Advanced Computer Architecture-CS501

Lecture Handout
Computer Architecture

Lecture No. 4

Reading Material

Vincent P. Heuring&Harry F. Jordan Chapter 2
Computer Systems Design and Architecture 2.3, 2.4,slides
Summary

1) Introduction to ISA and instruction formats
2) Coding examples and Hand assembly

An example computer: the SRC: “simple RISC computer”
An example machine is introduced here to facilitate our understanding of various design
steps and concepts in computer architecture. This example machine is quite simple, and
leaves out a lot of details of a real machine, yet it is complex enough to illustrate the
fundamentals.
SRC Introduction
Attributes of the SRC
» The SRC contains 32 General Purpose Registers: RO, R1, ..., R31; each register is
of size 32-bits.
» Two special purpose registers are included: Program Counter (PC) and Instruction
Register (IR)
* Memory word size is 32 bits
Memory space size is 2** bytes
« Memory organization is 2°* x 8 bits, this means that the memory is byte aligned
* Memory is accessed in 32 bit |=——r-——————r-- 1

words (1.e., 4 byte chunks) i RO 2 " i 7 0

* Big-endian byte storage isused | R ! 0
Programmer’s View of the | : | ;
SRC [Ju—
The figure below shows the attributes i Register file |
of the SRC; the 32 ,32-bit registers that ! |
are a part of the CPU, the two | R[] |
additional CPU registers (PC & 1R), | | 2321
and the main memory which is 2** 1- | el] |
byte cells. CPU Main memory

Last Modified: 01-Nov-06 Page 48

Advanced Computer Architecture-CS501

SRC Notation
We examine the notation used for the SRC with the help of some examples.
* R[3] means contents of register 3 (R for register)
* M]8] means contents of memory location 8 (M for memory)

* A memory word at address 8 is
defined as the 32 bits at address

o
. % 7 a i n
8,9,10 and 11 in the memory. £ = [_WE One memory “word
. . . o= g+ W[
This is shown in the figure =3I} M[ED]] |31 24|23 15|15 3|? n|
i (8] 9] h[10] M[11]
below. & a+3 [M)
5
.

. . . MS Byte LS Byte
* A special notation for 32-bit L’_’/
memory words is
M[8]<31...0>=M[8]OM[9]©OM[10]OM[11]
© 1s used for concatenation.
Some more SRC Attributes
* All instructions are 32 bits long (i.e., instruction size is 1 word)
* All ALU instructions have three operands
* The only way to access memory is through load and store operations

* Only a few addressing modes 31 37 76 0
are supported Type A Op-code unused
SRC: Instruction Formats
. . 31 2726 22 0
Four types of instructions are - 1
supported by the SRC. Their Op-code ° -
representation is given in the following
. . | 27T 26 2221 1716 0
figure. Before discussing these
. . . . Type © Op-cade ra rh 02
instruction types in detail, we take a
look at the encoding of general-
. 31 W26 2721 1716 1211 0
purpose registers (the ra, rb and rc
Type D op-code ra rh rc c3
fields).
Encoding of the General Purpose S S S
Registers B S S A i M
The encoding for the general purpose : =
registers is shown in the following W | e | o | e
table; it will be used in place of ra, rb wo] e we e =
and rc in the instruction formats shown S B S e M B s
above. Note that this is a simple 5 bit |~ | “ . S -

encoding. ra, tb and rc are names of fields used as “place-holders”, and can represent any
one of these 32 registers. An exception is rb = 0; it does not mean the register RO, rather
it means no operand. This will be explained in the following discussion.

Type A

Type A is used for only two instructions:

e No operation or nop, for which 31 2726 a
the op-code = 0. This is useful Op-code Unused
in pipelining
e Stop operation stop, the op-code is 31 for this instruction.

Last Modified: 01-Nov-06 Page 49

Advanced Computer Architecture-CS501

Both of these instructions do not need an operand (are 0-operand instructions).

Type B
Type B format includes three 21 T8 22 M]
instructions; all three wuse relative Op-code ra e

addressing mode. These are
e The Idr instruction, used to load register from memory using a relative address.
(op-code = 2).
o Example:
1dr R3, 56
This instruction will load the register R3 with the contents of the memory
location M [PC+56]
e The lar instruction, for loading a register with relative address (op-code = 6)
o Example:
lar R3, 56
This instruction will load the register R3 with the relative address itself
(PC+56).
e The str is used to store register to memory using relative address (op-code = 4)
o Example:
str R8, 34
This instruction will store the register R8 contents to the memory location
M [PC+34]
The effective address is computed at run-time by adding a constant to the PC. This makes
the instructions ‘re-locatable’.
Type C 31 2726 22 31 1716 0
Type C format has three load/store Op-code ra b o2
instructions, plus three = ALU
instructions. These load/ store instructions are
e 1d, the load register from memory instruction (op-code = 1)
o Example 1:
1d R3, 56
This instruction will load the register R3 with the contents of the memory
location M [56]; the rb field is O in this instruction, i.e., it is not used. This
is an example of direct addressing mode.
o Example 2:
1d R3, 56(R5)
The contents of the memory location M [56+R [5]] are loaded to the
register R3; the rb field # 0. This is an instance of indexed addressing
mode.
e la is the instruction to load a register with an immediate data value (which can be
an address) (op-code =5)
o Examplel:
laR3, 56
The register R3 is loaded with the immediate value 56. This is an instance
of immediate addressing mode.
o Example 2:
la R3, 56(R5)

Last Modified: 01-Nov-06 Page 50

Advanced Computer Architecture-CS501

The register R3 is loaded with the indexed address 56+R [5]. This is an
example of indexed addressing mode.
e The st instruction is used to store register contents to memory (op-code = 3)
o Example 1:
st R8, 34
This is the direct addressing mode; the contents of register R8 (R [8]) are
stored to the memory location M [34]
o Example 2:
st R8, 34(R6)
An instance of indexed addressing mode, M [34+R [6]] stores the contents
of R8(R [8])
The ALU instructions are
e addi, immediate 2’s complement addition (op-code = 13)
o Example:
addi R3, R4, 56
R[3] <« R[4]+56 (rb field = R4)
e andi, the instruction to obtain immediate logical AND, (op-code =21)
o Example:
andi R3, R4, 56
R3 is loaded with the immediate logical AND of the contents of register
R4 and 56(constant value)
e ori, the instruction to obtain immediate logical OR (op-code =23)
o Example:
ori R3, R4, 56
R3 is loaded with the immediate logical OR of the contents of register R4
and 56(constant value)

Note:
1. Since the constant c2 field is 17 bits,
» For direct addressing mode, only the first 2'® bytes of memory can
be accessed (or the last 2'° bytes if ¢2 is negative)
= In case of the la instruction, only constants with magnitudes less
than £2'° can be loaded
= During address calculation using c2, sign extension to 32 bits must
be performed before the addition
2. Type C instructions, with some modifications, may also be used for
shift instructions. Note
the modification in the 31 27 36 22 21 1716 4 0
following figure. Op-code ra b unused (count
The four shift instructions are
e shr is the instruction used to shift the bits right by using value in (5-bit) c3
field(shift count) (op-code = 26)
o Example:
shr R3, R4, 7
shift R4 right 7 times in to R3 and shifts zeros in from the left as the value
is shifted right. Immediate addressing mode is used.
e shra, arithmetic shift right by using value in ¢3 field (op-code = 27)
o Example:

Last Modified: 01-Nov-06 Page 51

Advanced Computer Architecture-CS501

shra R3, R4, 7

This instruction has the effect of shift R4 right 7 times in to R3 and copies
the msb into the word on left as contents are shifted right. Immediate

addressing mode is used.

e The shl instruction is for shift left by using value in (5-bit) c3 field (op-code = 28)

o Example:
shl R8, RS, 6

shift RS left 6 times in to R8 and shifts zeros in from the right as the value

is shifted left. Immediate addressing mode is used.

e shc, shift left circular by using value in ¢3 field (op-code = 29)

o Example:
shc R3,R4, 3

shift R4 circular 3 times in to R3 and copies the value shifted out of the
register on the left is placed back into the register on the right. Immediate

addressing mode is used.

Type D

Type D includes four ALU
instructions, four register based shift
instructions, two logical instructions
and two branch instructions.

31

AT 26 22

1716

1211 a

Qp-code

ra

rb

I

unused

The four ALU instructions are given below

e add, the instruction for 2’s complement register addition (op-code = 12)
o Example:
add R3, R5, R6
result of 2’s complement addition R[5] + R[6] is stored in R3. Register
addressing mode is used.
e sub, the instruction for 2’s complement register subtraction (op-code = 14)
o Example:
sub R3, R5, R6
R3 will store the 2’s complement subtraction, R[5] - R[6]. Register
addressing mode is used.
e and, the instruction for logical AND operation between registers (op-code = 20)
o Example:
and R&, R3, R4
R8 will store the logical AND of registers R3 and R4. Register addressing
mode is used.
e or the instruction for logical OR operation between registers (op-code = 22)
o Example:
or R8, R3, R4
R8 is loaded with the value R[3] v R[4], the logical OR of registers R3 and
R4. Register addressing mode is used.

The four register based shift instructions use register addressing mode. These use a
modified form of type D, as shown in

ﬁgure 31 736 2z 1716 121 54 0
e shr, shift right by using value in Op-code ra b re |unused [10000
register rc (op-code = 26)
o Example:

Last Modified: 01-Nov-06 Page 52

Advanced Computer Architecture-CS501

shr R3, R4, R5
This instruction will shift R4 right in to R3 using number in RS
e shra, the arithmetic shift right by using register rc (op-code = 27)
o Example:
shra R3, R4, R5
A shift of R4 right using RS, and the result is stored in R3
e shl is shift left by using register rc (op-code = 28)
o Example:
shl R8, RS, R6
The instruction shifts R5 left in to R8 using number in R6
e shc, shifts left circular by using register rc (op-code = 29)
o Example:
shc R3, R4, R6
This instruction will shift R4 circular in to R3 using value in R6
The two logical instructions also use a modified form of the Type D, and are the
following.

o neg stores the 2’s complement 31 27 26 2221 1716 1211 a
of register rc in ra (op-code = Op-cade ra |unused| re unused
15)

o Example:
neg R3, R4

Negates (obtains 2’s complement) of R4 and stores in R3. 2-address
format and register addressing mode is used.
e not stores the 1’s complement of register rc in ra (op-code = 24)
o Example:
not R3, R4
Logically inverts R4 and stores in R3. 2-address format with register
addressing mode is

used. el 2726 2221 1716 1211 52 0
Type D has two-branch instruction, Op-code |unused| b re |unused | cond
modified forms of type D.

e br, the instruction to branch to address in rb depending on the condition in rc.
There are five possible conditions, explained through examples. (op-code = 8).
All branch instructions use register-addressing mode.

o Example 1:

brzr R3, R4

Branch to address in R3 (if R4 == 0)
o Example 2:

brnz R3, R4

Branch to address in R3 (if R4 # 0)
o Example 3:

brpl R3, R4

Branch to address in R3 (if R4 > 0)
o Example 4:

brmi R3, R4

Branch to address in R3 (if R4 < 0)
o Example 5:

Last Modified: 01-Nov-06 Page 53

Advanced Computer Architecture-CS501

br R3, R4

Branch to address in R3 (unconditional)
e Brl the instruction to branch to address in rb depending on condition in rc.
Additionally, it copies the PC in to ra before branching (op-code = 9)

o Example 1:
brlzr R1,R3, R4

R1 will store the contents of PC, then branch to address in R3 (if R4 == 0)

o Example 2:
brlnz R1,R3, R4

R1 stores the contents of PC, then a branch is taken, to address in R3 (if

R4 #0)
o Example 3:
brlpl R1,R3, R4

R1 will store PC, then branch to address in R3 (if R4> 0)

o Example 4:
brlmi R1,R3, R4

R1 will store PC and then branch to address in R3 (if R4 < 0)

o Example 5:

brl R1,R3, R4

R1 will store PC, then it
will ALWAYS branch to

address in R3
o Example 6:
brlnv R1,R3, R4
R1 just stores the

contents of PC but a
branch i1s not taken
(NEVER BRANCH)

Mnemonic c3<2..0x Branch Condition
hrlny 000 Link but never hranch*
hr, hrl ool Tnconditdonal hranch
brzr, brlzr ol0 Branch if re is zero
hrnz, hrinz o1l Branch if rc is not zera
hrpl, hrlpl 100 Branch if re is positive
hrmi, brlmi 101 Branch if re is negative

In the modified type D instructions for branch, the bits <2..0> are used for specifying the
condition; these condition codes are shown in the table.

The SRC Instruction Summary

The instructions implemented by the SRC are listed, grouped on functionality basis.

Functional Groups of Instructions

Logic Opcode
Shift right by count shr 11 1 0] 1| O [Arithmetic Opcode
Shift right by count in a register shr 11 1] 0f 1| 0] [2°s complement addition add o] 1 1 o] o
AShift right by count shra 11 1] 0] 1] 1] [Immadiata 2'< camnlamant addn JEER nl 1l a0 nl
AShift right by count in a register shra 1 1] 0f 1] 1 %Imnemgnig BIE IR e _--| la ol o) 1joj1
Shiftleft by count shl 1 1] 1] o o L_eg lar ofo] 1] 1] D
Shift Ieft by count in a register snl | 1] 1] 1] 0[0| fr=2 - 14 |olololo[
Shiftcirc. bycount_ _ she 1 1 1| 0] 1 E ~3a T 11070 1dr ololol1lo
Shift circ. by count in a register she 10 1] 1] 0] 1] [imm 1= oj 1] 1] 11 1
[Not addi of 1{ 11 o] 1
[Not nep | DD [0]D]D
. . . and 101010 mot | 1] 10/ 0] 0
Alphabetical Listing based on SRC mai | 1] 0] 1]0] 1 T L]
Mnemonics rerrd B oj1jojojo PTI I r a
, LU - AERRE h IEIEINE
Notice that the op code field for all br | FSo—13 1ol ol py ey ey v ey) AT D
. . . : . [Noo | Lrimi she ol 1ol ol 0
instructions is the same. The difference is [gzr [&zinw | 0] 1] 0] 0] 1 w1 [0 0 5ot s
in the condition code field, which is in brins | O] 1 0] 0] shl : } El 'i' g o[1] o[o o
. Dats h
effect, an op code extension. Data | bripl g : E E 1 e
|| &r1
Examples Loac = E.I shra ol 1 1ol 1) ol of 4
= brmi gof 1 ojofao
Loac shra |11 O0 1 o[1] o] of 1
Last Modified: 01-Nov-06 Stor, | T gpjojolo ot ol ol o] 1 1] o0 ol ol
stor| brn= O U OJ OO0 P n T[T 1] a[a[o] o[1
Loac | brEl pj1jofojo ser Ol 0[] o] o|o ol o1
Loac brsr Ol 1) ojofo b of 1{ 1] 11 0fof 1| of o] 4

Advanced Computer Architecture-CS501

Some examples are studied in this section to enhance the student’s understanding of the
SRC.

Example 1: Expression Evaluation

Write an SRC assembly language program to evaluate the expression:

z=4(a +b) — 16(c+58)

Your code should not change the source operands.

Solution A: Notice that the SRC does not have a multiply instruction. We will make use
of the fact that multiplication with powers of 2 can be achieved by repeated shift left
operations. A possible solution is give below:

IdR1, ¢ ; ¢ 1s a label used for a memory location
addi R3, R1, 58 ; R3 contains (c+58)

shl R7, R3, 4 ; R7 contains 16(c+58)

Id R4, a

IdR5,b

add R6, R4, R5 ; R6 contains (a+b)

shl R&, R6, 2 ; R8 contains 4(a+b)

sub R9, R7, R8 ; the result is in R9

stR9, z ; store the result in memory location z
Note:

The memory labels a, b, ¢ and z can be defined by using assembler directives like .dw or
.db, etc. in the source file.

A semicolon ¢;’ is used for comments in assembly language.

Solution B:

We may solve the problem by assuming that a multiply instruction, similar to the add
instruction, exists in the instruction set of the SRC. The shl instruction will be replaced
by the mul instruction as given below.

IdR1, ¢ ; ¢ 1s a label used for a memory location
addi R3, R1, 58 ; R3 contains (c+58)

mul R7, R3, 4 : R7 contains 16(c+58)

Id R4, a

Id R5, b

add R6, R4, R5 ; R6 contains (a+b)

mul R8, R6, 2 ; R8 contains 4(a+b)

sub R9, R7, R8 ; the result is in R9

stR9, z ; store the result in memory location z
Note:

The memory labels a, b, ¢ and z can be defined by using assembler directives like .dw or
.db, etc. in the source file.

Solution C:

We can perform multiplication with a multiplier that is not a power of 2 by doing
addition in a loop. The number of times the loop will execute will be equal to the
multiplier.

Example 2: Hand Assembly

Convert the given SRC assembly language program in to an equivalent SRC machine
language program.

IdR1, ¢ ; ¢ 1s a label used for a memory location

addi R3, R1, 58 ; R3 contains (c+58)

Last Modified: 01-Nov-06 Page 55

Advanced Computer Architecture-CS501

shl R7, R3, 4 ; R7 contains 16(c+58)

IdR4, a

Id R5, b

add R6, R4, R5 ; R6 contains (a+b)

shl R8, R6, 2 ; R8 contains 4(a+b)

sub R9, R7, R8 ; the result is in R9

stR9, z ; store the result in memory location z
Note:

This program uses memory labels a,b,c and z. We need to define them for the assembler
by using assembler directives like .dw or .equ etc. in the source file.
Assembler Directives
Assembler directives, also called pseudo op-codes, are commands to the assembler to
direct the assembly process. The directives may be slightly different for different
assemblers. All the necessary directives are available with most assemblers. We explain
the directives as we encounter them. More information on assemblers can be looked up in
the assembler user manuals.
Source program with directives

.ORG 200 ; start the next line at address 200

a: .DW 1 ; reserve one word for the label a in the memory
b: .DW 1 ; reserve a word for b, this will be at address 204
c: .DW 1 ; reserve a word for ¢, will be at address 208

z: .DW 1 ; reserve one word for the result

.ORG 400 ; start the code at address 400
; all numbers are in decimal unless otherwise stated

IdR1,c ; ¢ 1s a label used for a memory location
addi R3, R1, 58 ; R3 contains (c+58)

shl R7, R3, 4 ; R7 contains 16(c+58)

Id R4, a

Id R5, b

add R6, R4, R5 ; R6 contains (a+b)

shl R8, R6, 2 ; R8 contains 4(a+b)

sub R9, R7, R8 ; the result is in R9

stR9, z ; store the result in memory location z

This is the way an assembly program will appear in the source file. Most assemblers
require that the file be saved with an .asm extension.
Solution:
Observe the first line of the program
ORG 200 ; start the next line at address 200
This is a directive to let the following code/ variables ‘originate’ at the specified address
of the memory, 200 in this case.
Variable statements, and another .ORG directive follow the .ORG directive.

a: .DW 1 ; reserve one word for the label a in the memory

b: .DW 1 ; reserve a word for b, this will be at address 204

c: .DW 1 ; reserve a word for ¢, will be at address 208

z .DW 1 ; reserve one word for the result

.ORG 400 ; start the code at address 400

We conclude the following from the above statements: Label | Address | Value
a 200 unknown

Last Modified: 01-Nov-06 b 204 | unknown
c 208 unknown
z 212 unknown

Advanced Computer Architecture-CS501

The code starts at address 400 and each instruction takes 32 bits in the memory. The
memory map for the program is shown in given table.
Memory Map for the SRC example program

Memonr Memonr
Address Cordents

0 b
04 bz
03 bt
212 bt

400 MEL«c

404 addi B3 R1, 58
402 shl BT B3, 4
412 11E4.a

416 MESb

420 add RS, B4, RS
424 shl B2 R, 2
423 sub B9 BT RS
432 L ROz

We have to convert these instructions to machine language. Let us start with the first

instruction:
Id R1, ¢
Notice that this is a type C instruction with the rb field missing.

1. We pick the op-code for this load instruction from the SRC instruction tables
given in the SRC instruction summary section. The op-code for the load register
‘1d’ instruction is 00001.

2. Next we pick the register code corresponding to register R1 from the register table
(given in the section ‘encoding of general Y T—— T a— Heradorimal
purpose registers’). The register code for | Addes Conterts Mencay Canterts
R11is 00001.

3. The b field is missing, so we place zeros o0 |wdmonn
in the field: 00000 SO i

. . a0z hi S chiy

4. The value of c¢ is provided by the o
assembler, and should be converted to 17
bits. As ¢ has been assigned the memory 00 |MERLe TEATOD0 K
address 208, the binary value to be 404 [addiR5.RL5
encoded is 00000 0000 1101 0000. 408 |SRLESS

5. So the instruction 1d R1, ¢ is 00001 00001 HE | Mo | e
00000 00000 0000 1101 0000 in the :Z
machine language. yor 1w

6. The hexadecimal representation of this e T Fere—
instructionis 0 84000 D 0 h. e a2 |wiaew

We can update the memory map with these ot R
values. 404 addiR3,R1, 58 620200345
We consider the next instruction, :?2 :R‘f;m“‘
Last Modified: 01-Nov-06 ::Z ;Rizmﬁ

Advanced Computer Architecture-CS501

addi R3, R1, 58.
Notice that this is a type C instruction.

1. We pick the op-code for the instruction addi from the SRC instruction table. It is
01101
2. We pick the register codes for the registers R3 and R1, these codes are 00011 and
00001 respectively
3. For the immediate data, 58, we use the binary value, 00000 0000 0011 1010
4. So the complete instruction becomes: 01101 00011 00001 00000 0000 0011 1010
5. The hexadecimal representation of the instruction Hery T — Hemadocial
is68C2003Ah I R i
We update the memory map, as shown in table. ETTR rw—
The next instruction is shl R7,R3, 4, at address 408. AR i
Again, this is a type C instruction. 232 m
1. The op-code for the instruction shl is picked from
the SRC instruction table. It is 11100 S R~
2. The register codes for the registers R7 and R3 T T EICo004E
from the register table are 00111 and 00011 S
respectively R P
3. For the immediate data, 4, the corresponding i
binary value 00000 0000 0000 0100 is used. e i
4. We can place these codes in accordance with the

type C instruction format to obtain the complete instruction: 11100 00111 00011

00000 0000 0000 0100

5. The hexadecimal representation of the instruction is E1C60004

The memory map is updated, as shown in table.

The next instruction, ld R4, a, is also a type C instruction. e Cotens MHm:EcoTn:
Rb field is missing in this instruction. To obtain the MR
machine equivalent, we follow the steps given below. FTTR e v—
1. The op-code of the load instruction ‘1d” is 00001 i
2. The register code corresponding to the register R4 S i
is obtained from the register table, and it is 00100 W0 [mRLC TEAOID0L
3. As the 5 bit rb field is missing, we can encode A e o
Zeros in its place: 00000 412 1dR4,; - 090000CE 1
4. The value of a is provided by the assembler, and R
is converted to 17 bits. It has been assigned the :zi ﬁ:::;:j
memory address 200, the binary equivalent of 6 |sRROELES
which is: 00000 0000 1100 1000 M
5. The complete instruction becomes: 00001 00100 00000 00000 0000 1100 1000
6. The hexadecimal equivalent of the instructionis 090000 C8h

Memory map can be updated with this value.

The next instruction is also a load type C instruction, with | Merew ey ——
the rb field missing.
ld RS, b 200 wikroan
The machine language conversion steps are G
1. The op-code of the load instruction is obtained 2w
from the SRC instruction table; it is 00001 S - R
2. The register code for RS5, obtained from the Wor [wumRL SeCaeER

Last Modified: 01-Nov-06

register table, is 00101 405

shlR7,E3,4

E1CA0004 b

412

LAY

090000CE h

416

RS

094000CCh

420

234 R, R4, RS

424

shl R R, 2

4218

cub RO, RT. RS

432

s R9.z

Advanced Computer Architecture-CS501

(98]

Again, the 5 bit rb field is missing. We encode zeros in its place: 00000

4. The value of label b is provided by the assembler, and should be converted to 17
bits. It has been assigned the memory address 204, so the binary value is: 00000
0000 1100 1100

5. The complete instruction is: 00001 00101 00000 00000 0000 1100 1100

6. The hexadecimal value of this instruction is 0 9 4

Memowy Memory Hexaderinal
000CCh Address Contents Merory Corterts
Memory map is then updated with this value. —
The next instruction is a type D-add instruction, with the W |wiaon
constant field missing: S i
add R6,R4,R5
The steps followed to obtain the assembly code for this s JuRLe DE400L0%
instruction are e e
1. The op-code of the instruction is obtained from i 09000008 1
the SRC instruction table; it is 01100 - LMR: e o
2. The register codes for the registers R6, R4 and RS N
are obtained from the register table; these are T b

00110, 00100 and 00101 respectively.
3. The 12 bit constant field is unused in this instruction, therefore we encode zeros
in its place: 0000 0000 0000
4. The complete instruction becomes: 01100 00110 00100 00101 0000 0000 0000
5. The hexadecimal value of the instructionis6 1 885000 h
Memory map is then updated with this value.

The instruction shl R8,R6, 2 is a type C instruction with | Mexex Yucry]
the rc field missing. The steps taken to obtain the
machine code of the instruction are a0 |wimew
1. The op-code of the shift left instruction ‘shl’, S i
obtained from the SRC instruction table, is 11100 [
2. The register codes of R8 and R6 are 01000 and
00110 respectively N T
3. Binary code is used for the immediate data 2: 0 | FLC6000¢
00000 0000 0000 0010 s stk
4. The complete instruction becomes: 11100 01000 T TN TN TR
00110 00000 0000 0000 0010 M ok e
5. The hexadecimal equivalent of the instruction is E = ﬂm;im
20C0002

Memory map is then updated with this value.
The instruction at the memory address 428 is sub R9, R7, R8. This is a type D

instruction. Hanery r— Henatacial
We decode it into the machine language, as follows: Comarte | e Gt
1. The op-code of the subtract instruction ‘sub’ is TR vy
01110 PTYR Ferm—y

208 i

2. The register codes of R9, R7 and RS, obtained o T
from the register table, are 01001, 00111 and

400 WERLc 05400000 b

01000 respeCtlvely 404 addi B3, R1,5% GEC2005 480

3. The 12 bit immediate data field is not used, zeros TR FYrr ELCo000t R
are encoded in its place: 0000 0000 0000 MG s DODOONES 1

416 WESL 0340000 Ch

420 add RA, R4, ES 61385000

424 shl B8, R6.2 ECo002h

Last Modified: 01-Nov-06 428 sub 9, BT, RS T4ERNOE

432 Ea:CR

Advanced Computer Architecture-CS501

4. The complete instruction becomes: 01110 01001 00111 01000 0000 0000 0000

5.

The hexadecimal equivalentis 724 E8000h

We again update the memory map

The last instruction is is a type C instruction with the rb
field missing:

st R9, z

The machine equivalent of this instruction is obtained
through the following steps:

1.

2.
3.

3.
6.

The op-code of the store instruction ‘st’, obtained
from the SRC instruction table, is 00011

The register code of R9 is 01001

Notice that there is no register coded in the 5 bit
rb field, therefore, we encode zeros: 00000

The value of the label z is provided by the
assembler, and should be converted to 17 bits.
Notice that the memory address assigned to z is
212. The 17 bit binary equivalent is: 00000 0000
1101 0100

Memoxy
A ddress

Memory
Conterds

Hexadecimal

Memory Cortarts

200

04

a0z

212

400

HELc

034M0T0 R

404

2341 B3, R, 5%

GECA00ZAL

402

shlRT. B34

E1CA0004 1

412

R4

0200000 T

416

1A RS.b

024000 C Tk

420

234 R, R4, RS

al5s5000h

424

shl R R, 2

E20C0002 1

4218

sub B9, BT, RS

TIAES0 b

432

RSz

14400004 h

The complete instruction becomes: 00011 01001 00000 00000 0000 1101 0100
The hexadecimal form of this instructionis 1 A4000D 4 h
The memory map, after the conversion of all the instructions, is

We have shown the memory map as an array of 4 byte cells in the above solution.
However, since the memory of the SRC is arranged in 8 bit cells (i.e. memory is byte
aligned), the real representation of the memory map is :

Example 3: SRC instruction analysis

Identify the formats of following SRC instructions and specify the values in the fields

Solution:

Last Modified: 01-Nov-06

Instruction

fortmat

th

rc

cl

cd

c3

negtl, 12

add flr2 13

fop

1d 2,6

shidlrl 3

Instruction

format

cl

o2

c3

negtl, 12

add f0.+2 ¢3

nop

1d+2,8

shidl r] .3

Il

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 61

