
Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 48

Lecture Handout

Computer Architecture

Lecture No. 4

Reading Material

Vincent P. Heuring&Harry F. Jordan Chapter 2
Computer Systems Design and Architecture 2.3, 2.4,slides

Summary

1) Introduction to ISA and instruction formats
2) Coding examples and Hand assembly

An example computer: the SRC: “simple RISC computer”
An example machine is introduced here to facilitate our understanding of various design
steps and concepts in computer architecture. This example machine is quite simple, and
leaves out a lot of details of a real machine, yet it is complex enough to illustrate the
fundamentals.
SRC Introduction
Attributes of the SRC

• The SRC contains 32 General Purpose Registers: R0, R1, …, R31; each register is
of size 32-bits.

• Two special purpose registers are included: Program Counter (PC) and Instruction
Register (IR)

• Memory word size is 32 bits
• Memory space size is 232 bytes
• Memory organization is 232 x 8 bits, this means that the memory is byte aligned
• Memory is accessed in 32 bit

words (i.e., 4 byte chunks)
• Big-endian byte storage is used

Programmer’s View of the
SRC
The figure below shows the attributes
of the SRC; the 32 ,32-bit registers that
are a part of the CPU, the two
additional CPU registers (PC & IR),
and the main memory which is 232 1-
byte cells.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 49

SRC Notation
We examine the notation used for the SRC with the help of some examples.

• R[3] means contents of register 3 (R for register)
• M[8] means contents of memory location 8 (M for memory)
• A memory word at address 8 is

defined as the 32 bits at address
8,9,10 and 11 in the memory.
This is shown in the figure
below.

• A special notation for 32-bit
memory words is

 M[8]<31…0>:=M[8]M[9]M[10]M[11]
 is used for concatenation.
 Some more SRC Attributes

• All instructions are 32 bits long (i.e., instruction size is 1 word)
• All ALU instructions have three operands
• The only way to access memory is through load and store operations
• Only a few addressing modes

are supported
SRC: Instruction Formats
Four types of instructions are
supported by the SRC. Their
representation is given in the following
figure. Before discussing these
instruction types in detail, we take a
look at the encoding of general-
purpose registers (the ra, rb and rc
fields).

Encoding of the General Purpose
Registers
The encoding for the general purpose
registers is shown in the following
table; it will be used in place of ra, rb
and rc in the instruction formats shown
above. Note that this is a simple 5 bit
encoding. ra, rb and rc are names of fields used as “place-holders”, and can represent any
one of these 32 registers. An exception is rb = 0; it does not mean the register R0, rather
it means no operand. This will be explained in the following discussion.
Type A
Type A is used for only two instructions:

• No operation or nop, for which
the op-code = 0. This is useful
in pipelining

• Stop operation stop, the op-code is 31 for this instruction.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 50

Both of these instructions do not need an operand (are 0-operand instructions).
Type B
Type B format includes three
instructions; all three use relative
addressing mode. These are

• The ldr instruction, used to load register from memory using a relative address.
(op-code = 2).

o Example:
ldr R3, 56
This instruction will load the register R3 with the contents of the memory
location M [PC+56]

• The lar instruction, for loading a register with relative address (op-code = 6)
o Example:

lar R3, 56
This instruction will load the register R3 with the relative address itself
(PC+56).

• The str is used to store register to memory using relative address (op-code = 4)
o Example:

str R8, 34
This instruction will store the register R8 contents to the memory location
M [PC+34]

The effective address is computed at run-time by adding a constant to the PC. This makes
the instructions ‘re-locatable’.
Type C
Type C format has three load/store
instructions, plus three ALU
instructions. These load/ store instructions are

• ld, the load register from memory instruction (op-code = 1)
o Example 1:

ld R3, 56
This instruction will load the register R3 with the contents of the memory
location M [56]; the rb field is 0 in this instruction, i.e., it is not used. This
is an example of direct addressing mode.

o Example 2:
ld R3, 56(R5)
The contents of the memory location M [56+R [5]] are loaded to the
register R3; the rb field ≠ 0. This is an instance of indexed addressing
mode.

• la is the instruction to load a register with an immediate data value (which can be
an address) (op-code = 5)

o Example1:
la R3, 56
The register R3 is loaded with the immediate value 56. This is an instance
of immediate addressing mode.

o Example 2:
la R3, 56(R5)

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 51

The register R3 is loaded with the indexed address 56+R [5]. This is an
example of indexed addressing mode.

• The st instruction is used to store register contents to memory (op-code = 3)
o Example 1:

st R8, 34
This is the direct addressing mode; the contents of register R8 (R [8]) are
stored to the memory location M [34]

o Example 2:
st R8, 34(R6)
An instance of indexed addressing mode, M [34+R [6]] stores the contents
of R8(R [8])

The ALU instructions are
• addi, immediate 2’s complement addition (op-code = 13)

o Example:
addi R3, R4, 56
R[3] ← R[4]+56 (rb field = R4)

• andi, the instruction to obtain immediate logical AND, (op-code = 21)
o Example:

andi R3, R4, 56
R3 is loaded with the immediate logical AND of the contents of register
R4 and 56(constant value)

• ori, the instruction to obtain immediate logical OR (op-code = 23)
o Example:

ori R3, R4, 56
R3 is loaded with the immediate logical OR of the contents of register R4
and 56(constant value)

Note:
1. Since the constant c2 field is 17 bits,

 For direct addressing mode, only the first 216 bytes of memory can
be accessed (or the last 216 bytes if c2 is negative)

 In case of the la instruction, only constants with magnitudes less
than ±216 can be loaded

 During address calculation using c2, sign extension to 32 bits must
be performed before the addition

2. Type C instructions, with some modifications, may also be used for
shift instructions. Note
the modification in the
following figure.

The four shift instructions are
• shr is the instruction used to shift the bits right by using value in (5-bit) c3

field(shift count) (op-code = 26)
o Example:

shr R3, R4, 7
shift R4 right 7 times in to R3 and shifts zeros in from the left as the value
is shifted right. Immediate addressing mode is used.

• shra, arithmetic shift right by using value in c3 field (op-code = 27)
o Example:

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 52

shra R3, R4, 7
This instruction has the effect of shift R4 right 7 times in to R3 and copies
the msb into the word on left as contents are shifted right. Immediate
addressing mode is used.

• The shl instruction is for shift left by using value in (5-bit) c3 field (op-code = 28)
o Example:

shl R8, R5, 6
shift R5 left 6 times in to R8 and shifts zeros in from the right as the value
is shifted left. Immediate addressing mode is used.

• shc, shift left circular by using value in c3 field (op-code = 29)
o Example:

shc R3, R4, 3
shift R4 circular 3 times in to R3 and copies the value shifted out of the
register on the left is placed back into the register on the right. Immediate
addressing mode is used.

Type D
Type D includes four ALU
instructions, four register based shift
instructions, two logical instructions
and two branch instructions.
The four ALU instructions are given below

• add, the instruction for 2’s complement register addition (op-code = 12)
o Example:

add R3, R5, R6
result of 2’s complement addition R[5] + R[6] is stored in R3. Register
addressing mode is used.

• sub , the instruction for 2’s complement register subtraction (op-code = 14)
o Example:

sub R3, R5, R6
R3 will store the 2’s complement subtraction, R[5] - R[6]. Register
addressing mode is used.

• and, the instruction for logical AND operation between registers (op-code = 20)
o Example:

and R8, R3, R4
R8 will store the logical AND of registers R3 and R4. Register addressing

mode is used.
• or ,the instruction for logical OR operation between registers (op-code = 22)

o Example:
or R8, R3, R4
R8 is loaded with the value R[3] v R[4], the logical OR of registers R3 and
R4. Register addressing mode is used.

The four register based shift instructions use register addressing mode. These use a
modified form of type D, as shown in
figure

• shr, shift right by using value in
register rc (op-code = 26)

o Example:

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 53

shr R3, R4, R5
This instruction will shift R4 right in to R3 using number in R5

• shra, the arithmetic shift right by using register rc (op-code = 27)
o Example:

shra R3, R4, R5
A shift of R4 right using R5, and the result is stored in R3

• shl is shift left by using register rc (op-code = 28)
o Example:

shl R8, R5, R6
The instruction shifts R5 left in to R8 using number in R6

• shc, shifts left circular by using register rc (op-code = 29)
o Example:

shc R3, R4, R6
This instruction will shift R4 circular in to R3 using value in R6

The two logical instructions also use a modified form of the Type D, and are the
following.

o neg stores the 2’s complement
of register rc in ra (op-code =
15)

o Example:
neg R3, R4
Negates (obtains 2’s complement) of R4 and stores in R3. 2-address
format and register addressing mode is used.

• not stores the 1’s complement of register rc in ra (op-code = 24)
o Example:

not R3, R4
Logically inverts R4 and stores in R3. 2-address format with register
addressing mode is
used.

Type D has two-branch instruction,
modified forms of type D.

• br , the instruction to branch to address in rb depending on the condition in rc.
There are five possible conditions, explained through examples. (op-code = 8).
All branch instructions use register-addressing mode.

o Example 1:
brzr R3, R4
Branch to address in R3 (if R4 == 0)

o Example 2:
brnz R3, R4
Branch to address in R3 (if R4 ≠ 0)

o Example 3:
brpl R3, R4
Branch to address in R3 (if R4 ≥ 0)

o Example 4:
brmi R3, R4

Branch to address in R3 (if R4 < 0)

o Example 5:

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 54

br R3, R4
Branch to address in R3 (unconditional)

• Brl the instruction to branch to address in rb depending on condition in rc.
Additionally, it copies the PC in to ra before branching (op-code = 9)

o Example 1:
brlzr R1,R3, R4
R1 will store the contents of PC, then branch to address in R3 (if R4 == 0)

o Example 2:
brlnz R1,R3, R4
R1 stores the contents of PC, then a branch is taken, to address in R3 (if

R4 ≠ 0)
o Example 3:

brlpl R1,R3, R4
R1 will store PC, then branch to address in R3 (if R4≥ 0)

o Example 4:
brlmi R1,R3, R4
R1 will store PC and then branch to address in R3 (if R4 < 0)

o Example 5:
brl R1,R3, R4
R1 will store PC, then it

will ALWAYS branch to
address in R3
o Example 6:

brlnv R1,R3, R4
R1 just stores the
contents of PC but a
branch is not taken
(NEVER BRANCH)

In the modified type D instructions for branch, the bits <2..0> are used for specifying the
condition; these condition codes are shown in the table.
The SRC Instruction Summary
The instructions implemented by the SRC are listed, grouped on functionality basis.
Functional Groups of Instructions

Alphabetical Listing based on SRC
Mnemonics
Notice that the op code field for all br
instructions is the same. The difference is
in the condition code field, which is in
effect, an op code extension.
Examples

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 55

Some examples are studied in this section to enhance the student’s understanding of the
SRC.
Example 1: Expression Evaluation
Write an SRC assembly language program to evaluate the expression:
z = 4(a +b) – 16(c+58)
Your code should not change the source operands.
Solution A: Notice that the SRC does not have a multiply instruction. We will make use
of the fact that multiplication with powers of 2 can be achieved by repeated shift left
operations. A possible solution is give below:
ld R1, c ; c is a label used for a memory location
addi R3, R1, 58 ; R3 contains (c+58)
shl R7, R3, 4 ; R7 contains 16(c+58)
ld R4, a
ld R5, b
add R6, R4, R5 ; R6 contains (a+b)
shl R8, R6, 2 ; R8 contains 4(a+b)
sub R9, R7, R8 ; the result is in R9
st R9, z ; store the result in memory location z
Note:
The memory labels a, b, c and z can be defined by using assembler directives like .dw or
.db, etc. in the source file.
A semicolon ‘;’ is used for comments in assembly language.
Solution B:
We may solve the problem by assuming that a multiply instruction, similar to the add
instruction, exists in the instruction set of the SRC. The shl instruction will be replaced
by the mul instruction as given below.
ld R1, c ; c is a label used for a memory location
addi R3, R1, 58 ; R3 contains (c+58)
mul R7, R3, 4 : R7 contains 16(c+58)
ld R4, a
ld R5, b
add R6, R4, R5 ; R6 contains (a+b)
mul R8, R6, 2 ; R8 contains 4(a+b)
sub R9, R7, R8 ; the result is in R9
st R9, z ; store the result in memory location z
Note:
The memory labels a, b, c and z can be defined by using assembler directives like .dw or
.db, etc. in the source file.
Solution C:
We can perform multiplication with a multiplier that is not a power of 2 by doing
addition in a loop. The number of times the loop will execute will be equal to the
multiplier.

Example 2: Hand Assembly
Convert the given SRC assembly language program in to an equivalent SRC machine
language program.
ld R1, c ; c is a label used for a memory location
addi R3, R1, 58 ; R3 contains (c+58)

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 56

shl R7, R3, 4 ; R7 contains 16(c+58)
ld R4, a
ld R5, b
add R6, R4, R5 ; R6 contains (a+b)
shl R8, R6, 2 ; R8 contains 4(a+b)
sub R9, R7, R8 ; the result is in R9
st R9, z ; store the result in memory location z
Note:
This program uses memory labels a,b,c and z. We need to define them for the assembler
by using assembler directives like .dw or .equ etc. in the source file.
Assembler Directives
Assembler directives, also called pseudo op-codes, are commands to the assembler to
direct the assembly process. The directives may be slightly different for different
assemblers. All the necessary directives are available with most assemblers. We explain
the directives as we encounter them. More information on assemblers can be looked up in
the assembler user manuals.
Source program with directives
 .ORG 200 ; start the next line at address 200
a: .DW 1 ; reserve one word for the label a in the memory
b: .DW 1 ; reserve a word for b, this will be at address 204
c: .DW 1 ; reserve a word for c, will be at address 208
z: .DW 1 ; reserve one word for the result
 .ORG 400 ; start the code at address 400
; all numbers are in decimal unless otherwise stated
ld R1, c ; c is a label used for a memory location
addi R3, R1, 58 ; R3 contains (c+58)
shl R7, R3, 4 ; R7 contains 16(c+58)
ld R4, a
ld R5, b
add R6, R4, R5 ; R6 contains (a+b)
shl R8, R6, 2 ; R8 contains 4(a+b)
sub R9, R7, R8 ; the result is in R9
st R9, z ; store the result in memory location z
This is the way an assembly program will appear in the source file. Most assemblers
require that the file be saved with an .asm extension.
Solution:
Observe the first line of the program
 .ORG 200 ; start the next line at address 200
This is a directive to let the following code/ variables ‘originate’ at the specified address
of the memory, 200 in this case.
Variable statements, and another .ORG directive follow the .ORG directive.
a: .DW 1 ; reserve one word for the label a in the memory
b: .DW 1 ; reserve a word for b, this will be at address 204
c: .DW 1 ; reserve a word for c, will be at address 208
z: .DW 1 ; reserve one word for the result
 .ORG 400 ; start the code at address 400
We conclude the following from the above statements:

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 57

The code starts at address 400 and each instruction takes 32 bits in the memory. The
memory map for the program is shown in given table.
Memory Map for the SRC example program

We have to convert these instructions to machine language. Let us start with the first
instruction:

ld R1, c
Notice that this is a type C instruction with the rb field missing.

1. We pick the op-code for this load instruction from the SRC instruction tables
given in the SRC instruction summary section. The op-code for the load register
‘ld’ instruction is 00001.

2. Next we pick the register code corresponding to register R1 from the register table
(given in the section ‘encoding of general
purpose registers’). The register code for
R1 is 00001.

3. The rb field is missing, so we place zeros
in the field: 00000

4. The value of c is provided by the
assembler, and should be converted to 17
bits. As c has been assigned the memory
address 208, the binary value to be
encoded is 00000 0000 1101 0000.

5. So the instruction ld R1, c is 00001 00001
00000 00000 0000 1101 0000 in the
machine language.

6. The hexadecimal representation of this
instruction is 0 8 4 0 0 0 D 0 h.

We can update the memory map with these
values.
We consider the next instruction,

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 58

addi R3, R1, 58.
Notice that this is a type C instruction.

1. We pick the op-code for the instruction addi from the SRC instruction table. It is
01101

2. We pick the register codes for the registers R3 and R1, these codes are 00011 and
00001 respectively

3. For the immediate data, 58, we use the binary value, 00000 0000 0011 1010
4. So the complete instruction becomes: 01101 00011 00001 00000 0000 0011 1010
5. The hexadecimal representation of the instruction

is 6 8 C 2 0 0 3 A h
We update the memory map, as shown in table.
The next instruction is shl R7,R3, 4, at address 408.
Again, this is a type C instruction.

1. The op-code for the instruction shl is picked from
the SRC instruction table. It is 11100

2. The register codes for the registers R7 and R3
from the register table are 00111 and 00011
respectively

3. For the immediate data, 4, the corresponding
binary value 00000 0000 0000 0100 is used.

4. We can place these codes in accordance with the
type C instruction format to obtain the complete instruction: 11100 00111 00011
00000 0000 0000 0100

5. The hexadecimal representation of the instruction is E1C60004
The memory map is updated, as shown in table.
The next instruction, ld R4, a, is also a type C instruction.
Rb field is missing in this instruction. To obtain the
machine equivalent, we follow the steps given below.

1. The op-code of the load instruction ‘ld’ is 00001
2. The register code corresponding to the register R4

is obtained from the register table, and it is 00100
3. As the 5 bit rb field is missing, we can encode

zeros in its place: 00000
4. The value of a is provided by the assembler, and

is converted to 17 bits. It has been assigned the
memory address 200, the binary equivalent of
which is: 00000 0000 1100 1000

5. The complete instruction becomes: 00001 00100 00000 00000 0000 1100 1000
6. The hexadecimal equivalent of the instruction is 0 9 0 0 0 0 C 8 h

Memory map can be updated with this value.
The next instruction is also a load type C instruction, with
the rb field missing.
ld R5, b
The machine language conversion steps are

1. The op-code of the load instruction is obtained
from the SRC instruction table; it is 00001

2. The register code for R5, obtained from the
register table, is 00101

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 59

3. Again, the 5 bit rb field is missing. We encode zeros in its place: 00000
4. The value of label b is provided by the assembler, and should be converted to 17

bits. It has been assigned the memory address 204, so the binary value is: 00000
0000 1100 1100

5. The complete instruction is: 00001 00101 00000 00000 0000 1100 1100
6. The hexadecimal value of this instruction is 0 9 4

0 0 0 C C h
Memory map is then updated with this value.
The next instruction is a type D-add instruction, with the
constant field missing:
add R6,R4,R5
The steps followed to obtain the assembly code for this
instruction are

1. The op-code of the instruction is obtained from
the SRC instruction table; it is 01100

2. The register codes for the registers R6, R4 and R5
are obtained from the register table; these are
00110, 00100 and 00101 respectively.

3. The 12 bit constant field is unused in this instruction, therefore we encode zeros
in its place: 0000 0000 0000

4. The complete instruction becomes: 01100 00110 00100 00101 0000 0000 0000
5. The hexadecimal value of the instruction is 6 1 8 8 5 0 0 0 h

Memory map is then updated with this value.
The instruction shl R8,R6, 2 is a type C instruction with
the rc field missing. The steps taken to obtain the
machine code of the instruction are

1. The op-code of the shift left instruction ‘shl’,
obtained from the SRC instruction table, is 11100

2. The register codes of R8 and R6 are 01000 and
00110 respectively

3. Binary code is used for the immediate data 2:
00000 0000 0000 0010

4. The complete instruction becomes: 11100 01000
00110 00000 0000 0000 0010

5. The hexadecimal equivalent of the instruction is E
2 0 C 0 0 0 2

Memory map is then updated with this value.
The instruction at the memory address 428 is sub R9, R7, R8. This is a type D
instruction.
We decode it into the machine language, as follows:

1. The op-code of the subtract instruction ‘sub’ is
01110

2. The register codes of R9, R7 and R8, obtained
from the register table, are 01001, 00111 and
01000 respectively

3. The 12 bit immediate data field is not used, zeros
are encoded in its place: 0000 0000 0000

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 60

4. The complete instruction becomes: 01110 01001 00111 01000 0000 0000 0000
5. The hexadecimal equivalent is 7 2 4 E 8 0 0 0 h

We again update the memory map
The last instruction is is a type C instruction with the rb
field missing:
st R9, z
The machine equivalent of this instruction is obtained
through the following steps:

1. The op-code of the store instruction ‘st’, obtained
from the SRC instruction table, is 00011

2. The register code of R9 is 01001
3. Notice that there is no register coded in the 5 bit

rb field, therefore, we encode zeros: 00000
4. The value of the label z is provided by the

assembler, and should be converted to 17 bits.
Notice that the memory address assigned to z is
212. The 17 bit binary equivalent is: 00000 0000
1101 0100

5. The complete instruction becomes: 00011 01001 00000 00000 0000 1101 0100
6. The hexadecimal form of this instruction is 1 A 4 0 0 0 D 4 h

The memory map, after the conversion of all the instructions, is
We have shown the memory map as an array of 4 byte cells in the above solution.
However, since the memory of the SRC is arranged in 8 bit cells (i.e. memory is byte
aligned), the real representation of the memory map is :

Example 3: SRC instruction analysis
Identify the formats of following SRC instructions and specify the values in the fields

Solution:

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 61

