a consistent size across platforms and compilers. That consistency is an important distinction
from other languages such as C, where, e.g. a long is only guaranteed to be atleast as large as
an int, and is implemented with different sizes by different compilers. Asreference types, vari-
ables of types derived from object (i.e. any class) are exempt from the consistent size require-
ment. That is, the size ofreference types like System.IntPtr, as opposed tovalue types like Sys-
tem.Int, may vary by platform. Fortunately, there is rarely a need to know the actual size of a
reference type.

There are two predefinedreference types: object, an alias for the System.Object class, from
which all other reference types derive; and string, an alias for the System.String class. C# likewise
has several integral value types, each an alias to a corresponding value type in the System
namespace of the .NET Framework. The predefined C# type aliases expose the methods of the
underlying .NET Framework types. For example, since the .NET Framework's System.Int32 type
implements a ToString() method to convert the value of an integer to its string representation,
C#'s int type exposes that method:

int i = 97;
string s = i.ToString();
// The value of s is now the string "97".

C Sharp Programming

- 44 -

by , XML to PDF XSL-FO Formatter

Likewise, the System.Int32 type implements the Parse() method, which can therefore be
accessed via C#'s int type:

string s = "97";
int i = int.Parse(s);
// The value of i is now the integer 97.

The unified type system is enhanced by the ability to convert value types to reference types
(boxing) and likewise to convert certain reference types to their corresponding value types (unbox-
ing). This is also known ascasting.

object boxedInteger = 97;
int unboxedInteger = (int)boxedInteger;

Boxing and casting are, however, not type-safe: the compiler won't generate an error if the
programmer mixes up the types. In the following short example the mistake is quite obvious, but
in complex programs it may be real hard to spot. Avoid boxing, if possible.

object getInteger = "97";
int anInteger = (int)getInteger; // no compile-time error, the program will
crash, however

The built-in C# type aliases and their equivalent .NET Framework types follow:

C Sharp Programming

- 45 -

by , XML to PDF XSL-FO Formatter

Integers

RangeSize (bits).NET TypeC# Alias

-128 to 1278System.SBytesbyte

0 to 2558System.Bytebyte

-32,768 to 32,76716System.Int16short

0 to 65,53516System.UInt16ushort

A unicode character of code 0 to 65,53516System.Charchar

-2,147,483,648 to 2,147,483,64732System.Int32int

0 to 4,294,967,29532System.UInt32uint

-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

64System.Int64long

0 to 18,446,744,073,709,551,61564System.UInt64ulong

Floating-point

RangePrecisionSize (bits).NET TypeC# Alias

1.5 x 10-45 to 3.4 x 10387 digits32System.Singlefloat

5.0 x 10-324 to 1.7 x 1030815-16 digits64System.Doubledouble

1.0 x 10-28 to 7.9 x 102828-29 decimal places128System.Decimaldecimal

Other predefined types

RangeSize (bits).NET TypeC# Alias

true or false, which aren't related to any integer in C#.32System.Booleanbool

Platform dependant (a pointer to an object).32/64System.Objectobject

A unicode string with no special upper bound.16 * lengthSystem.Stringstring

C Sharp Programming

- 46 -

by , XML to PDF XSL-FO Formatter

Custom types

The predefined types can be aggregated and extended into custom types.

Customvalue types are declared with thestructor enumkeyword. Likewise,custom refer-
ence typesare declared with theclasskeyword.

Arrays

Although the number of dimensions is included in array declarations, the size of each dimen-
sion is not:

string[] s;

Assignments to an array variable (prior to the variable's usage), however, specify the size
of each dimension:

s = new string[5];

As with other variable types, the declaration and the initialization can be combined:

string[] s = new string[5] ;

It is also important to note that like in Java, arrays are passed by reference, and not passed
by value. For example, the following code snippet successfully swaps two elements in an integer
array:

static void swap (int[] arr, int i, int j)
{

int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;

}

C Sharp Programming

- 47 -

by , XML to PDF XSL-FO Formatter

Conversion

Values of a given type may or may not be explicitly or implicitly convertible to other types
depending on predefined conversion rules, inheritance structure, and explicit cast definitions.

Predefined conversions

Many predefined value types have predefined conversions to other predefined value types.
If the type conversion is guaranteed not to lose information, the conversion can beimplicit (i.e.
an explicitcast is not required).

Inheritance polymorphism

A value can be implicitly converted to any class from which it inherits or interface that it
implements. To convert a base class to a class that inherits from it, the conversion must be explic-
it in order for the conversion statement to compile. Similarly, to convert an interface instance to
a class that implements it, the conversion must be explicit in order for the conversion statement
to compile. In either case, the runtime environment throws a conversion exception if the value
to convert is not an instance of the target type or any of its derived types.

Scope and extent

The scope and extent of variables is based on their declaration. The scope of parameters and
local variables corresponds to the declaring method or statement block, while the scope of fields
is associated with the instance or class and is potentially further restricted by the field's access
modifiers.

The extent of variables is determined by the runtime environment using implicit reference
counting and a complex garbage collection algorithm.

C Sharp Programming

- 48 -

by , XML to PDF XSL-FO Formatter

Operators

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

C# operators and their precedence closely resemble the operators in other languages of the
C family.

Similar to C++, classes canoverload most operators, defining or redefining the behavior of
the operators in contexts where the first argument of that operator is an instance of that class, but
doing so is often discouraged for clarity.

Following are the built-in behaviors of C# operators.

Arithmetic

The following arithmetic operators operate on numeric operands (arguments a and b in the
"sample usage" below).

C Sharp Programming

- 49 -

by , XML to PDF XSL-FO Formatter

ExplanationReadSampleus-
age

The binary operator + returns thesumof its arguments.a plus ba + b

The binary operator - returns thedifferencebetween its argu-
ments.

a minus ba - b

The binary operator * returns themultiplicative productof
its arguments.

a times ba * b

The binary operator / returns thequotientof its arguments.
If both of its operators are integers, it obtains that quotient
usinginteger division (i.e. it drops any resulting remainder).

a divided by ba / b

The binary operator % operates only on integer arguments.
It returns theremainderof integer division of those argu-
ments.(See modular arithmetic.)

a mod ba % b

The unary operator ++ operates only on arguments that have
anl-value. When placedafter its argument, it increments

a plus plus or Postin-
crement a

a++

that argument by 1 and returns the value of that argument
before it was incremented.

The unary operator ++ operates only on arguments that have
anl-value. When placedbefore its argument, it increments
that argument by 1 and returns the resulting value.

plus plus a orPrein-
crement a

++a

The unary operator -- operates only on arguments that have
anl-value. When placedafter its argument, it decrements

a minus minus or
Postdecrement a

a--

that argument by 1 and returns the value of that argument
before it was decremented.

The unary operator -- operates only on arguments that have
anl-value. When placedbefore its argument, it decrements
that argument by 1 and returns the resulting value.

minus minus a orPre-
decrement a

--a

Logical

The following logical operators operate on boolean or integral operands, as noted.

C Sharp Programming

- 50 -

by , XML to PDF XSL-FO Formatter

http://en.wikipedia.org/wiki/en:addition
http://en.wikipedia.org/wiki/en:subtraction
http://en.wikipedia.org/wiki/en:multiplication
http://en.wikipedia.org/wiki/en:division_%28mathematics%29
http://en.wikipedia.org/wiki/en:remainder
http://en.wikipedia.org/wiki/en:modular_arithmetic

ExplanationReadSample
usage

The binary operator & evaluates both of its operands and returns the
logical conjunction("AND") of their results. If the operands are inte-
gral, the logical conjunction is performed bitwise.

a bitwise and
b

a & b

The binary operator && operates on boolean operands only. It evalu-
ates its first operand. If the result isfalse, it returnsfalse. Otherwise,

a and ba && b

it evaluates and returns the results of the second operand. Note that
if evaluating the second operand would hypothetically have no side
effects, the results are identical to the logical conjunction performed
by the & operator.

The binary operator | evaluates both of its operands and returns the
logical disjunction("OR") of their results. If the operands are integral,
the logical disjunction is performed bitwise.

abitwise or ba | b

The binary operator || operates on boolean operands only. It evaluates
the first operand. If the result istrue, it returnstrue. Otherwise, it

a or ba || b

evaluates and returns the results of the second operand. Note that if
evaluating the second operand would hypothetically have no side ef-
fects, the results are identical to the logical disjunction performed by
the | operator.

The binary operator ^ returns theexclusive or("XOR") of their re-
sults. If the operands are integral, the exclusive or is performed bit-
wise.

a x-or ba ^ b

The unary operator ! operates on a boolean operand only. It evaluates
its operand and returns thenegation("NOT") of the result. That is, it
returnstrue if a evaluates tofalse and it returnsfalse if a evaluates to
true.

not a!a

The unary operator ~ operates on integral operands only. It evaluates
its operand and returns the bitwise negation of the result. That is, ~a

bitwise not a~a

returns a value where each bit is the negation of the corresponding
bit in the result of evaluating a.

C Sharp Programming

- 51 -

by , XML to PDF XSL-FO Formatter

http://en.wikipedia.org/wiki/en:Logical_conjunction
http://en.wikipedia.org/wiki/en:Logical_conjunction
http://en.wikipedia.org/wiki/en:Logical_disjunction
http://en.wikipedia.org/wiki/en:Logical_disjunction
http://en.wikipedia.org/wiki/en:exclusive_or
http://en.wikipedia.org/wiki/en:negation

Bitwise shifting

ExplanationReadSample us-
age

The binary operator << evaluates its operands and returns the re-
sulting first argument left-shifted by the number of bits specified

a left shift ba << b

by the second argument. It discards high-order bits that shift be-
yond the size of its first argument and sets new low-order bits to
zero.

The binary operator >> evaluates its operands and returns the re-
sulting first argument right-shifted by the number of bits specified

a right shift ba >> b

by the second argument. It discards low-order bits that are shifted
beyond the size of its first argument and sets new high-order bits
to the sign bit of the first argument, or to zero if the first argument
is unsigned.

Relational

The binary relational operators ==, !=, <, >, <=, and >= are used for relational operations
and for type comparisons.

ExplanationReadSample us-
age

For arguments ofvalue type, the operator == returnstrue
if its operands have the same value, false otherwise. For

a is equal to ba == b

thestring type, it returnstrue if the strings' character se-
quences match. For otherreference types (types derived

C Sharp Programming

- 52 -

by , XML to PDF XSL-FO Formatter

from System.Object), however, a == b returnstrue only if
a and b reference the same object.

The operator != returns the logical negation of the operator
==. Thus, it returnstrue if a is not equal to b, andfalse if
they are equal.

a is not equal to ba != b

The operator < operates on integral types. It returnstrue
if a is less than b,false otherwise.

a is less than ba < b

The operator > operates on integral types. It returnstrue
if a is greater than b,false otherwise.

a is greater than ba > b

The operator <= operates on integral types. It returnstrue
if a is less than or equal to b,false otherwise.

a is less than or equal
to b

a <= b

The operator >= operates on integral types. It returnstrue
if a is greater than or equal to b,false otherwise.

a is greater than or
equal to b

a >= b

Assignment

The assignment operators are binary. The most basic is the operator =. Not surprisingly, it
assigns the value of its second argument to its first argument.

(More technically, the operator = requires for its first (left) argument an expression to which
a value can be assigned (anl-value) and for its second (right) argument an expression which can
be evaluated (anr-value). That requirement of anassignable expression to its left and abound
expression to its right is the origin of the termsl-value andr-value.)

The first argument of the assignment operator (=) is typically a variable. When that argument
has avalue type, the assignment operation changes the argument's underlying value. When the
first argument is areference type, the assignment operation changes the reference, so the first
argument typically just refers to a different object but the object that it originally referenced does
not change (except that it may no longer be referenced and may thus be a candidate forgarbage
collection).

C Sharp Programming

- 53 -

by , XML to PDF XSL-FO Formatter

ExplanationReadSample usage

The operator = evaluates its second argument and then
assigns the results to (thel-value indicated by) its first
argument.

a equals (or set to) ba = b

Equivalent to a = (b = c). When there are consecutive
assignments, the right-most assignment is evaluated

b set to c, and then a
set to b

a = b = c

first, proceeding from right to left. In this example, both
variables a and b have the value of c.

Short-hand Assignment

The short-hand assignment operators shortens the common assignment operation of a = a
operator b into aoperator= b, resulting in less typing and neater syntax.

ExplanationReadSample usage

Equivalent to a = a + b.a plus equals (or increment by) ba += b

Equivalent to a = a - b.a minus equals (or decrement by) ba -= b

Equivalent to a = a * b.a multiply equals (or multiplied by) ba *= b

Equivalent to a = a / b.a divide equals (or divided by) ba /= b

Equivalent to a = a % b.a mod equals ba %= b

Equivalent to a = a & b.a and equals ba &= b

Equivalent to a = a | b.a or equals ba |= b

Equivalent to a = a ^ b.a xor equals ba ^= b

Equivalent to a = a << b.a left-shift equals ba <<= b

Equivalent to a = a >> b.a right-shift equals ba >>= b

C Sharp Programming

- 54 -

by , XML to PDF XSL-FO Formatter

Type information

ExplanationExpression

returns true if the variable x of base class type stores an object of derived class
type T, or, if x is of type T. Else returns false.

x is T

returns (T)x(x cast to T) if the variable x of base class type stores an object of de-
rived class type T, or, if x is of type T. Else returns null. Equivalent to x is T ?
(T)x : null

x as T

returns the size of the value type x. Remarks: The sizeof operator can be applied
only to value types, not reference types..

sizeof(x)

returns a System.Type object describing the type. T must be the name of the type,
and not a variable. Use the GetType method to retrieve run-time type information
of variables.

typeof(T)

Pointer manipulation

NOTE: Most C# developers agree that direct manipulation and use of pointers is not recom-
mended in C#. The language has many built-in classes to allow you to do almost any operation
you want. C# was built with memory-management in mind and the creation and use of pointers
is greatly disruptive to this end. This speaks to the declaration of pointers and the use of pointer
notation, not arrays. In fact, a program may only be compiled in "unsafe mode" if it uses pointers.

ExplanationExpression

Indirection operator. Allows access the object being pointed.*a

Similar to the '.' operator. Allows access to members of classes and structs being
pointed.

a->member

Used toindex a pointer.a[]

References theaddress of the pointer.&a

allocates memory on the stack.stackalloc

Temporarily fixes a variable in order that its address may be found.fixed

C Sharp Programming

- 55 -

by , XML to PDF XSL-FO Formatter

Overflow exception control

ExplanationExpression

uses overflow checking on value achecked(a)

avoids overflow checking on value aunchecked(a)

Others

ExplanationExpression

accesses member b of type or namespace aa.b

the value of index b in aa[b]

casts the value b to type a(a)b

creates an object of type anew a

if a and b are string types, concatenates a and ba + b

if a is true, returns the value of b, otherwise ca ? b : c

if a is null, returns b, otherwise returns aa ?? b

you can write a path without mentioning the special characters.
(example: @"c:\" instead of "c:\\")

@a

C Sharp Programming

- 56 -

by , XML to PDF XSL-FO Formatter

Data structures

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

There are various ways of grouping sets of data together in C#.

Enumerations

An enumeration is a data type thatenumerates a set of items by assigning to each of them
an identifier (a name), while exposing an underlying base type for ordering the elements of the
enumeration. The underlying type is int by default, but can be any one of the integral types except
for char.

Enumerations are declared as follows:

enum Weekday { Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday
};

The elements in the above enumeration are then available as constants:

Weekday day = Weekday.Monday;
if (day == Weekday.Tuesday)
{

Console.WriteLine("Time sure flies by when you program in C#!");
}

C Sharp Programming

- 57 -

by , XML to PDF XSL-FO Formatter

http://en.wikipedia.org/wiki/enumeration

If no explicit values are assigned to the enumerated items as the example above, the first ele-
ment has the value 0, and the successive values are assigned to each subsequent element. Howev-
er, specific values from the underlying integral type can be assigned to any of the enumerated
elements:

enum Age { Infant = 0, Teenager = 13, Adult = 18 };

Age age = Age.Teenager;
Console.WriteLine("You become a teenager at an age of {0}.", (int)age);

The underlying values of enumerated elements may go unused when the purpose of an enu-
meration is simply to group a set of items together, e.g., to represent a nation, state, or geographi-
cal territory in a more meaningful way than an integer could. Rather than define a group of logical-
ly related constants, it is often more readable to use an enumeration.

It may be desirable to create an enumeration with a base type other than int. To do so, specify
any integral type besides char as with base classextension syntax after the name of the enumera-
tion, as follows:

enum CardSuit : byte { Hearts, Diamonds, Spades, Clubs };

The enumeration type is also helpful if you need to output the value. By calling the
.ToString() method on the enumeration, will output the enumerations name (e.g. Card-
Suit.Hearts.ToString() will output "Hearts").

Structs

Structures (keywordstruct) are light-weight objects. They are mostly used when only a data
container is required for a collection of value type variables.Structs are similar toclasses in that

C Sharp Programming

- 58 -

by , XML to PDF XSL-FO Formatter

they can have constructors, methods, and even implement interfaces, but there are important
differences.

• Structs are value types whileclasses are reference types, which means they behave
differently when passed into methods as parameters.

• Structs cannot support inheritance. Whilestructs may appear to be limited with their
use, they require less memory and can be less expensive if used in the proper way.

• Structs always have a default constructor, even if you don't want one. Classes allow
you to hide the constructor away by using the "private" modifier, whereas structures
must have one.

A struct can, for example, be declared like this:

struct Person
{

public string name;
public System.DateTime birthDate;
public int heightInCm;
public int weightInKg;

}

The Personstruct can then be used like this:

Person dana = new Person();
dana.name = "Dana Developer";
dana.birthDate = new DateTime(1974, 7, 18);
dana.heightInCm = 178;
dana.weightInKg = 50;

if (dana.birthDate < DateTime.Now)
{

Console.WriteLine("Thank goodness! Dana Developer isn't from the fu-
ture!");
}

It is also possible to provideconstructors to structs to make it easier to initialize them:

using System;
struct Person
{

C Sharp Programming

- 59 -

by , XML to PDF XSL-FO Formatter

string name;
DateTime birthDate;
int heightInCm;
int weightInKg;

public Person(string name, DateTime birthDate, int heightInCm, int
weightInKg)

{
this .name = name;
this .birthDate = birthDate;
this .heightInCm = heightInCm;
this .weightInKg = weightInKg;

}
}

public class StructWikiBookSample
{

public static void Main()
{

Person dana = new Person("Dana Developer", new DateTime(1974, 7, 18),
178, 50);

}
}

Structs are really only used for performance reasons and/or if you intend to it by value.
Structs work best when holding a total equal to or less than 16 bytes of data. If in doubt, use
classes.

Arrays

Arrays represent a set of items all belonging to the same type. The declaration itself may use
a variable or a constant to define the length of the array. However, an array has a set length and
it cannot be changed after declaration.

// an array whose length is defined with a constant
int[] integers = new int[20];

int length = 0;
System.Console.Write("How long should the array be? ");
System.Console.ReadLine(length);
// an array whose length is defined with a variable

C Sharp Programming

- 60 -

by , XML to PDF XSL-FO Formatter

// this array still can't change length after declaration
double[] doubles = new double[length];

C Sharp Programming

- 61 -

by , XML to PDF XSL-FO Formatter

Control

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Conditional, iteration, jump, and exception handling statements control a program's flow of
execution.

An iteration statement can create a loop using keywords such as do, while, for, foreach, and
in.

A jump statement can be used to transfer program control using keywords such as break,
continue, return, and yield.

An exception handling statement can be used to handle exceptions using keywords such as
throw, try-catch, try-finally, and try-catch-finally.

Conditional statements

A conditional statement decides whether to execute code based on conditions. The if state-
ment and the switch statement are the two types of conditional statements in C#.

The if statement

As with most of C#, theif statement has the same syntax as in C, C++, and Java. Thus, it is
written in the following form:

if-statement ::= "if" "(" condition ")" if-body ["else"else-body]

C Sharp Programming

- 62 -

by , XML to PDF XSL-FO Formatter

condition ::= boolean-expression

if-body ::= statement-or-statement-block

else-body ::= statement-or-statement-block

The if statement evaluates itscondition expression to determine whether to execute theif-
body. Optionally, an else clause can immediately follow theif body, providing code to execute
when thecondition is false. Making theelse-body another if statement creates the commoncas-
cade of if, else if, else if, else if, else statements:

using System;

public class IfStatementSample
{

public void IfMyNumberIs()
{

int myNumber = 5;
if (myNumber == 4)

Console.WriteLine("This will not be shown because myNumber is not
4.");

else if (myNumber < 0)
{

Console.WriteLine("This will not be shown because myNumber is not
negative.");

}
else if (myNumber % 2 == 0)

Console.WriteLine("This will not be shown because myNumber is not
even.");

else
{

Console.WriteLine("myNumber does not match the coded conditions,
so this sentence will be shown!");

}
}

}

The switch statement

The switch statement is similar to the statement from C, C++ and Java.

Unlike C, each case statement must finish with a jump statement (which can be break or
goto or return). In other words, C# does not support "fall through" from one case statement to

C Sharp Programming

- 63 -

by , XML to PDF XSL-FO Formatter

the next (thereby eliminating a common source of unexpected behaviour in C programs). Howev-
er "stacking" of cases is allowed, as in the example below. If goto is used, it may refer to a case
label or the default case (e.g. goto case 0 or goto default).

The default label is optional. If no default case is defined, then the default behaviour is to
do nothing.

A simple example:

switch (nCPU)
{

case 0:
Console.WriteLine("You don't have a CPU! :-)");
break;

case 1:
Console.WriteLine("Single processor computer");
break;

case 2:
Console.WriteLine("Dual processor computer");
break;

// Stacked cases
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:

Console.WriteLine("A multi processor computer");
break;

default :
Console.WriteLine("A seriously parallel computer");
break;

}

A nice improvement over the C switch statement is that the switch variable can be a string.
For example:

switch (aircraft_ident)
{

case "C-FESO":
Console.WriteLine("Rans S6S Coyote");
break;

case "C-GJIS":
Console.WriteLine("Rans S12XL Airaile");

C Sharp Programming

- 64 -

by , XML to PDF XSL-FO Formatter

break;
default :

Console.WriteLine("Unknown aircraft");
break;

}

Iteration statements

An iteration statement creates aloop of code to execute a variable number of times. The for
loop, the do loop, the while loop, and the foreach loop are the iteration statements in C#.

The do...while loop

Thedo...while loop likewise has the same syntax as in other languages derived from C. It
is written in the following form:

do...while-loop ::= "do" body "while" "(" condition ")"

condition ::= boolean-expression

body ::= statement-or-statement-block

The do...while loop always runs itsbody once. After its first run, it evaluates itscondition
to determine whether to run itsbody again. If thecondition is true, the body executes. If the
condition evaluates totrue again after thebody has ran, thebody executes again. When thecondi-
tion evaluates tofalse, the do...while loop ends.

using System;

public class DoWhileLoopSample
{

public void PrintValuesFromZeroToTen()
{

int number = 0;
do
{

Console.WriteLine(number++.ToString());
} while (number <= 10);

}

C Sharp Programming

- 65 -

by , XML to PDF XSL-FO Formatter

}

The above code writes the integers from 0 to 10 to the console.

The for loop

Thefor loop likewise has the same syntax as in other languages derived from C. It is written
in the following form:

for-loop ::= "for" "(" initialization ";" condition ";" iteration ")" body

initialization ::= variable-declaration | list-of-statements

condition ::= boolean-expression

iteration ::= list-of-statements

body ::= statement-or-statement-block

The initialization variable declaration or statements are executed the first time through the
for loop, typically to declare and initialize an index variable. Thecondition expression is evaluat-
ed before each pass through thebody to determine whether to execute the body. It is often used
to test an index variable against some limit. If thecondition evaluates totrue, thebody is execut-
ed. Theiteration statements are executed after each pass through thebody, typically to increment
or decrement an index variable.

public class ForLoopSample
{

public void ForFirst100NaturalNumbers()
{

for (int i=0; i<100; i++)
{

System.Console.WriteLine(i.ToString());
}

}
}

The above code writes the integers from 0 to 99 to the console.

C Sharp Programming

- 66 -

by , XML to PDF XSL-FO Formatter

The foreach loop

Theforeach statement is similar to the for statement in that both allow code to iterate over
the items of collections, but the foreach statement lacks an iteration index, so it works even with
collections that lack indices altogether. It is written in the following form:

foreach-loop ::= "foreach" "("variable-declaration "in" enumerable-expression ")" body

body ::= statement-or-statement-block

Theenumerable-expression is an expression of a type that implementsIEnumerable, so it
can be an array or acollection. Thevariable-declaration declares a variable that will be set to
the successive elements of theenumerable-expression for each pass through thebody. The fore-
ach loop exits when there are no more elements of theenumerable-expression to assign to the
variable of thevariable-declaration.

public class ForEachSample
{

public void DoSomethingForEachItem()
{

string [] itemsToWrite = {"Alpha", "Bravo", "Charlie"};
foreach (string item in itemsToWrite)

System.Console.WriteLine(item);
}

}

In the above code, the foreach statement iterates over the elements of the string array to write
"Alpha", "Bravo", and "Charlie" to the console.

The while loop

Thewhile loop has the same syntax as in other languages derived from C. It is written in the
following form:

while-loop ::= "while" "(" condition ")" body

condition ::= boolean-expression

body ::= statement-or-statement-block

C Sharp Programming

- 67 -

by , XML to PDF XSL-FO Formatter

The while loop evaluates itscondition to determine whether to run itsbody. If the condition
is true, thebody executes. If thecondition then evaluates totrue again, thebody executes again.
When thecondition evaluates tofalse, the while loop ends.

using System;

public class WhileLoopSample
{

public void RunForAwhile()
{

TimeSpan durationToRun = new TimeSpan(0, 0, 30);
DateTime start = DateTime.Now;
while (DateTime.Now - start < durationToRun)
{

Console.WriteLine("not finished yet");
}
Console.WriteLine("finished");

}
}

Jump statements

A jump statement can be used to transfer program control using keywords such as break,
continue, return, yield, and throw.

C Sharp Programming

- 68 -

by , XML to PDF XSL-FO Formatter

Exceptions

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The exception handling system in the C# language allows the programmer to handle errors
or anomalous situations in a structured manner that allows the programmer to separate the normal
flow of the code from error-handling logic. An exception can represent a variety of abnormal
conditions, including, for example, the use of a null object reference detected by the runtime
system, or an invalid input string entered by a user and detected by application code. Code that
detects an error condition is said tothrow an exception and code that handles the error is said to
catch the exception. An exception in C# is an object that encapsulates various information about
the error that occurred, such as the stack trace at the point of the exception and a descriptive error
message. All exception objects are instantiations of the System.Exception or a child class of it.
There are many exception classes defined in the .NET Framework used for various purposes.
Programmers may also define their own class inheriting from System.Exception or some other
appropriate exception class from the .NET Framework.

Microsoft recommendations prior to version 2.0 recommended that a developer inherit from
theApplicationException exception class. After 2.0 was released, this recommendation was made

obsolete and users should inherit from theException class[1].

The following example demonstrates the basics of exception throwing and handling excep-
tions:

class ExceptionTest
{

public static void Main(string [] args)
{

try
{

OrderPizza("pepperoni");

C Sharp Programming

- 69 -

by , XML to PDF XSL-FO Formatter

OrderPizza("anchovies");
}
catch (ArgumentException e)
{

Console.WriteLine(e.Message);
}
finally
{

Console.WriteLine("press enter to continue...");
Console.ReadLine();

}
}

private static void OrderPizza(string topping)
{

if (topping != "pepperoni" && topping != "sausage")
{

throw new ArgumentException(
String.Format("Unsupported pizza topping: {0}", topping));

}
Console.WriteLine("one {0} pizza ordered", topping);

}
}

When run, this example produces the following output:

one pepperoni pizza ordered
Unsupported pizza topping: anchovies
press enter to continue...

The Main() method begins by opening atry block. A try block is a block of code that may
throw an exception that is to be caught and handled. Following thetry block are one or more
catchblocks. These blocks contain the exception handling logic. Eachcatchblock contains an
exception object declaration, similar to the way a method argument is declared, in this case, an
ApplicationException named e. When an exception matching the type of thecatchblock is
thrown, that exception object is passed in to thecatchand available for it to use and even possibly
re-throw. Thetry block calls the OrderPizza() method, which may throw an ApplicationExcep-
tion. The method checks the input string and, if it has an invalid value, an exception is thrown
using thethrowkeyword. Thethrow is followed by the object reference representing the excep-
tion object to throw. In this case, the exception object is constructed on the spot. When the excep-
tion is thrown, control is transferred to the inner mostcatchblock matching the exception type

C Sharp Programming

- 70 -

by , XML to PDF XSL-FO Formatter

thrown. In this case, it is one method in the call stack higher. Lastly, the Main() method contains
a finally block after thecatchblock. Thefinally block is optional and contains code that is to be
executed regardless of whether an exception is thrown in the associatedtry block. In this case,
the finally just prompts the user to press enter, but normally it is used to release acquired re-
sources or perform other cleanup activities.

References

1. ↑ [ApplicationException made obsolete]

C Sharp Programming

- 71 -

by , XML to PDF XSL-FO Formatter

http://blogs.msdn.com/fxcop/archive/2006/04/05/569569.aspx

Namespaces

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Namespaces are used to provide a "named space" in which your application resides. They're
used especially to provide the C# compiler a context for all the named information in your pro-
gram, such as variable names. Without namespaces, you wouldn't be able to make, e.g., a class
named Console, as .NET already uses one in its System namespace. The purpose of namespaces
is to solve this problem, and release thousands of names defined in the .NET Framework for your
applications to use, along with making it so your application doesn't occupy names for other appli-
cations, if your application is intended to be used in conjunction with another. So namespaces
exist to resolve ambiguities a compiler wouldn't otherwise be able to do.

Namespaces are easily defined in this way:

namespace MyApplication
{

// The content to reside in the MyApplication namespace is placed here.
}

There is an entire hierarchy of namespaces provided to you by the .NET Framework, with
the System namespace usually being by far the most commonly seen one. Data in a namespace
is referred to by using the . operator, such as:

System.Console.WriteLine("Hello, world!");

This will call the WriteLine method that is a member of the Console class within the System
namespace.

C Sharp Programming

- 72 -

by , XML to PDF XSL-FO Formatter

By using the using keyword, you explicitly tell the compiler that you'll be using a certain
namespace in your program. Since the compiler would then know that, it no longer requires you
to type the namespace name(s) for such declared namespaces, as you told it which namespaces
it should look in if it couldn't find the data in your application.

So one can then type like this:

using System;

namespace MyApplication
{

class MyClass
{

void ShowGreeting()
{

Console.WriteLine("Hello, world!"); // note how System is now not re-
quired

}
}

}

Namespaces are global, so a namespace in one C# source file, and another with the same
name in another source file, will cause the compiler to treat the different named information in
these two source files as residing in the same namespace.

Nested namespaces

Normally, your entire application resides under its own special namespace, often named after
your application or project name. Sometimes, companies with an entire product series decide to
use nested namespaces though, where the "root" namespace can share the name of the company,
and the nested namespaces the respective project names. This can be especially convenient if
you're a developer who has made a library with some usual functionality that can be shared across
programs. If both the library and your program shared a parent namespace, that one would then
not have to be explicitly declared with the using keyword, and still not have to be completely
typed out. If your code was open for others to use, third party developers that may use your code
would additionally then see that the same company had developed the library and the program.
The developer of the library and program would finally also separate all the named information
in their product source codes, for fewer headaches especially if common names are used.

C Sharp Programming

- 73 -

by , XML to PDF XSL-FO Formatter

To make your application reside in a nested namespace, you can show this in two ways. Ei-
ther like this:

namespace CodeWorks
{

namespace MyApplication
{

// Do stuff
}

}

... or like this:

namespace CodeWorks.MyApplication
{

// Do stuff
}

Both methods are accepted, and are identical in what they do.

C Sharp Programming

- 74 -

by , XML to PDF XSL-FO Formatter

Classes

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

As in other object-oriented programming languages, the functionality of a C# program is
implemented in one or moreclasses. Themethods andproperties of a class contain the code that
defines how the class behaves.

C# classes supportinformation hidingby encapsulatingfunctionality in properties and
methods and by enabling several types ofpolymorphism, includingsubtyping polymorphism via
inheritanceandparametric polymorphism via generics.

Several types of C# classes can be defined, includinginstance classes (standard classes that
can be instantiated),static classes, andstructures.

Classes are defined using the keyword "class" followed by an identifier to name the class.
Instances of the class can then be created with the "new" keyword followed by the name of the
class. The code below defines a class called Employee with properties Name and Age and with
empty methods GetPayCheck() and Work(). It also defines a Sample class that instantiates and
uses the Employee class:

public class Employee
{

private string _name;
private int _age;

public string Name
{

set { _name = value ; }
get { return _name; }

}

C Sharp Programming

- 75 -

by , XML to PDF XSL-FO Formatter

http://en.wikipedia.org/wiki/en:information_hiding
http://en.wikibooks.org/wiki/Programming:C_sharp/Encapsulation
http://en.wikipedia.org/wiki/en:polymorphism_%28computer_science%29
http://en.wikibooks.org/wiki/Programming:C_sharp/Inheritance
http://en.wikibooks.org/wiki/Programming:C_sharp/Inheritance
http://en.wikipedia.org/wiki/en:generic_programming

public int Age
{

set { _age = value ; }
get { return _age; }

}

public void GetPayCheck()
{
}

public void Work()
{
}

}

public class Sample
{

public static void Main()
{

Employee Marissa = new Employee();
Marissa.Work();
Marissa.GetPayCheck();

}
}

Methods

C# methods are class members containing code. They may have a return value and a list of
parameters, as well as ageneric type declaration. Like fields, methods can bestatic (associated
with and accessed through the class) orinstance (associated with and accessed through an object
instance of the class).

Constructors

A class'sconstructors control its initialization. A constructor's code executes to initialize an
instance of the class when a program requests a new object of the class's type. Constructors often
set properties of their classes, but they are not restricted to doing so.

C Sharp Programming

- 76 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/C_Sharp_Programming/Variables#Parameter
http://en.wikibooks.org/wiki/C_Sharp_Programming/Variables#Parameter

Like other methods, a constructor can haveparameters. To create an object using a construc-
tor with parameters, the new command accepts parameters. The below code defines and then in-
stantiates multiple objects of the Employee class, once using the constructor without parameters
and once using the version with a parameter:

public class Employee
{

public Employee()
{

System.Console.WriteLine("Constructed without parameters");
}

public Employee(string text)
{

System.Console.WriteLine(text);
}

}

public class Sample
{

public static void Main()
{

System.Console.WriteLine("Start");
Employee Alfred = new Employee();
Employee Billy = new Employee("Parameter for construction");
System.Console.WriteLine("End");

}
}

Output:

Start
Constructed without parameters
Parameter for construction
End

C Sharp Programming

- 77 -

by , XML to PDF XSL-FO Formatter

Finalizers

The opposite of constructors,finalizers define the final behavior of an object and execute
when the object is no longer in use. Although they are often used in C++ to free memory reserved
by an object, they are less frequently used in C# due to the .NET Framework Garbage Collector.
An object's finalizer, which takes no parameters, is called sometime after an object is no longer
referenced, but the complexities of garbage collection make the specific timing of finalizers uncer-
tain.

public class Employee
{

public Employee(string text)
{

System.Console.WriteLine(text);
}

~Employee()
{

System.Console.WriteLine("Finalized!");
}

public static void Main()
{

Employee Marissa = new Employee("Constructed!");
Marissa = null ;

}
}

Output:

Constructed!
Finalized!

C Sharp Programming

- 78 -

by , XML to PDF XSL-FO Formatter

Properties

C# properties are class members that expose functionality of methods using the syntax of
fields. They simplify the syntax of calling traditionalget andset methods (a.k.a.accessor meth-
ods). Like methods, they can bestatic or instance.

Properties are defined in the following way:

public class MyClass
{

private int integerField = 3; // Sets integerField with a default value
of 3

public int IntegerField
{

get {
return integerField; // get returns the field you specify when

this property is assigned
}
set {

integerField = value ; // set assigns the value assigned to the
property of the field you specify

}
}

}

The C# keywordvaluecontains the value assigned to the property. After a property is de-
fined it can be used like a variable. If you were to write some additional code in the get and set
portions of the property it would work like a method and allow you to manipulate the data before
it is read or written to the variable.

using System;

public class MyProgram
{

MyClass myClass = new MyClass;

Console.WriteLine(myClass.IntegerField); // Writes 3 to the command line.

myClass.IntegerField = 7; // Indirectly assigns 7 to the field myClass.in-
tegerField

C Sharp Programming

- 79 -

by , XML to PDF XSL-FO Formatter

}

Using properties in this way provides a clean, easy to use mechanism for protecting data.

Indexers

C# indexers are class members that define the behavior of thearray access operation (e.g.
list[0] to access the first element of list even when list is not an array).

To create an indexer, use thethis keyword as in the following example:

public string this [string key]
{

get { return coll[key];}
set {coll[key] = value ;}

}

This code will create a string indexer that returns a string value. For example, if the class
was EmployeeCollection, you could write code similar to the following:

EmployeeCollection e = new EmployeeCollection();
.
.
.
string s = e["Jones"];
e["Smith"] = "xxx";

Events

C# events are class members that expose notifications to clients of the class.

C Sharp Programming

- 80 -

by , XML to PDF XSL-FO Formatter

Operator

C# operator definitions are class members that define or redefine the behavior of basic C#
operators (called implicitly or explicitly) on instances of the class.

Structures

Structures, or structs, are defined with the struct keyword followed by anidentifier to name
the structure. They are similar to classes, but have subtle differences.Structs are used as
lightweight versions of classes that can help reduce memory management efforts when working
with small data structures. In most situations, however, using a standardclass is a better choice.

The principal difference betweenstructs andclasses is thatinstances of structs arevalues
whereasinstances of classes arereferences. Thus when you pass astruct to a function by value
you get a copy of the object so changes to it are not reflected in the original because there are
now two distinct objects but if you pass an instance of a class by value then there is only one in-
stance.

The Employee structure below declares a public and a private field. Access to the private
field is granted through the publicproperty"Name":

struct Employee
{

private string name;
public int age;

public string Name
{

set { name = value ; }
get { return name; }

}
}

C Sharp Programming

- 81 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Programming:C_sharp/Encapsulation

Static classes

Static classes are commonly used to implement aSingleton Pattern. All of the methods,
properties, and fields of a static class are also static (like the WriteLine() method of the Sys-
tem.Console class) and can thus be used without instantiating the static class:

public static class Writer
{

public static void Write()
{

System.Console.WriteLine("Text");
}

}

public class Sample
{

public static void Main()
{

Writer.Write();
}

}

C Sharp Programming

- 82 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Computer_Science:Design_Patterns#Singleton

Objects

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Introduction

The .NET framework consists of several languages, all which follow the "object orientated
programming" (OOP) approach to software development. This standard defines that all objects
support

• Inheritance - the ability to inherit and extend exisiting functionality.
• Encapsulation - the ability to allow the user to only see specific parts, and to interact

with it in specific ways.
• Polymorphism - the ability for an object to be assigned dynamically, but with some

predicatability as to what can be done with the object.

Objects are synonomous with objects in the real world. Think of any object and think of how
it looks and how it is measured and interacted with. When creating OOP languages, the reasoning
was that if it mimics the thought process of humans, it would simplify the coding experience.

For example, let's consider a chair, and its dimensions, weight, colour and what is it made
out of. In .NET, these values are called "Properties". These are values which define the object's
state. Be careful, as there are two ways to expose values: Variables and Properties. The recom-
mended approach is expose Properties and not variables.

So we have a real-world idea of the concept of an object. In terms of practicality for a com-
puter to pass information about, passing around an object within a program would consume a lot
of resources. Think of a car, how many properties that has - 100's, 1000's. A computer passing

C Sharp Programming

- 83 -

by , XML to PDF XSL-FO Formatter

this information about all the time will waste memory, processing time and therefore a bad idea
to use. So objects come in 2 flavours:

• Reference types
• Value types

Reference and Value Types

A reference type is like a pointer to the value. Think of it like a piece of paper with a street
address on it, and the address leads to your house - your object with hundreds of properties. If
you want to find it, go to where the address says! This is exactly what happens inside the comput-
er. The reference is stored as a number, corresponding to somewhere in memory where the object
exists. So instead of moving an object around - like building a replica house every time you want
to look at it - you just look at the original.

A value type is the exact value itself. Values are great for storing small amounts of informa-
tion: numbers, dates etc.

There are differences in the way they are processed, so we will leave that until a little later
in the article.

As well as querying values, we need a way to interacting with the object so that some opera-
tion can be performed. Think of files - its all well and good knowing the length of the file, but
how aboutRead() 'ing it? Therefore, we can use something calledmethods as a way of perform-
ing actions on an object.

An example would be a circle. The properties of a square are:

• Length
• Height

The "functions" (ormethods in .NET) would be:

• Area (= Length * Width)
• Perimeter (= 2 * Length + 2 * Width)

Methods vary from Properties because they require some transformation of data to achieve
a result. Methods can either return a result (such as Area) or not. Like above with the chair, if
you Sit() on the chair, there is no expected reaction, the chair just ... works!

C Sharp Programming

- 84 -

by , XML to PDF XSL-FO Formatter

System.Object

To support the first rule of OOP - Inheritance, we define something that all objects will de-
rive from - this isSystem.Object, known as Object object. This object defines some methods that
all objects can use should they need too. These methods include:

• GetHashCode() - retrieve a number unique to that object.
• GetType() - retrieves information about the object like method names, the objects name

etc.
• ToString() - convert the object to a textual representation - usually for outputting to the

screen or file.

Since all objects derive from this class (whether you define it or not), any class will have
these 3 methods ready to use. Since we always inherit from System.Object, or a class that itself
inherits from System.Object, we therefore enhance and/or extend its functionality. Like in the
real world that humans, cats, dogs, birds, fish are all an improved and specialised version of an
"organism".

Object basics

All objects by default are reference types. To support value types, objects must instead inher-
it from theSystem.ValueType abstract class, rather than System.Object.

Constructors

When objects are created, they are initialized by the "constructor". The constructor sets up
the object, ready for use. Because objects need to be created before being used, the constructor
is created implicitally, unless it is defined differently by the developer. There are 3 types of
constructor:

• Static Constructor
• Default constructor - takes no parameters.
• Overloaded constructor - takes parameters.

Overloaded constructors automatically remove the implicit default constructor, so a develop-
er must explicitally define the default constructor if they want to use it.

C Sharp Programming

- 85 -

by , XML to PDF XSL-FO Formatter

Static Constructor

A static constructor is first called when the runtime first accesses the class. Static variables
are accessible at all times, so the runtime must initialize it on its first access. The example below,
when stepping through in a debugger, will show thatstatic MyClass() is only accessed when the
MyClass.Number variable is accessed.

using System;
using System.Collections.Generic;
using System.Text;

namespace StaticConstructors
{

class Program
{

static void Main(string[] args)
{

int i = 0;
int j = 0;
Console.WriteLine("Static Number = " + MyClass.Number);

}
}

class MyClass
{

private static int number;
public static int Number { get { return number; } }
static MyClass()
{

Random r = new Random();
number = r.Next();

}
}

}

Default Constructor

The default constructor takes no parameters and is implicitally defined if no other construc-
tors exist. The code sample below show the before, and after result of creating a class.

//Created by the developer

C Sharp Programming

- 86 -

by , XML to PDF XSL-FO Formatter

class MyClass
{
}

//Created by the compiler
class MyClass : System.Object
{

public MyClass() : base()
{
}

}

Overloaded Constructors

To initialize objects in various forms, the constructors allow customization of the object by
passing in parameters.

class MyClass
{

private int number;
public int Number { get { return number; } }

public MyClass()
{

Random r = new Random();
number = r.Next();

}

public MyClass(int seed)
{

Random r = new Random(seed);
number = r.Next();

}
}

Calling other constructors

To minimise code, if another constructor implements the functionality better, you can instruct
the constructor to call an overloaded (or default) constructor with specific parameters.

class MyClass

C Sharp Programming

- 87 -

by , XML to PDF XSL-FO Formatter

{
private int number;
public int Number { get { return number; } }

public MyClass() :
this (DateTime.Now.Milliseconds) //Call the other constructor

passing in a value.
{

}

public MyClass(int seed)
{

Random r = new Random(seed);
number = r.Next();

}
}

Base classes constructors can also be called instead of constructors in the current instance

class MyException : Exception
{

private int number;
public int Number { get { return number; } }

public MyException (int errorNumber, string message, Exception in-
nerException) : base(message, innerException)

{
number = errorNumber;

}
}

Destructors

As well as being ""constructed"", objects can also perform cleanup when they are cleared
up by the garbage collector. The garbage collector only runs when either directly invoked, or has
reason to reclaim memory, therefore the destructor may not get the change to clean up resources
for a long time. In this case, look into use of the Dispose() method, from the IDisposable inter-
face.

C Sharp Programming

- 88 -

by , XML to PDF XSL-FO Formatter

Destructors are recognised via the use of the ~ symbol in front of a constructor with no ac-
cess modifier e.g.

class MyException : Exception
{

private int number;
public int Number { get { return number; } }

public MyException (int errorNumber, string message, Exception in-
nerException) : base(message, innerException)

{
number = errorNumber;

}

~MyException()
{
}

}

Abstract Class

An abstract class is a class that was never intended to be instantiated directly, but only to
serve as a base to other classes. An abstract class must/should contain at least one abstract method
that child concrete classes are obliged to implement. A class should be made abstract if it makes
no sense to create instances of that class. For example, an Employee can be an abstract class if
there are concrete classes that represent all kinds of employees. It is never appropriate to instanti-
ate it, but it does contain behavior (abstract functions and code) common to all employees.

Sub-heading

The C Sharp Programming/Objects module or this section of C Sharp Programming is a
stub.

You can help Wikibooks by expanding it.

C Sharp Programming

- 89 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Wikibooks:Stub
http://en.wikibooks.org/wiki/Wikibooks:Stub
http://en.wikibooks.orghttp://en.wikibooks.org/w/index.php?title=C_Sharp_Programming/Objects&action=edit

Encapsulation

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Encapsulation is depriving of the user of a class information he does not need, and preventing
him from manipulating objects in ways not intended by the designer.

A class element havingpublic protection level is accessible to all code anywhere in the
program. These methods and properties represent the operations allowed on the class to outside
users.

Methods, data members (and other elements) withprivate protection level represent the inter-
nal state of the class (for variables), and operations which are not allowed to outside users.

For example:

public class Frog
{

public void JumpLow() { Jump(1); }
public void JumpHigh() { Jump(10); }

private void Jump(int height) { _height += height;}

private int _height = 0;
}

In this example, the public method the Frog class exposes are JumpLow and JumpHigh. Inter-
nally, they are implemented using the private Jump function that can jump to any height. This
operation is not visible to an outside user, so he cannot make the frog jump 100 meters, only 10

C Sharp Programming

- 90 -

by , XML to PDF XSL-FO Formatter

or 1. The Jump private method is implemented by changing the value of a private data member
_height, which is also not visible to an outside user. Some private data members are made visible
by C Sharp Programming/Properties.

Protection Levels

Private

Private members are only accessible within the class itself. A method in another class, even
a class derived from the class with private members cannot access the members.

Protected

Protected members can be accessed by the class itself and by any class derived from that
class.

Public

Public members can be accessed by any method in any class.

Internal

Internal members are accessible only in the same assembly and invisible outside it.

C Sharp Programming

- 91 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/w/index.php?title=C_Sharp_Programming/Properties&action=edit&redlink=1

NET Framework overview

The .NET Framework is a common environment for building, deploying, and running Web
Services, Web Applications, Windows Services and Windows Applications. The .NET Frame-
work contains common class libraries - like ADO.NET, ASP.NET and Windows Forms - to
provide advanced standard services that can be integrated into a variety of computer systems.

Introduction

C# is a language in itself. It can perform mathematical and logical operation, variable assign-
ment and other expected traits of a programming language. This in itself is not flexible enough
for more complex applications. At some stage, the developer will want to interact with the host
system whether it be reading files or downloading content from the internet.

The .NET framework is a toolset developed for the Windows platform to allow the developer
to interact with the host system or any external entity whether it be another process, or another
computer. The.NET platform is a Windows platform specific implementation. Other operating
systems have their own implementations due to the differences in the operating systems I/O
management, security models and interfaces.

C Sharp Programming

- 92 -

by , XML to PDF XSL-FO Formatter

Background

• .NET was originally called NGWS(Next Generation Windows Services).
• .NET does not run IN any browser. It is a RUNTIME language (Common Language

Runtime) like the Java runtime.Silverlightdoes run in a browser, but has nothing to
do with .NET.

• .NET is based on the newest Web standards.

• .NET is built on the following Internet standards

• • HTTP, the communication protocol between Internet Applications
• XML, the format for exchanging data between Internet Applications
• SOAP, the standard format for requesting Web Services
• UDDI, the standard to search and discover Web Services

C Sharp Programming

- 93 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/w/index.php?title=Silverlight&action=edit&redlink=1

Inheritance

Inheritance

Inheritance is the ability to create a class from another class, the "parent" class, extending
the functionality and state of the parent in the derived, or "child", class.

Inheritance in C# also allows derived classes to overload methods from their parent class.

Inheritance(by Mine)

Subtyping Inheritance

The code sample below shows two classes, Employee and Executive. Employee has the
following methods, GetPayCheck and Work.

We want the Executive class to have the same methods, but differently implemented and
one extra method, AdministerEmployee.

Below is the creation of the first class to be derived from, Employee.

public class Employee
{

// we declare one method virtual so that the Executive class can
// override it.
public virtual void GetPayCheck()
{

//get paycheck logic here.
}

//Employee's and Executives both work, so no virtual here needed.
public void Work()
{

//do work logic here.

C Sharp Programming

- 94 -

by , XML to PDF XSL-FO Formatter

}
}

Now, we create an Executive class that will override the GetPayCheck method.

public class Executive : Employee
{

// the override keyword indicates we want new logic behind the GetPay-
Check method.

public override void GetPayCheck()
{

//new getpaycheck logic here.
}

// the extra method is implemented.
public void AdministerEmployee()
{

// manage employee logic here
}

}

You'll notice that there is no Work method in the Executive class, it is not required, since
that method is automatically added to the Executive class, because it derives its methods from
Employee, which has the Work method.

static void Main(string [] args)
{

Employee emp = new Employee;
Executive exec = new Executive;

emp.Work();
exec.Work();
emp.GetPayCheck();
exec.GetPayCheck();
exec.AdministerEmployee();

}

C Sharp Programming

- 95 -

by , XML to PDF XSL-FO Formatter

Inheritance keywords

How C# inherits from another class syntacticaly is using the ":" character.

Example.public classExecutive : Employee

To indicate a method that can be overridden, you mark the method withvirtual.

public virtual void Write(string text)
{

System.Console.WriteLine("Text:{0}", text);
}

To override a method use theoverridekeyword

public override void Write(string text)
{

System.Console.WriteLine(text);
}

C Sharp Programming

- 96 -

by , XML to PDF XSL-FO Formatter

Interfaces

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

An interface in C# is type definition similar to a class except that it purely represents a con-
tract between an object and a user of the object. An interface cannot be directly instantiated as
an object. No data members can be defined in an interface. Methods and properties can only be
declared, not defined. For example, the following defines a simple interface:

interface IShape
{

void Draw();
double X { get ; set ; }
double Y { get ; set ; }

}

A convention used in the .NET Framework (and likewise by many C# programmers) is to
place an "I" at the beginning of an interface name to distinguish it from a class name. Another
common interface naming convention is used when an interface declares only one key method,
such Draw() in the above example. The interface name is then formed by adding the suffix "able"
to the method name. So, in the above example, the interface name would be IDrawable. This
convention is also used throughout the .NET Framework.

Implementing an interface is simply done by inheriting off the interface and then defining
all the methods and properties declared by the interface. For example:

class Square : IShape
{

private double mX, mY;

C Sharp Programming

- 97 -

by , XML to PDF XSL-FO Formatter

public void Draw() { ... }

public double X
{

set { mX = value ; }
get { return mX; }

}

public double Y
{

set { mY = value ; }
get { return mY; }

}
}

Although a class can only inherit from one other class, it can inherit from any number of
interfaces. This is simplified form of multiple inheritance supported by C#. When inheriting from
a class and one or more interfaces, the base class should be provided first in the inheritance list
followed by any interfaces to be implemented. For example:

class MyClass : Class1, Interface1, Interface2 { ... }

Object references can be declared using an interface type. For example, using the previous
examples:

class MyClass
{

static void Main()
{

IShape shape = new Square();
shape.Draw();

}
}

Intefaces can inherit off of any number of other interfaces but cannot inherit from classes.
For example:

interface IRotateable

C Sharp Programming

- 98 -

by , XML to PDF XSL-FO Formatter

{
void Rotate(double theta);

}

interface IDrawable : IRotateable
{

void Draw();
}

Additional Details

Access specifiers (i.e. private, internal, etc) cannot be provided for interface members. All
members are public. A class implementing an interface must define all the members declared by
the interface as public. The implementing class has the option of making an implemented method
virtual if it is expected to be overridden in a a child class.

In addition to methods and properties, interfaces can declare events and indexers as well.

C Sharp Programming

- 99 -

by , XML to PDF XSL-FO Formatter

Delegates and Events

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Introduction

Events and delegates are fundamental to any Windows or Web Application. These allow the
developer to "subscribe" to particular actions carried out by the user. Therefore instead of expect-
ing everything and filtering out what you want, you choose what you want to be notified of and
react to that action.

A delegate is a way of telling C# which method to call when an event is triggered. For exam-
ple, if you click a Button on a form, the program would call a specific method. It is this pointer
which is a delegate. Delegates are good because you can notify several methods that an event
has occurred, if you so wish.

An event is a notification by the .NET framework that an action has occurred. Each event
contains information about the specific event, e.g., a mouse click would say which mouse button
was clicked and where on the form it was clicked.

C Sharp Programming

- 100 -

by , XML to PDF XSL-FO Formatter

Lets say you write a program thatonly reacts to a Button click, here is the sequence of events
that occurs:

• User presses the mouse down on a button
• The .NET framework raises a MouseDown event

• User releases the mouse button
• The .NET framework raises a MouseUp event
• The .NET framework raises a MouseClick event
• The .NET framework raises a Clicked event on the Button

Since the button's click event has been subscribed, the rest of the events are ignored by the
program and yourdelegate tells the .NET framework which method to call, now that the event
has been raised.

Delegates

Delegates are a construct for abstracting and creating objects that reference methods and can
be used to call those methods. Delegates form the basis of event handling in C#. A delegate
declaration specifies a particular method signature. References to one or more methods can be
added to a delegate instance. The delegate instance can then be "called" which effectively calls
all the methods that have been added to the delegate instance. A simple example:

delegate void Procedure();

class DelegateDemo
{

static void Method1()
{

Console.WriteLine("Method 1");
}

static void Method2()
{

Console.WriteLine("Method 2");
}

void Method3()
{

Console.WriteLine("Method 3");
}

static void Main()

C Sharp Programming

- 101 -

by , XML to PDF XSL-FO Formatter

{
Procedure someProcs = null ;
someProcs += new Procedure(DelegateDemo.Method1);
someProcs += new Procedure(DelegateDemo.Method2);
DelegateDemo demo = new DelegateDemo();
someProcs += new Procedure(demo.Method3);
someProcs();

}
}

In this example, the delegate is declared by the linedelegate voidProcedure(); This statement
is a complete abstraction. It does not result in executable code that does any work. It merely de-
clares a delegate type called Procedure which takes no arguments and returns nothing. Next, in
the Main() method, the statement Procedure someProcs =null; instantiates a delegate. Something
concrete has now been created. The assignment ofnull to someProcs means that the delegate is
not initially referencing any methods. The statements someProcs +=newProcedure(DelegateDe-
mo.Method1); and someProcs +=new Procedure(DelegateDemo.Method2); add two static
methods to the delegate instance. (Note: the class name could have been left off of DelegateDe-
mo.Method1 and DelegateDemo.Method2 because the statement is occurring in the DelegateDe-
mo class.) The statement someProcs +=new Procedure(demo.Method3); adds a non-static
method to the delegate instance. For a non-static method, the method name is preceded by an
object reference. When the delegate instance is called, Method3() is called on the object that was
supplied when the method was added to the delegate instance. Finally, the statement someProcs();
calls the delegate instance. All the methods that were added to the delegate instance are now
called in the order that they were added.

Methods that have been added to a delegate instance can be removed with the -= operator:

someProcess -= new Procedure(DelegateDemo.Method1);

In C# 2.0, adding or removing a method reference to a delegate instance can be shortened
as follows:

someProcess += DelegateDemo.Method1;
someProcess -= DelegateDemo.Method1;

C Sharp Programming

- 102 -

by , XML to PDF XSL-FO Formatter

Invoking a delegate instance that presently contains no method references results in a Null-
ReferenceException.

Note that if a delegate declaration specifies a return type and multiple methods are added to
a delegate instance, then an invocation of the delegate instance returns the return value of the last
method referenced. The return values of the other methods cannot be retrieved (unless explicitly
stored somewhere in addition to being returned).

Events

An event is a special kind of delegate that facilitates event-driven programming. Events are
class members which cannot be called outside of the class regardless of its access specifier. So,
for example, an event declared to be public would allow other classes the use of += and -= on
the event, but firing the event (i.e. invoking the delegate) is only allowed in the class containing
the event. A simple example:

delegate void ButtonClickedHandler();

class Button
{

public event ButtonClickedHandler ButtonClicked;

public void SimulateClick()
{

if (ButtonClicked != null)
{

ButtonClicked();
}

}

...

}

A method in another class can then subscribe to the event by adding one of its methods to
the event delegate:

Button b = new Button();

C Sharp Programming

- 103 -

by , XML to PDF XSL-FO Formatter

b.ButtonClicked += MyHandler;

Even though the event is declared public, it cannot be directly fired anywhere except in the
class containing the event.

C Sharp Programming

- 104 -

by , XML to PDF XSL-FO Formatter

Abstract classes

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

In general terms, an interface is the set of public members of a component. Of course, a C#
interfaceis an interface that defines a set of public members. A C# class also defines an interface
because it has a set of public members. A nonabstract C# class also defines the implementation
of each member.

In C# it is possible to have a type that is intermediate between a pure interface that does not
define any implementation, and a type that defines a complete implementation. This is called an
abstract class.

You define an abstract class by including theabstractkeyword on the class definition.

An abstract class is somewhere between a C# interface and a nonabstract class. Of the public
members defined by an abstract class, any number of those members may include an implementa-
tion.

For example, an abstract class might provide an implementation fornone of its members.

public abstract class AbstractShape
{

public abstract void Draw(Graphics g);
public abstract double X { get ; set ;}
public abstract double Y { get ; set ;}

}

C Sharp Programming

- 105 -

by , XML to PDF XSL-FO Formatter

This class is equivalent to an interface in many respects. (One difference is that a class that
derives from this class cannot derive from any other class.)

An abstract class may also defineall of its members.

public abstract class AbstractShape
{

private double x;
private double y;
//
// ... (other members)
//
public void Draw(Graphics g) {g.DrawRectangle(Pens.Black, g_rect);}
public double X { get { return x;}}
public double Y { get { return y;}}

}

And an abstract class may define some of its members but leave others undefined.

public abstract class AbstractShape
{

private double x;
private double y;
//
// ... (other members)
//
public abstract void Draw(Graphics g);
public double X { get { return x;}}
public double Y { get { return y;}}

}

An abstract class is similar to a nonabstract class, but there are some important differences.

For one thing, you cannot create an instance of an abstract class with thenewkeyword. For
example, the following statement will raise a compiler error:

AbstractShape shape = new AbstractShape();

C Sharp Programming

- 106 -

by , XML to PDF XSL-FO Formatter

Of course, assuming the concrete class Square derives from AbstractShape, the following
would be correct:

AbstractShape shape = new Square();

A second difference is that an abstract class can contain abstract members. As was shown
above, it does nothave to contain abstract members. The point is that a nonabstract class may
not contain abstract members. That is, you must include theabstractkeyword on the class if you
include even one abstract member.

The third difference is that an abstract class cannot be sealed. That is, you cannot use both
theabstractkeyword and thesealedkeyword on the same class.

C Sharp Programming

- 107 -

by , XML to PDF XSL-FO Formatter

Partial classes

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Partial Classes

As the name indicates, partial class definitions can be split up across multiple physical files.
To the compiler, this does not make a difference as all the fragments of the partial class are
grouped and the compiler treats it as a single class. One common usage of partial classes is the
separation of automatically generated code from programmer written code.

Below is the example of a partial class.

Listing 1: Entire class definition in one file (file1.cs)

public class Node
{

public bool Delete()
{
}

public bool Create()
{
}

}

Listing 2: Class split across multiple files

C Sharp Programming

- 108 -

by , XML to PDF XSL-FO Formatter

(file1.cs)

public partial class Node
{

public bool Delete()
{
}

}

(file2.cs)

public partial class Node
{

public bool Create()
{
}

}

C Sharp Programming

- 109 -

by , XML to PDF XSL-FO Formatter

Collections

Lists

It is one type of collection A list is a dynamic array which resizes itself as needed if more
data is inserted than it can hold at the time of insertion. Items can be inserted at any index,
deleted at any index and accessed at any index. The C# non-generic list class is the ArrayList,
while the generic one is List<T>.

LinkedLists

Items in a linked list can be accessed directly only one after the other. Of course an item at
any index can be accessed, but the list must iterate to the item from the first one, which is much
slower than accessing items by index in an array or a list. There is no non-generic list in C#,
while the generic one is LinkedList<T>.

Queues

A queue is a FIFO (first in - first out) collection. The item first pushed in the queue gets
taken first with the pop function. Only the first item is accessible at any time, and items can only
be put to the end. The non-generic queue class is called Queue, while the generic one is
Queue<T>.

C Sharp Programming

- 110 -

by , XML to PDF XSL-FO Formatter

Stacks

A stack is a LIFO (last in - first out) collection. The item pushed in first will be the last to
be taken by pop. Only the last item is accessible at any time, and items can only be put at the top.
The non-generic stack class is Stack, while the generic one is Stack<T>.

Dictionaries

A dictionary is a collection of values with keys. The values can be very complex, yet
searching the keys is still fast. The non-generic class is Hashtable, while the generic one is Dictio-
nary<T>.

C Sharp Programming

- 111 -

by , XML to PDF XSL-FO Formatter

Generics

Generics is essentially the ability to have type parameters on your type. They are also called
parameterized types or parametric polymorphism. The classic example is a List collection class.
A List is a convenient growable array. It has a sort method, you can index into it, and so on.

Generic Interfaces

MSDN2 Entry for Generic Interfaces

Generic Classes

There are cases when you need to create a class to manage objects of some type, without
modifying them. Without Generics, the usual approach (highly simplified) to make such class
would be like this:

public class SomeObjectContainer
{

private object obj;

public SomeObjectContainer(object obj)
{

this.obj = obj;
}

public object getObject()
{

return this.obj;
}

}

And its usage would be:

C Sharp Programming

- 112 -

by , XML to PDF XSL-FO Formatter

http://msdn2.microsoft.com/en-us/library/kwtft8ak.aspx

class Program
{

static void Main(string[] args)
{

SomeObjectContainer container = new SomeObjectContainer(25);
SomeObjectContainer container2 = new SomeObjectContainer(5);

Console.WriteLine((int)container.getObject() + (int)container2.getOb-
ject());

Console.ReadKey(); // wait for user to press any key, so we could see
results

}
}

Notice that we have to cast back to original data type we have chosen (in this case -int) ev-
ery time we want to get an object from such a container. In such small programs like this every-
thing is clear. But in more complicated cases with more containers in different parts of the pro-
gram, we would have to take care that the container is supposed to haveint type in it, would not
have astringor any other data type. If that happens, InvalidCastException is thrown.

Additionally, if the original data type we have chosen is astructtype, such asint, we will
incur a performance penalty every time we access the elements of the collection, due to the Auto-
boxing feature of C#.

However, we could surround every unsafe area withtry - catchblock, or we could create a
separate "container" for every data type we need, just to avoid casting. While both ways could
work (and worked for many years), it is unnecessary now, because Generics offers a much more
elegant solution.

To make our "container" class to support any object and avoid casting, we replace every
previousobjecttype with some new name, in this case - T, and add <T> mark immediately after
the class name to indicate that this "T" type is Generic / any type.

Note: You can choose any name and use more than one generic type for class, i.e <genKey,
genVal>

public class GenericObjectContainer<T>
{

private T obj;

public GenericObjectContainer(T obj)
{

this.obj = obj;

C Sharp Programming

- 113 -

by , XML to PDF XSL-FO Formatter

}

public T getObject()
{

return this.obj;
}

}

Not a big difference, which results in simple and safe usage:

class Program
{

static void Main(string[] args)
{

GenericObjectContainer<int> container = new GenericObjectContain-
er<int>(25);

GenericObjectContainer<int> container2 = new GenericObjectContain-
er<int>(5);

Console.WriteLine(container.getObject() + container2.getObject());

Console.ReadKey(); // wait for user to press any key, so we could see
results

}
}

Generics ensures that you specify the type for a "container" only when creating it, and after
that you will be able to use only the type you specified. But now you can create containers for
different object types, and avoid the previously mentioned problems. In addition, this avoids the
Autoboxing forstructtypes.

While this example is far from practical, it does illustrate some situations where generics
are useful:

• You need to keep objects of a single type in a class
• You don't need to modify objects
• You need to manipulate objects in some way
• You wish to store a "value type" (such asint, short, string, or any customstruct) in a

collection class without incurring the performance penalty of Autoboxing every time
you manipulate the stored elements.

C Sharp Programming

- 114 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/C_Sharp_Programming/Variables#Types

Generic lists

A generic list is an indexed list, so any of its items can be directly accessed by its index.

Many of its methods and properties are demonstrated in the following example:

using System;
using System.Collections;
using System.Collections.Generic;

namespace csharp_generic_list
{

class MainClass
{

public static void Main(string[] args)
{

Console.WriteLine("List<T> demo");
// creating an instance which accepts strings
List<string> foods = new List<string>();

// adding some items one by one with Add()
foods.Add("bread");
foods.Add("butter");
foods.Add("chocolate");

// adding a simple string array with AddRange()
string[] subList1 = {"orange", "apple", "strawberry", "grapes",

"kiwi", "banana"};
foods.AddRange(subList1);

// adding another List<string> with AddRange()
List<string> anotherFoodList = new List<string>();
anotherFoodList.Add("yoghurt");
anotherFoodList.Add("tomato");
anotherFoodList.Add("roast beef");
anotherFoodList.Add("vanilla cake");
foods.AddRange(anotherFoodList);

// removing "orange" with Remove()
foods.Remove("orange");

// removing the 5th (index = 4) item ("strawberry") with Re-
moveAt()

foods.RemoveAt(4);

// removing a range (4-7: all fruits) with RemoveRange(int index,

C Sharp Programming

- 115 -

by , XML to PDF XSL-FO Formatter

int count)
foods.RemoveRange(3, 4);

// sorting the list
foods.Sort();

// printing the sorted foods
foreach (string item in foods)
{

Console.Write("| " + item + " ");
}
Console.WriteLine("|");

// removing all items from foods
foods.Clear();

// printing the current item count in foods
Console.WriteLine("The list now has {0} items.", foods.Count);

}
}

}

The terminal output is:

List<T> demo
| bread | butter | chocolate | roast beef | tomato | vanilla cake | yoghurt
|
The list now has 0 items.

C Sharp Programming

- 116 -

by , XML to PDF XSL-FO Formatter

Generic linked lists

Generic queues

Generic stacks

Generic dictionaries

Generic Methods

Generic Delegates

Generic Events

C Sharp Programming

- 117 -

by , XML to PDF XSL-FO Formatter

Object Lifetime

Introduction

All computer programs use up memory, whether that is a variable in memory, opening a file
or connecting to a database. The question is how can the runtime environment reclaim any
memory when it is not being used? There are 3 answers to this question:

• If you are using amanaged resource, this is automatically released by the Garbage
Collector

• If you are using anunmanaged resource, you must use the IDisposable interface to as-
sist with the cleanup

• If you are calling the Garbage Collector directly, by using System.GC.Collect() method,
it will be forced to tidy up resources immediately.

Before discussing managed and unmanaged resources, it would be interesting to know what
the garbage collector actually does.

Garbage Collector

The garbage collector is a background process running within your program. It is always
present within all .NET applications. Its job is to look for objects (i.e. reference types) which are
no longer being used by your program. If the object is assigned to null, or the object goes out of
scope, the garbage collector will mark the object be cleaned up at some point in the future, and
not necessarily have its resources released immediately!

C Sharp Programming

- 118 -

by , XML to PDF XSL-FO Formatter

Why? The garbage collector will have a hard time keeping up with every de-allocation you
make, especially at the speed the program runs and therefore only runs when resources become
limited. Therefore, the garbage collector has 3 "generations".

• Generation 0 - the most recently created objects
• Generation 1 - the mid-life objects
• Generation 2 - the long term objects.

All reference types will exist in one of these 3 generations. They will firstly be allocated to
Gen 0, then moved to Gen 1 and Gen 2 depending on their lifetime. The garbage collector works
by removing only what is needed and so will only scan Gen 0 for a quick-fix solution. This is
because most if not all local variables are placed in this area.

For more in-depth information, visit theMSDN Article for a better explanation.

Now you know about the garbage collector, lets discuss the resources that it is managing.

Managed Resources

Managed resources are objects which run totally within the .NET framework. All memory
is reclaimed for you automatically, all resources closed and you are in most cases /guaranteed/
to have all the memory released after the application closes, or when the garbage collector runs.

You do not have to do anything with them with regards to closing connections or anything,
it is a self-tidying object.

Unmanaged Resources

There are circumstances where the .NET framework world will not release resources. This
may be because the object references resources outside of the .NET framework, like the operating
system, or internally references another unmanaged component, or that the resources accesses a
component that uses COM, COM+ or DCOM.

Whatever the reason, if you are using an object that implements the IDisposable interface
at a class level, then you too need to implement the IDisposable interface too.

public interface IDisposable
{

C Sharp Programming

- 119 -

by , XML to PDF XSL-FO Formatter

http://msdn2.microsoft.com/en-us/library/f144e03t.aspx

public void Dispose();
}

This interface exposes a method called Dispose(). This alone willnot help tidy up resources,
as it is only an interface, so the developer must use it correctly in order to ensure the resources
are released. The two steps are:

1. Always call Dispose() on any object that implements IDisposable as soon as you are
finished using it. (This can be made easier with the using keyword)

2. Use the finalizer method to call Dispose(), so that if anyone has not closed your re-
sources, your code will do it for them.

See the IDisposable section for a full implementation.

Applications

If you are coming to C# fromVisual Basic Classicyou will have seen code like this:

Public Function Read(ByRef FileName) As String

Dim oFSO As FileSystemObject
Set oFSO = New FileSystemObject

Dim oFile As TextStream
Set oFile = oFSO.OpenTextFile(FileName, ForReading, False)
Read = oFile.ReadLine

End Function

Note that neitheroFSO nor oFile are explicitly disposed of. In Visual Basic Classic this is
not necessary because both objects are declared locally. This means that the reference count goes
to zero as soon as the function ends which results in calls to theTerminate event handlers of both
objects. Those event handlers close the file and release the associated resources.

In C# this doesn't happen because the objects are not reference counted. The finalizers will
not be called until the garbage collector decides to dispose of the objects. If the program uses
very little memory this could be a long time.

C Sharp Programming

- 120 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Programming:Visual_Basic_Classic

This causes a problem because the file is held open which might prevent other processes
from accessing it.

In many languages the solution is to explicitly close the file and dispose of the objects and
many C# programmers do just that. However, there is a better way: use theusing statement:

public read(string fileName)
{

using (TextReader textReader = new StreamReader(filename))
{

return textReader.ReadLine();
}

}

Behind the scenes the compiler turns the using statement intotry..finally and produces this
intermediate language (IL) code:

.method public hidebysig static string Read(string FileName) cil managed
{

// Code size 39 (0x27)
.maxstack 5
.locals init (class [mscorlib]System.IO.TextReader V_0,

string V_1)
IL_0000: ldarg.0
IL_0001: newobj instance void [mscorlib]System.IO.StreamRead-

er::.ctor(string)
IL_0006: stloc.0
.try
{

IL_0007: ldloc.0
IL_0008: callvirt instance string [mscorlib]System.IO.TextReader::Read-

Line()
IL_000d: stloc.1
IL_000e: leave IL_0025
IL_0013: leave IL_0025

} // end .try
finally
{

IL_0018: ldloc.0
IL_0019: brfalse IL_0024
IL_001e: ldloc.0
IL_001f: callvirt instance void [mscorlib]System.IDisposable::Dis-

pose()
IL_0024: endfinally

C Sharp Programming

- 121 -

by , XML to PDF XSL-FO Formatter

} // end handler
IL_0025: ldloc.1
IL_0026: ret

} // end of method Using::Read

Notice that the body of theRead function has been split into three parts: initialisation, try,
and finally. Thefinally block includes code that was never explicitly specified in the original C#
source code, namely a call to thedestructor of theStreamreader instance.

SeeUnderstanding the 'using' statement in C# By TiNgZ aBrAhAm.

See the following sections for more applications of this technique.

Resource Acquisition Is Initialisation

The application of theusing statement in the introduction is an example of an idiom called
Resource Acquisition Is Initialisation (RAII).

RAII is a natural technique in languages like Visual Basic Classic and C++ that have deter-
ministic finalization but usually requires extra work to include in programs written in garbage
collected languages like C# and VB.NET. Theusing statement makes it just as easy. Of course
you could write thetry..finally code out explicitly and in some cases that will still be necessary.
For a thorough discussion of the RAII technique seeHackCraft: The RAII Programming Idiom.
Wikipedia has a brief note on the subject as well:Resource Acquisition Is Initialization.

Work in progress: add C# versions showing incorrect and correct methods with and without
using. Add notes on RAII, memoization and cacheing (see OOP wikibook).

The C Sharp Programming/Object Lifetime module or this section of C Sharp Programming
is a stub.

You can help Wikibooks by expanding it.

C Sharp Programming

- 122 -

by , XML to PDF XSL-FO Formatter

http://www.codeproject.com/csharp/tinguusingstatement.asp
http://www.hackcraft.net/raii/
http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
http://en.wikibooks.org/wiki/Wikibooks:Stub
http://en.wikibooks.orghttp://en.wikibooks.org/w/index.php?title=C_Sharp_Programming/Object_Lifetime&action=edit

Design Patterns

Design Patterns are common building blocks designed to solve everyday software issues.
Some basic terms and example of such patterns include what we see in everyday life. Key pat-
terns are the singleton pattern, the factory pattern, and chain of responsibility patterns.

Table Of Contents (TOC)

Factory Pattern

The factory pattern is a method call that uses abstract classes and its implementations, to
give the developer the most appropriate class for the job.

Lets create a couple of classes first to demonstrate how this can be used. Here we take the
example of a bank system.

public abstract Transaction
{

private string _sourceAccount;

//May not be needed in most cases, but may on transfers, closures and
corrections.

private string _destinationAccount;

private decimal _amount;
public decimal Amount { get { return _amount; } }

private DateTime _transactionDate;
private DateTime _effectiveDate;

public Transaction(string source, string destination, decimal amount)
{

_sourceAccount = source;
_destinationAccount = destination;
_amount = amount;

C Sharp Programming

- 123 -

by , XML to PDF XSL-FO Formatter

_transactionDate = DateTime.Now;
}

public Transaction(string source, string destination, decimal amount,
DateTime effectiveDate) : this(source, destination, amount)

{
_effectiveDate = effectiveDate;

}

protected decimal AdjustBalance(string accountNumber, decimal amount)
{

decimal newBalance = decimal.MinValue;

using(Mainframe.ICOMInterface mf = new Mainframe.COMInterface-
Class())

{
string dateFormat = DateTime.Now.ToString("yyyyMMdd HH:mm:ss");

mf.Credit(dateFormat, accountNumber, amount);
newBalance = mf.GetBalance(DateTime.Now.AddSeconds(1), account-

Number);
}

return newBalance;
}

public abstract bool Complete();
}

This Transaction class is incomplete, as there are many types of transactions:

• Opening
• Credits
• Withdrawals
• Transfers
• Penalty
• Correction
• Closure

For this example, we will take credit and withdrawal portions, and create classes for them.

public Credit : Transaction
{

//Implementations hidden for simplicity

C Sharp Programming

- 124 -

by , XML to PDF XSL-FO Formatter

public bool Complete()
{

this.AdjustBalance(_sourceAccount, amount);
}

}

public Withdrawal : Transaction
{

//Implementations hidden for simplicity

public bool Complete()
{

this.AdjustBalance(_sourceAccount, -amount);
}

}

The problem is that these classes do much of the same thing, so it would be helpful if we
could just give it the values, and it will work out what class type we require. Therefore, we could
come up with some ways to distinguish between the different types of transactions:

• Positive values indicate a credit.
• Negative values indicate a withdrawal.
• Having 2 account numbers and a positive value would indicate a transfer.
• Having 2 account numbers and a negative value would indicate a closure.
• etc

So, let us write a new class with a static method that will do this logic for us, ending the
name Factory:

public class TransactionFactory
{

public static Transaction Create(string source, string destination,
decimal amount)

{
if(string.IsNullOrEmpty(destination))
{

if(amount >= 0)
return new Credit(source, null, amount);

else
return new Withdrawal(source, null, amount);

}
else
{

//Other implementations here
}

C Sharp Programming

- 125 -

by , XML to PDF XSL-FO Formatter

}
}

Now, you can use this class to do all of the logic and processing, and be assured that the type
you are returned is correct.

public class MyProgram
{

static void Main()
{

decimal randomAmount = new Random().Next() * 1000000;
Transaction t = TransactionFactory.Create("123456","",randomAmount);

//t.Complete(); <-- This would carry out the requested transaction.

Console.WriteLine("{0}: {1:C}",t.GetType().Name, t.Amount);
}

}

Singleton

The singleton pattern instantiates only 1 object, and reuses this object for the entire lifetime
of the process. This is useful if you wish the object to maintain state, or if it takes lots of resources
to set the object up. Below is a basic implementation:

public class MySingletonExample
{

private Hashtable sharedHt;

public Hashtable Singleton
{

get
{

if(sharedHt == null)
sharedHt = new Hashtable();

return sharedHt;
}

set { ; } //Not implemented as this would invalidate the pattern
}

C Sharp Programming

- 126 -

by , XML to PDF XSL-FO Formatter

//Class implementation here..
}

The Singleton property will expose the same instance to all callers. Upon the first call, the
object is initialised and on subsequent calls this is used.

Examples of this pattern include:

• HttpApplication (Application object in ASP .NET)
• HttpServerUtility (Server object in ASP .NET)
• HttpCacheUtility (Cache object in ASP .NET)
• ConfigurationSettings (Generic settings reader)

C Sharp Programming

- 127 -

by , XML to PDF XSL-FO Formatter

abstract

Abstract Classes are those which contain only the declaration of other classes and methods.
Those methods which can be defined inside the class are defined except for which we can't create
the definition. Those methods which are declared in a ABSTRACT Class can be defined outside
of the ABSTRACT Class as a individual method.

C Sharp Programming

- 128 -

by , XML to PDF XSL-FO Formatter

as

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Theas keyword casts an object to a different type. It is therefore similar to the TypeA varA
= (TypeA) varB syntax. The difference is that this keyword returns null if the object was of an
incompatible type, while the former method throws a type-cast exception in that case.

See also

• is

C Sharp Programming

- 129 -

by , XML to PDF XSL-FO Formatter

base

The keywordbase describes that you would like to refer to the base class for the requested
information, not in the current instantiated class.

A base class is the class in which the currently implemented class inherits from. When creat-
ing a class with no defined base class, the compiler automatically uses the System.Object base
class.

Therefore the 2 declarations below are equivelant.

public class MyClass
{
}

public class MyClass : System.Object
{
}

Some of the reasons the base keyword is used is:

• Passing information to the base class's constructor

public class MyCustomException : System.Exception
{

public MyCustomException() : base() { }

public MyCustomerException(string message, Exception innerException) :
base(message,innerException) { }

//......
}

• Recalling variables in the base class, where the newly implemented class is overriding
its behaviour

C Sharp Programming

- 130 -

by , XML to PDF XSL-FO Formatter

public class MyBaseClass
{

protected string className = "MyBaseClass";
}

public class MyNewClass : MyBaseClass
{

protected new string className = "MyNewClass";

public override string BaseClassName
{

get { return base.className; }
}

}

• Recalling methods in the base class. This is useful when you want to add to a method,
but still keep the underlying implementation.

//Necessary using's here

public class _Default : System.Web.UI.Page
{

protected void InitializeCulture()
{

System.Threading.Thread.CurrentThread.CurrentUICulture = CultureIn-
fo.GetSpecificCulture(Page.UICulture);

base.InitializeCulture();
}

}

C Sharp Programming

- 131 -

by , XML to PDF XSL-FO Formatter

bool

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thebool keyword is used in field,method, property, and variable declarations and incast
andtypeof operations as an alias for the .NET Framework structure System.Boolean. That is, it
represents a value oftrue or false. Unlike in C++, whoseboolean is actually aninteger, a bool
in C# is its own data type and cannot be cast to any other primitive type.

C Sharp Programming

- 132 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Programming:C_sharp/Classes#method

break

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The keywordbreak is used to exit out of a loop.

int x;

while(x < 20){

if(x > 10) break;

x++;
}

The while loop would increment x as long as it was less than twenty. However when x is
incremented to ten the condition in the if statement becomes true, so the break statement causes
the while loop to be broken and execution would continue after the closing parentheses.

C Sharp Programming

- 133 -

by , XML to PDF XSL-FO Formatter

byte

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thebyte keyword is used in field,method, property, and variable declarations and incast
andtypeof operations as an alias for the .NET Framework structure System.Byte. That is, it repre-
sents an 8-bit unsigned integer whose value ranges from 0 to 255.

C Sharp Programming

- 134 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Programming:C_sharp/Classes#method

case

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The keywordcase is often used in aswitchstatement.

C Sharp Programming

- 135 -

by , XML to PDF XSL-FO Formatter

catch

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The keywordcatch is used to identify astatement or statement block for execution if an
exception occurs in the body of the enclosingtry block. The catch clause may optionally be fol-
lowed by afinally clause.

C Sharp Programming

- 136 -

by , XML to PDF XSL-FO Formatter

char

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thechar keyword is used in field,method, property, and variable declarations and incast
andtypeof operations as an alias for the .NET Framework structure System.Char. That is, it repre-
sents a Unicode character whose from 0 to 65,535.

C Sharp Programming

- 137 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Programming:C_sharp/Classes#method

class

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Theclass keyword is used to declare aclass.

C Sharp Programming

- 138 -

by , XML to PDF XSL-FO Formatter

const

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The const keyword is used in field and local variable declarations to make the variable
constant. It is thus associated with its declaring class or assembly instead of with an instance of
the class or with a method call. It is syntactically invalid to assign a value to such a variable
anywhere other than its declaration.

C Sharp Programming

- 139 -

by , XML to PDF XSL-FO Formatter

continue

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The keywordcontinue can be used inside any loop in a method. Its affect is to end the cur-
rent loop iteration and proceed to the next one. If executed inside a for, end-of-loop statement is
executed (just like normal loop termination).

C Sharp Programming

- 140 -

by , XML to PDF XSL-FO Formatter

decimal

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The decimal keyword is used in field,method, property, and variable declarations and in
cast andtypeof operations as an alias for the .NET Framework structure System.Decimal. That
is, it represents a signed, 128-bit decimal number whose value is 0 or a decimal number with 28
or 29 digits of precision ranging either from to or from
to .

C Sharp Programming

- 141 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Programming:C_sharp/Classes#method

default

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thedefault keyword can be used in the switch statement or in generic code:

• The switch statement: Specifies the default label.
• Generic code: Specifies the default value of the type parameter. This will be null for

reference types and zero for value types.

Note* FromMSDN

C Sharp Programming

- 142 -

by , XML to PDF XSL-FO Formatter

http://msdn2.microsoft.com/en-us/library/06tc147t.aspx
http://msdn2.microsoft.com/en-us/library/xwth0h0d.aspx
http://msdn2.microsoft.com/en-us/library/25tdedf5.aspx

delegate

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thedelegate keyword is used to declare adelegate. A delegate is a programming construct
that is used to obtain a callable reference to a method of a class.

C Sharp Programming

- 143 -

by , XML to PDF XSL-FO Formatter

do

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thedo keyword identifies the beginning of ado...while loop.

C Sharp Programming

- 144 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/C_Sharp_Programming/Control#The_do...while_loop

double

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thedouble keyword is used in field,method, property, and variable declarations and incast
andtypeof operations as an alias for the .NET Framework structure System.Double. That is, it
represents an IEEE 754, 64-bit signed binary floating point number whose value isnegative 0,
positive 0, negative infinity, positive infinity, not a number, or a number ranging either from

to or from to .

C Sharp Programming

- 145 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Programming:C_sharp/Classes#method

else

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Theelse keyword identifies aelse clauseof an if statement with the following syntax:

if-statement ::= "if" "(" condition ")" if-body "else" else-body

condition ::= boolean-expression

if-body ::= statement-or-statement-block

else-body ::= statement-or-statement-block

An else clause immediately follows anif-body. It provides code to execute when thecondi-
tion is false. Making theelse-body another if statement creates the commoncascade of if, else
if, else if, else if, else statements:

using System;

public class IfStatementSample
{

public void IfMyNumberIs()
{

int myNumber = 5;
if (myNumber == 4)

Console.WriteLine("This will not be shown because myNumber is not
4.");

if (myNumber < 0)
{

Console.WriteLine("This will not be shown because myNumber is not
negative.");

}
if (myNumber % 2 == 0)

Console.WriteLine("This will not be shown because myNumber is not

C Sharp Programming

- 146 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/C_Sharp_Programming/Control#The_if_statement

even.");

{
Console.WriteLine("myNumber does not match the coded conditions,

so this sentence will be shown!");
}

}
}

The above example only checks whether myNumber is less than 0 if myNumber is not 4. It
in turn only checks whether myNumber % 2 is 0 if myNumber is not less than 0. Since none of
the conditions are true, it executes the body of the final else clause.

C Sharp Programming

- 147 -

by , XML to PDF XSL-FO Formatter

enum

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Theenum keyword identifies anenumeration.

C Sharp Programming

- 148 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/C_Sharp_Programming/Data_structures#Enumerations

event

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Theevent keyword is used to declare aevent.

C Sharp Programming

- 149 -

by , XML to PDF XSL-FO Formatter

explicit

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

General

When values are cast implicitally, the runtime does not need any casting in code by the devel-
oper in order for the value to be converted to its new type.

Here is an example, where the developer is castingexplicitly:

//Example of explicit casting.
float fNumber = 100.00f;
int iNumber = (int)fNumber;

The developer has told the runtime, "I know what I'm doing, force this conversion."

Implicit casting means that runtime doesn't need any prompting in order to do the conversion.
Here is an example of this.

//Example of implicit casting.
byte bNumber = 10;
int iNumber = bNumber;

C Sharp Programming

- 150 -

by , XML to PDF XSL-FO Formatter

Keyword

Notice that no casting was necessary by the developer. What is special about implicit, is that
the context that the type is converted to is totally lossless i.e. converting to this type loses no infor-
mation, so it can be converted back without worry.

Theexplicit keyword is used to create type conversion operators which can only be used by
specifying an explicit type cast.

This construct is useful to help software developers write more readable code. Having an
explicit cast name makes it clear that a conversion is taking place.

class Something
{

public static explicit operator Something(string s)
{

// convert the string to Something
}

}

string x = "hello";

// Implicit conversion (string to Something) generates a compile time error
Something s = x;

// This statement is correct (explicit type name conversion)
Something s = (Something) x;

C Sharp Programming

- 151 -

by , XML to PDF XSL-FO Formatter

extern

The keywordextern indicates that the method being called exists in a DLL.

A tool called "tlbimp.exe" can create a wrapper assembly that allows C# to interact with the
DLL like it was a .NET assembly i.e. use constructors to instantiate it, call its methods.

Older DLLs will not work with this method. Instead, you have to explicitally tell the compil-
er what DLL to call, what method to call and what parameters to pass. Since parameter type is
very important, you can also explicitally define what type the parameter should be passed to the
method as.

Here is an example:

using System;
using System.Runtime.InteropServices;

namespace ExternKeyword
{

public class Program
{

static void Main()
{

NativeMethods.MessageBoxEx(IntPtr.Zero, "Hello there", "Caption
here",0,0);

}
}

public class NativeMethods
{

[DllImport("user32.dll")]
public static extern MessageBoxEx(IntPtr hWnd, string lpText, string

lpCaption, uint uType, short wLanguageId);
}

}

C Sharp Programming

- 152 -

by , XML to PDF XSL-FO Formatter

The [DllImport("user32.dll")] tells the compiler which DLL to reference. Windows searches
for files as defined by the PATH environment variable, and therefore will search those paths be-
fore failing.

The method is also static because the DLL may not understand how to be "created", as DLLs
can be created in different languages. This allows the method to be called directly, instead of
being instantiated and then used.

C Sharp Programming

- 153 -

by , XML to PDF XSL-FO Formatter

false

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thetrue keyword is abooleanconstant value.

C Sharp Programming

- 154 -

by , XML to PDF XSL-FO Formatter

finally

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The keywordfinally is used to identify astatement or statement block after atry-catchblock
for execution regardless of whether the associated try block encountered an exception. The finally
block is used to perform cleanup activities.

C Sharp Programming

- 155 -

by , XML to PDF XSL-FO Formatter

fixed

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thefixed keyword is used to prevent the garbage collector from relocating a variable. You
may only use this in anunsafe context.

fixed (int *c = &shape.color) {

*c = Color.White;

}

If you are using C# 2.0 or greater, thefixed may also be used to declare a fixed-size array.
This is useful when creating code that works with a DLL or COM project.

Your array must be composed of one of the primitive types:bool, byte, char, short, int,
long, sbyte, ushort, ulong, float, or double.

protected fixed int monthdays[12];

C Sharp Programming

- 156 -

by , XML to PDF XSL-FO Formatter

float

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The float keyword is used in field,method, property, and variable declarations and incast
and typeof operations as an alias for the .NET Framework structure System.Single. That is, it
represents a IEEE 754, 32-bit signed binary floating point number whose value isnegative 0,
positive 0, negative infinity, positive infinity, not a number, or a number ranging either from

to or from to .

C Sharp Programming

- 157 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Programming:C_sharp/Classes#method

for

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thefor keyword identifies afor loop.

C Sharp Programming

- 158 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/C_Sharp_Programming/Control#The_for_loop

foreach

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Theforeach keyword identifies aforeach loop.

// example of foreach to iterate over an array
public static void Main() {

int[] scores = new int [] { 54, 78, 34, 88, 98, 12 };

foreach (int score in scores) {
total += score;

}
int averageScore = total / scores.length;

}

C Sharp Programming

- 159 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/C_Sharp_Programming/Control#The_foreach_loop

goto

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thegoto keyword returns the flow of operation to the label which follows it. Labels can be
created by putting a colon after any word. e.g.

thelabel: // This is a label
System.Console.WriteLine("Blah blah blah");
goto thelabel; // Program flow returns to thelabel

The use of goto is very controversial, because, when used frivolously, it creates code that
jumps from place to place and is disorganized and hard to read. It is rarely even necessary be-
cause the same thing can often be accomplished with a more organizedfor loop orwhile loop.

C Sharp Programming

- 160 -

by , XML to PDF XSL-FO Formatter

if

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Theif keyword identifies anif statementwith the following syntax:

if-statement ::= "if" "(" condition ")" if-body ["else"else-body]

condition ::= boolean-expression

if-body ::= statement-or-statement-block

else-body ::= statement-or-statement-block

If the condition evaluates totrue, theif-body executes. Curly braces ("{" and "}") allow the
if-body to contain more than one statement. Optionally, an else clause can immediately follow
theif-body, providing code to execute when thecondition is false. Making theelse-body another
if statement creates the commoncascade of if, else if, else if, else if, else statements:

using System;

public class IfStatementSample
{

public void IfMyNumberIs()
{

int myNumber = 5;
(myNumber == 4)

Console.WriteLine("This will not be shown because myNumber is not
4.");

else (myNumber < 0)
{

Console.WriteLine("This will not be shown because myNumber is not
negative.");

}
else (myNumber % 2 == 0)

C Sharp Programming

- 161 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/C_Sharp_Programming/Control#The_if_statement

Console.WriteLine("This will not be shown because myNumber is not
even.");

else
{

Console.WriteLine("myNumber does not match the coded conditions,
so this sentence will be shown!");

}
}

}

The boolean expression used in an if statement typically contains one of the following opera-
tors:

MeaningOperator

less than<

greater than>

less than or equal to<=

greater than or equal to>=

equal to==

not equal to!=

and&&

or||

not!

See alsoelse.

C Sharp Programming

- 162 -

by , XML to PDF XSL-FO Formatter

implicit

General

When values are cast implicitally, the runtime does not need any casting in code by the devel-
oper in order for the value to be converted to its new type.

Here is an example, where the developer is castingexplicitly:

//Example of explicit casting.
float fNumber = 100.00f;
int iNumber = (int)fNumber;

The developer has told the runtime, "I know what I'm doing, force this conversion."

Implicit casting means that runtime doesn't need any prompting in order to do the conversion.
Here is an example of this.

//Example of implicit casting.
byte bNumber = 10;
int iNumber = bNumber;

Notice that no casting was necessary by the developer. What is special about implicit, is that
the context that the type is converted to is totally lossless i.e. converting to this type loses no infor-
mation, so it can be converted back without worry.

Keyword

The keywordimplicit is used for a type to define how to can be converted implicitly. It is
used to define what types can be converted to without the need for explicit casting.

C Sharp Programming

- 163 -

by , XML to PDF XSL-FO Formatter

As an example, let us take a Fraction class, that will hold a nominator (the number at the top
of the division), and a denominator (the number at the bottom of the division). We will add a
property so that the value can be converted to a float.

public class Fraction
{

private int _nominator;
private int _denominator;

public Fraction(int nominator, int denominator)
{

_nominator = nominator;
_denominator = denominator;

}

public float Value { get { return (float)_nominator / (float)_denomina-
tor; } }

public static implicit operator float(Fraction f)
{

return f.Value;
}

public override string ToString()
{

return _nominator + " / " _denominator;
}

}

public class Program
{

[STAThread]
public static void Main(string[] args)
{

Fraction fractionClass = new Fraction(1,2);
float number = fractionClass;

Console.WriteLine("{0} = {1}", fractionClass, number);
}

}

To re-iterate, the value it implicitally casts tomust hold data in the form that the original
class can be converted back to. If this is not possible, and the range is narrowed (like converting
double to int, use the explicit operator.

C Sharp Programming

- 164 -

by , XML to PDF XSL-FO Formatter

in

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thein keyword identifies the collection to enumerate in aforeach loop.

C Sharp Programming

- 165 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/C_Sharp_Programming/Control#The_foreach_loop

int

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Theint keyword is used in field,method, property, and variable declarations and incast and
typeof operations as an alias for the .NET Framework structure System.Int32. That is, it represents
a 32-bit signed integer whose value ranges from -2,147,483,648 to 2,147,483,647.

C Sharp Programming

- 166 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Programming:C_sharp/Classes#method

interface

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The interface keyword is used to declare ainterface. Interfaces provide a construct for a
programmer to create types that can have methods, properties, delegates, events, and indexers
declared, but not implemented.

C Sharp Programming

- 167 -

by , XML to PDF XSL-FO Formatter

internal

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Theinternal keyword is anaccess modifier used in field,method, and property declarations
to make the field, method, or propertyinternal to its enclosing assembly. That is, it is onlyvisible
within the assembly that implements it.

C Sharp Programming

- 168 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Programming:C_sharp/Classes#method
http://en.wikipedia.org/wiki/Variable#Scope_and_extent

is

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The is keyword compares an object to a type, and if they're the same or of the same "kind"
(the objectinheritsthe type), returnstrue. The keyword is therefore used to check for type compat-
ibility, usually beforecasting (converting) a source type to a destination type in order to ensure
that won't cause a type-cast exception to be thrown. Using is on anull variable always returns
false.

This code snippet shows a sample usage:

System.IO.StreamReader reader = new StreamReader("readme.txt");
bool b = reader System.IO.TextReader;

// b is now set to true, because StreamReader inherits TextReader

C Sharp Programming

- 169 -

by , XML to PDF XSL-FO Formatter

long

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The long keyword is used in field,method, property, and variable declarations and incast
and typeof operations as an alias for the .NET Framework structure System.Int64. That is, it
represents a 64-bit signed integer whose value ranges from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

C Sharp Programming

- 170 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Programming:C_sharp/Classes#method

namespace

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The "namespace" keyword is used to supply anamespace for class, structure, and type
declarations.

C Sharp Programming

- 171 -

by , XML to PDF XSL-FO Formatter

new

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thenew keyword is an operator that requests a new instance of the class identified by its
argument.

C Sharp Programming

- 172 -

by , XML to PDF XSL-FO Formatter

null

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thenull keyword represents an empty value for areference type variable, i.e. for a variable
of any type derived from System.Object. In C# 2.0, null also represents the empty value for nul-
lablevalue type variables.

C Sharp Programming

- 173 -

by , XML to PDF XSL-FO Formatter

object

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Theobject keyword is used in field,method, property, and variable declarations and incast
and typeof operations as an alias for the .NET Framework structure System.Object. That is, it
represents the base class from which all otherreference types derive. On some platforms, the
size of the reference is 32 bits, while on other platforms it is 64 bits.

C Sharp Programming

- 174 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Programming:C_sharp/Classes#method

out

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The out keyword explicitly specifies that a variable should be passedby reference to a
method, and set in that method. A variable using this keyword mustnot be intialized before the
method call to ensure the developer understand its intended effects. Using this keyword requires
the called method to set the variable using this modifier before returning. Using also requires
the developer to specify the keyword even in the calling code, to ensure that it is easily visible
to developers reading the code that the variable will have its value changed elsewhere, which is
useful when analyzing the program flow.

An example of passing a variable with follows:

void CallingMethod()
{

int i;
SetDependingOnTime(i);
// i is now 10 before/at 12 am, or 20 after

}

void SetDependingOnTime(int iValue)
{

iValue = DateTime.Now.Hour <= 12 ? 10 : 20;
}

C Sharp Programming

- 175 -

by , XML to PDF XSL-FO Formatter

override

The keywordoverride is use in declaring an overridden function, which extends a base class
function of the same name.

C Sharp Programming

- 176 -

by , XML to PDF XSL-FO Formatter

params

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The keywordparams is used to describe when a grouping of parameters are passed to a
method, but the number of parameters are not important, as they may vary. Since the number
isn't important, Theparams keyword must be the last variable in a method signature so that the
compiler can deal with the parameters which have been defined first, before dealing with the
params.

Here are examples of where it will, and will not work:

//This works
public static void AddToShoppingBasket(decimal total, params string[] items)
{

//....
}

//This works
public static void AddToShoppingBasket(decimal total, int totalQuantity,
params string[] items)
{

//....
}

//THIS DOES NOT WORK <-------------------->
public static void AddToShoppingBasket(params string[] items, decimal total,

int totalQuantity)
{

//....
}

C Sharp Programming

- 177 -

by , XML to PDF XSL-FO Formatter

A good example of this is theString.Format method. TheString.Format method allows a
user to pass in a string formatted to their requirements, and then lots of parameters for the values
to insert into the string. Here is an example:

public static string FormatMyString(string format, params string[] values)
{

string myFormat = "Date: {0}, Time: {1}, WeekDay: {1}";
return String.Format(myFormat, DateTime.Now.ToShortDateString(), Date-

Time.Now.ToShortTimeString(), DateTime.Now.DayOfWeek);
}

//Output will be something like:
//
//Date: 7/8/2007, Time: 13:00, WeekDay: Tuesday;
//

The String.Format method has taken a string, and replaced the {0},{1},{2} with the 1st, 2nd
and 3rd parameters. If theparams keyword did not exist, then the String.Format() could have an
infinite number of overloads to cater for each case.

public string Format(string format, string param1)
{

//.....
}

public string Format(string format, string param1, string param2)
{

//.....
}

public string Format(string format, string param1, string param2, string
param3)
{

//.....
}

public string Format(string format, string param1, string param2, string
param3, string param4)
{

//.....
}

public string Format(string format, string param1, string param2, string
param3, string param4, string param5)
{

C Sharp Programming

- 178 -

by , XML to PDF XSL-FO Formatter

//.....
}

//To infinitum

C Sharp Programming

- 179 -

by , XML to PDF XSL-FO Formatter

private

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Theprivate keyword is used in field,method, and property declarations to make the field,
method, or propertyprivate to its enclosing class. That is, it is notvisibleoutside of its class.

C Sharp Programming

- 180 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Programming:C_sharp/Classes#method
http://en.wikipedia.org/wiki/Variable#Scope_and_extent

protected

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Theprotected keyword is used in field,method, and property declarations to make the field,
method, or propertyprotected to its enclosing class. That is, it isvisibleonly to its class and the
classes that derive from it.

C Sharp Programming

- 181 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Programming:C_sharp/Classes#method
http://en.wikipedia.org/wiki/Variable#Scope_and_extent

public

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thepublic keyword is used in field,method, and property declarations to make the field,
method, or propertypublic to its enclosing class. That is, it isvisible from any class.

C Sharp Programming

- 182 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Programming:C_sharp/Classes#method
http://en.wikipedia.org/wiki/Variable#Scope_and_extent

readonly

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thereadonly keyword is closely related to theconstkeyword at a glance, with the exception
of allowing a variable with this modifier to be initialized in a constructor, along with being associ-
ated with a class instance (object) rather than the class itself.

The primary use for this keyword is to allow the variable to take on different values depend-
ing on which constructor was called, in case the class has many, while still ensuring the developer
that it can never intentionally or unintentionally be changed in the code once the object has been
created.

This is a sample usage, assumed to be in a class called SampleClass:

string s;

SampleClass()
{

s = "Hello!";
}

C Sharp Programming

- 183 -

by , XML to PDF XSL-FO Formatter

ref

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The ref keyword explicitely specifies that a variable should be passedby reference rather
thanby value.

A developer may wish to pass a variable by reference particularly in case ofvalue types. If
a variable is passed by reference, only a pointer is sent to a function in reality, reducing the cost
of a method call in case it would involve copying large amounts of data, something C# does when
normally passing value types.

Another common reason to pass a variable by reference is to let the called method modify
its value. Because this is allowed, C# always enforces specifying that a value is passed by refer-
ence even in the method call, something many other programming languages don't. This let devel-
opers reading the code easily spot places that can imply a type has had its value changed in a
method, which is useful when analyzing the program flow.

Passing a value by reference does not imply that the called methodhas to modify the value;
see theout keyword for this.

Passing by reference requires the passed variable to be initialized.

An example of passing a variable by reference follows:

void CallingMethod()
{

int i = 24;
if (DoubleIfEven(i))

Console.WriteLine("i was doubled to {0}", i); // outputs "i was doubled
to 48"

}

C Sharp Programming

- 184 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/C_Sharp_Programming/Variables#Types

bool DoubleIfEven(int iValue)
{

if (iValue % 2 == 0)
{

iValue *= 2;
return true ;

}
return false ;

}

C Sharp Programming

- 185 -

by , XML to PDF XSL-FO Formatter

return

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thereturn keyword is used to return execution from amethod or from aproperty accessor.
If the method or property accessor has a return type, the return keyword is followed by the value
to return.

C Sharp Programming

- 186 -

by , XML to PDF XSL-FO Formatter

sbyte

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thesbyte keyword is used in field,method, property, and variable declarations and incast
and typeof operations as an alias for the .NET Framework structure System.SByte. That is, it
represents an 8-bit signed integer whose value ranges from -128 to 127.

C Sharp Programming

- 187 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Programming:C_sharp/Classes#method

sealed

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thesealed keyword is used to specify that a class cannot be inherited from. The following
example shows the context in which it may be used:

public class
{

...
}

C Sharp Programming

- 188 -

by , XML to PDF XSL-FO Formatter

short

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Theshort keyword is used in field,method, property, and variable declarations and incast
and typeof operations as an alias for the .NET Framework structure System.Int16. That is, it
represents a 16-bit signed integer whose value ranges from -32,768 to 32,767.

C Sharp Programming

- 189 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Programming:C_sharp/Classes#method

sizeof

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thesizeof keyword returns how many bytes an object requires to be stored.

An example usage:

int i = 123456;

Console.WriteLine("Storing i, a {0}, requires {1} bytes, or {2} bits.",
i.GetType(), (i), (i) * 8);

// outputs "Storing i, a System.Int32, requires 4 bytes, or 32 bits."

C Sharp Programming

- 190 -

by , XML to PDF XSL-FO Formatter

stackalloc

The keywordstackalloc is used in an unsafe code context to allocate a block of memory on
the stack.

int* fib = stackalloc int[100];

In the example above, a block of memory of sufficient size to contain 100 elements of type
int is allocated on the stack, not the heap; the address of the block is stored in the pointer fib.
This memory is not subject to garbage collection and therefore does not have to be pinned (via
fixed). The lifetime of the memory block is limited to the lifetime of the method in which it is
defined (there is no way to free the memory before the method returns).

stackalloc is only valid in local variable initializers.

Because Pointer types are involved, stackalloc requires unsafe context. See Unsafe Code
and Pointers.

stackalloc is similar to _alloca in the C run-time library.

Note* - From MSDN

C Sharp Programming

- 191 -

by , XML to PDF XSL-FO Formatter

static

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thestatic keyword is used to declare aclass or a class member (method, property, field, or
variable) asstatic. A class that is declaredstatic has onlystatic members. A class member that
is declaredstatic is associated with the entire class instead of classinstances.

C Sharp Programming

- 192 -

by , XML to PDF XSL-FO Formatter

string

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thestring keyword is used in field,method, property, and variable declarations and incast
andtypeof operations as an alias for System.String. That is, it indicates an immutable sequence
of characters.

C Sharp Programming

- 193 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Programming:C_sharp/Classes#method

struct

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The struct keyword declares astructure, i.e. avalue type that functions as a light-weight
class.

C Sharp Programming

- 194 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/C_Sharp_Programming/Data_structures#Structs

switch

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The switch statement is a control statement that handles multiple selections and enumera-
tions by passing control to one of the case statements within its body.

This is an example of a switch statement:

int currentAge = 18;

currentAge
{

case 16:
Console.WriteLine("You can drive!")
break;

case 18:
Console.WriteLine("You're finally an adult!");
break;

default :
Console.WriteLine("Nothing exciting happened this year.");
break;

}

Console Output
You're finally an adult!

C Sharp Programming

- 195 -

by , XML to PDF XSL-FO Formatter

this

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thethis keyword is used in aninstance method or instance property to reference thecurrent
instance of class. That is, this refers to the object through which its containing method or property
was invoked.

C Sharp Programming

- 196 -

by , XML to PDF XSL-FO Formatter

throw

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The throw keyword is usedthrow an exception object.

C Sharp Programming

- 197 -

by , XML to PDF XSL-FO Formatter

true

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thetrue keyword is abooleanconstant value. Therefore

while(true)

would create an infinite loop.

C Sharp Programming

- 198 -

by , XML to PDF XSL-FO Formatter

try

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The try keyword is used to identify astatement or statement block as the body of an excep-
tion handling sequence. The body of the exception handling sequence must be followed by a
catch clause, a finally clause, or both.

C Sharp Programming

- 199 -

by , XML to PDF XSL-FO Formatter

typeof

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thetypeof keyword returns an instance of the System.Type class when passed a name of a
class. It is similar to thesizeofkeyword in that it returns a value instead of starting a section
(block) of code (seeif , while, try).

An example:

using System;

namespace MyNamespace
{

class MyClass
{

static void Main(string [] args)
{

Type t = typeof(int);
Console.Out.WriteLine(t.ToString());
Console.In.Read();

}
}

}

The output will be:

System.Int32

C Sharp Programming

- 200 -

by , XML to PDF XSL-FO Formatter

It should be noted that unlike sizeof, only class names themselves and not variables can be
passed to typeof, as shown here:

using System;

namespace MyNamespace
{

class MyClass2
{

static void Main(string [] args)
{

char ch;

// This line will cause compilation to fail
Type t = typeof(ch);
Console.Out.WriteLine(t.ToString());
Console.In.Read();

}
}

}

Sometimes, classes will include their own GetType() method that will be similar, if not
identical, to typeof.

C Sharp Programming

- 201 -

by , XML to PDF XSL-FO Formatter

uint

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Theuint keyword is used in field,method, property, and variable declarations and incast
andtypeof operations as an alias for the .NET Framework structure System.UInt32. That is, it
represents a 32-bit unsigned integer whose value ranges from 0 to 4,294,967,295.

C Sharp Programming

- 202 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Programming:C_sharp/Classes#method

ulong

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Theulong keyword is used in field,method, property, and variable declarations and incast
andtypeof operations as an alias for the .NET Framework structure System.UInt64. That is, it
represents a 64-bit unsigned integer whose value ranges from 0 to 18,446,744,073,709,551,615.

C Sharp Programming

- 203 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Programming:C_sharp/Classes#method

unchecked

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Theunchecked keyword prevents overflow-checking when doing integer arithmetic. It may
be used as anoperator on a single expression or as a statement on a whole block of code.

int x, y, z;
x = 1222111000;
y = 1222111000;

// used as an operator
z = unchecked(x * y);

// used as a statement
unchecked {

z = x * y;
x = z * z;

}

C Sharp Programming

- 204 -

by , XML to PDF XSL-FO Formatter

unsafe

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The unsafe keyword may be used to modify a procedure or define a block of code which
uses unsafe code. Code is unsafe if it uses the "address of" operator(&) or if it uses a pointer
operator (*).

In order for the compiler to compile code containing this keyword, you must use the/unsafe
option when using the Microsoft C-Sharp Compiler.

// example of unsafe to modify a procedure
class MyClass {

unsafe static void(string *msg) {
Console.WriteLine(*msg)

}
}

// example of unsafe to modify a code block
string s = "hello";
unsafe {

char *cp = &s[2];
*cp = 'a';

}

C Sharp Programming

- 205 -

by , XML to PDF XSL-FO Formatter

ushort

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Theushort keyword is used in field,method, property, and variable declarations and incast
andtypeof operations as an alias for the .NET Framework structure System.UInt16. That is, it
represents a 16-bit unsigned integer whose value ranges from 0 to 65,535.

C Sharp Programming

- 206 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/Programming:C_sharp/Classes#method

using

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Theusing keyword has two completely unrelated meanings in C#, depending on if it is used
as a directive or a statement.

The directive

using as adirective resolves unqualified type references so a developer doesn't have to
specify the complete namespace.

Example:

using System;

// A developer can now type Console.WriteLine(); rather than System.Con-
sole.WriteLine().

using can also provide anamespace alias for referencing types.

Example:

using Utils = Company.Application.Utilities;

C Sharp Programming

- 207 -

by , XML to PDF XSL-FO Formatter

The statement

using as astatement with a scope specifies an object's lifetime. At the end of the scope, the
object's destructor will be run and the C# garbage collector will free its allocated resources.

Example:

using (System.IO.StreamReader reader = new StreamReader("readme.txt"))
{

// read from the file
}

// reader is now destroyed, its file handle freed, and an unknown variable
again

C Sharp Programming

- 208 -

by , XML to PDF XSL-FO Formatter

virtual

The keywordvirtual is applied to a method declaration to indicate that the method may be
overridden in a subclass. If the virtual keyword is not applied and a method is defined in a sub-
class with the same signature as the one in the parent class, the method in the parent class is
hidden by the subclass implementation.

C Sharp Programming

- 209 -

by , XML to PDF XSL-FO Formatter

void

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thevoid keyword is used inmethodsignatures to declare a method that does not return a
value. A method declared with the void return type cannot provide any arguments to anyreturn
statements they contain.

Example:

public void WorkRepeatedly(int numberOfTimes)
{

for (int i=0; i<numberOfTimes; i++)
if (EarlyTerminationIsRequested)

return;
else

DoWork();
}

C Sharp Programming

- 210 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/C_Sharp_Programming/Classes#method

volatile

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The volatile keyword is used to declare a variable which may change its value over time
due to modification by an outside process, the system hardware, or another concurrently running
thread.

You should use this modifier in your member variable declaration to ensure that whenver
the value is read, you are always getting the most recent (up-to-date) value of the variable.

class MyClass
{

public volatile long systemclock;
}

This keyword has been part of the C# programming language since .NET Framework 1.1
(Visual Studio 2003).

C Sharp Programming

- 211 -

by , XML to PDF XSL-FO Formatter

while

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

Thewhile keyword identifies awhile loop.

C Sharp Programming

- 212 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/C_Sharp_Programming/Control#The_while_loop

alias

It can sometimes be necessary to reference two versions of assemblies that have the same
fully-qualified type names, for example when you need to use two or more versions of an assem-
bly in the same application. By using an external assembly alias, the namespaces from each assem-
bly can be wrapped inside root-level namespaces named by the alias, allowing them to be used
in the same file.

To reference two assemblies with the same fully-qualified type names, an alias must be
specified on the command line, as follows:

/r:GridV1=grid.dll

/r:GridV2=grid20.dll

This creates the external aliases GridV1 and GridV2. To use these aliases from within a
program, reference them using theextern keyword. For example:

extern alias GridV1;

extern alias GridV2;

Each extern alias declaration introduces an additional root-level namespace that parallels
(but does not lie within) the global namespace. Thus types from each assembly can be referred
to without ambiguity using their fully qualified name, rooted in the appropriate namespace-alias

In the above example, GridV1::Grid would be the grid control from grid.dll, and
GridV2::Grid would be the grid control from grid20.dll.

C Sharp Programming

- 213 -

by , XML to PDF XSL-FO Formatter

get

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The special identifierget is used to declare theread accessor for a property.

C Sharp Programming

- 214 -

by , XML to PDF XSL-FO Formatter

partial

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The special identifierpartial is used to allowdevelopers to buildclasses from different files
and have the compiler generate one class (combining all the partial classes). This is mostly useful
for separating classes into separate blocks. For example, Visual Studio 2005 separates the UI
code for forms into a separate partial class which allows you to work on the business logic sepa-
rately.

C Sharp Programming

- 215 -

by , XML to PDF XSL-FO Formatter

set

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The special identifierset is used to declare thewrite accessor for a property.

C Sharp Programming

- 216 -

by , XML to PDF XSL-FO Formatter

value

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The special identifiervalue is used in a property'swrite accessor to represent the value re-
quested for assignment to theproperty.

C Sharp Programming

- 217 -

by , XML to PDF XSL-FO Formatter

yield

C# Programming
Cover| Introduction| Basics| Classes| The .NET Framework| Advanced Topics| Index

C sharp musical note

The yield keyword returns the next value from an iterator or ends an iteration. SeeUsing
yield.

C Sharp Programming

- 218 -

by , XML to PDF XSL-FO Formatter

http://en.wikibooks.org/wiki/C_Sharp_Programming/Control#Using_yield
http://en.wikibooks.org/wiki/C_Sharp_Programming/Control#Using_yield

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their work,
while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it is published as a printed
book. We recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License. Such
a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The "Document", below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as "you". You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

C Sharp Programming

- 219 -

by , XML to PDF XSL-FO Formatter

A "Modified Version" of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document's overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising the
document straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats suitable for input to
text formatters. A copy made in an otherwise Transparent file format whose markup, or absence
of markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word processors for output
purposes only.

C Sharp Programming

- 220 -

by , XML to PDF XSL-FO Formatter

The "Title Page" means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title Page" means the text near the
most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another
language. (Here XYZ stands for a specific section name mentioned below, such as
"Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of
such a section when you modify the Document means that it remains a section "Entitled XYZ"
according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must
also clearly and legibly identify you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and visible. You may add other material
on the covers in addition. Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

C Sharp Programming

- 221 -

by , XML to PDF XSL-FO Formatter

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or state
in or with each Opaque copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until at least one year
after the last time you distribute an Opaque copy (directly or through your agents or retailers) of
that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be listed
in the History section of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

C Sharp Programming

- 222 -

by , XML to PDF XSL-FO Formatter

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled "History" in the Document, create one stating the
title, year, authors, and publisher of the Document as given on its Title Page, then add an
item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four years
before the Document itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of
the section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version's license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but
endorsements of your Modified Version by various parties--for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition of a
standard.

C Sharp Programming

- 223 -

by , XML to PDF XSL-FO Formatter

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by adding
at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document, and
follow this License in all other respects regarding verbatim copying of that document.

C Sharp Programming

- 224 -

by , XML to PDF XSL-FO Formatter

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
"aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of
the compilation's users beyond what the individual works permit. When the Document is included
in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document's Cover Texts
may be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License, and all the license notices in the Document, and any
Warranty Disclaimers, provided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History",
the requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

C Sharp Programming

- 225 -

by , XML to PDF XSL-FO Formatter

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version" applies to it,
you have the option of following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

C Sharp Programming

- 226 -

by , XML to PDF XSL-FO Formatter

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

	Table of Contents
	C Sharp Programming
	Introduction
	Language Basics
	Classes
	The .NET Framework
	Advanced Object-Orientation Concepts
	Keywords
	External links

	Intro
	Introduction

	Basics
	Basics

	Structure
	Structure

	The .NET Framework
	The .NET Framework
	Console Programming
	Console Programming
	Output
	Input
	Error
	Command line arguments

	Windows Forms

	Advanced
	Advanced

	Index
	Foreword
	Introduction
	Standard
	History

	Introduction
	Naming
	Reasoning
	Conventions
	Namespace
	Assemblies
	Classes and Structures
	Exception Classes
	Interfaces
	Functions
	Properties and Public Member Variables
	Parameters and Procedure-level Variables
	Class-level Private and Protected Variables
	Controls on Forms
	Constants

	Example

	Syntax
	Statements
	Statement blocks
	Comments
	Case sensitivity

	Variables
	Fields, Local Variables, and Parameters
	Fields
	Local variables
	Parameter

	Types
	Integral types
	Custom types
	Conversion

	Scope and extent

	Operators
	Arithmetic
	Logical
	Bitwise shifting
	Relational
	Assignment
	Short-hand Assignment
	Type information
	Pointer manipulation
	Overflow exception control
	Others

	Data structures
	Enumerations
	Structs
	Arrays

	Control
	Conditional statements
	The
	The

	Iteration statements
	The
	The
	The
	The

	Jump statements

	Exceptions
	References

	Namespaces
	Nested namespaces

	Classes
	Methods
	Constructors
	Finalizers
	Properties
	Indexers
	Events
	Operator
	Structures
	Static classes

	Objects
	Introduction
	Reference and Value Types
	System.Object

	Object basics
	Constructors
	Destructors

	Abstract Class
	Sub-heading

	Encapsulation
	Protection Levels
	Private
	Protected
	Public
	Internal

	NET Framework overview
	Introduction
	Background

	Inheritance
	Inheritance
	Subtyping Inheritance
	Inheritance keywords

	Interfaces
	Additional Details

	Delegates and Events
	Introduction
	Delegates
	Events

	Abstract classes
	Partial classes
	Partial Classes

	Collections
	Lists
	LinkedLists
	Queues
	Stacks
	Dictionaries

	Generics
	Generic Interfaces
	Generic Classes
	Generic lists
	Generic linked lists
	Generic queues
	Generic stacks
	Generic dictionaries

	Generic Methods
	Generic Delegates
	Generic Events

	Object Lifetime
	Introduction
	Garbage Collector
	Managed Resources
	Unmanaged Resources
	Applications
	Resource Acquisition Is Initialisation

	Design Patterns
	Table Of Contents (TOC)
	Factory Pattern
	Singleton

	abstract
	as
	See also

	base
	bool
	break
	byte
	case
	catch
	char
	class
	const
	continue
	decimal
	default
	delegate
	do
	double
	else
	enum
	event
	explicit
	General
	Keyword

	extern
	false
	finally
	fixed
	float
	for
	foreach
	goto
	if
	implicit
	General
	Keyword

	in
	int
	interface
	internal
	is
	long
	namespace
	new
	null
	object
	out
	override
	params
	private
	protected
	public
	readonly
	ref
	return
	sbyte
	sealed
	short
	sizeof
	stackalloc
	static
	string
	struct
	switch
	this
	throw
	true
	try
	typeof
	uint
	ulong
	unchecked
	unsafe
	ushort
	using
	The directive
	The statement

	virtual
	void
	volatile
	while
	alias
	get
	partial
	set
	value
	yield
	GNU Free Documentation License

