
Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 62

Lecture Handout

Computer Architecture

Lecture No. 5

Reading Material
 Handouts Slides

Summary

1) Reverse Assembly
2) Description of SRC in the form of RTL
3) Behavioral and Structural description in terms of RTL

Reverse Assembly
Typical Problem:
Given a machine language instruction for the SRC, it may be required to find the
equivalent SRC assembly language instruction
Example:
 Reverse assemble the following SRC machine language instructions:
 68C2003A h
 E1C60004 h
 61885000 h

 724E8000 h
 1A4000D4 h
 084000D0 h
Solution:
1. Write the given hexadecimal instruction in binary form
68C2003A h → 0110 1000 1100 0010 0000 0000 0011 1010 b
2. Examine the first five bits of the instruction, and pick the corresponding mnemonic
from the SRC instruction set listing arranged according to ascending order of op-codes
01101 b → 13 d → addi → add immediate
3. Now we know that this instruction uses the type C format, the two 5-bit fields after the
op-code field represent the destination and the source registers respectively, and that the
remaining 17-bits in the instruction represent a constant

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 63

 0110 1000 1100 0010 0000 0000 0011 1010 b
 op-code ra field rb field 17-bit c1 field
 ↓ ↓ ↓ ↓
 addi R3 R1 3A h=58 d

4. Therefore, the assembly language instruction is
 addi R3, R1, 58
Summary

We can do it a bit faster now! Step1: Here is step1 for all instructions

Step 2: Pick up the op code for each instruction

Step 3: Determine the instruction type for each instruction

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 64

The meaning of the remaining fields will depend on the instruction type (i.e., the
instruction format)
Summary

Note:Rest of the fields of above given tables are left as an exercise for

students.
Using RTL to describe the SRC

 RTL stands for Register Transfer Language. The Register Transfer Language provides a
formal way for the description of the behavior and structure of a computer. The RTL
facilitates the design process of the computer as it provides a precise, mathematical
representation of its functionality. In this section, a Register Transfer Language is
presented and introduced, for the SRC (Simple ‘RISC’ Computer), described in the
previous discussion.
 Behavioral RTL
Behavioral RTL is used to describe the ‘functionality’ of the machine only, i.e. what the
machine does.
 Structural RTL
Structural RTL describes the ‘hardware implementation’ of the machine, i.e. how the
functionality made available by the machine is implemented.
 Behavioral versus Structural RTL:
In computer design, a top-down approach is adopted. The computer design process
typically starts with defining the behavior of the overall system. This is then broken down
into the behavior of the different modules. The process continues, till we are able to
define, design and implement the structure of the individual modules. Behavioral RTL is
used for describing the behavior of machine whereas structural RTL is used to define the
structure of machine, which brings us to the some more hardware features.
Using RTL to describe the static properties of the SRC
In this section we introduce the RTL by using it to describe the various static properties
of the SRC.
Specifying Registers
The format used to specify registers is
Register Name<register bits>
For example, IR<31..0> means bits numbered 31 to 0 of a 32-bit register named “IR”
(Instruction Register).
 “Naming” using the := naming operator:

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 65

The := operator is used to ‘name’ registers, or part of registers, in the Register Transfer
Language. It does not create a new register; it just generates another name, or “alias” for
an already existing register or part of a register. For example,
Op<4..0>: = IR<31..27> means that the five most significant bits of the register IR will
be called op, with bits 4..0.
Fields in the SRC instruction
In this section, we examine the various fields of an SRC instruction, using the RTL.
op<4..0>: = IR<31..27>; operation code field
The five most significant bits of an SRC instruction, (stored in the instruction register in
this example), are named op, and this field is used for specifying the operation.
ra<4..0>: = IR<26..22>; target register field
The next five bits of the SRC instruction, bits 26 through 22, are used to hold the address
of the target register field, i.e., the result of the operation performed by the instruction is
stored in the register specified by this field.
rb<4..0>: = IR<21..17>; operand, address index, or branch target register
The bits 21 through 17 of the instruction are used for the rb field. rb field is used to hold
an operand, an address index, or a branch target register.
rc<4..0>: = IR<16..12>; second operand, conditional test, or shift count register
The bits 16 through 12, are the rc field. This field may hold the second operand,
conditional test, or a shift count.
c1<21..0>: = IR<21..0>; long displacement field
In some instructions, the bits 21 through 0 may be used as long displacement field.
Notice that there is an overlap of fields. The fields are distinguished in a particular
instruction depending on the operation.
c2<16..0>: = IR<16..0>; short displacement or immediate field
The bits 16 through 0 may be used as short displacement or to specify an immediate
operand.
c3<11..0>: = IR<11..0>; count or modifier field
The bits 11 through 0 of the SRC instruction may be used for count or modifier field.
Describing the processor state using RTL
The Register Transfer Language can be used to describe the processor state. The
following registers and bits together form the processor state set.
PC<31..0>; program counter (it holds the memory address of next
 instruction to be executed)
IR<31..0>; instruction register, used to hold the current instruction
Run; one bit run/halt indicator
Strt; start signal

R [0..31]<31..0>; 32, 32 bit general purpose registers

SRC in a Black Box

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 66

Difference between our notation and notation used by the text (H&J)

Difference between “,” and “;” in RTL

Statements separated by a “,” take place during the same clock pulse. In other words, the
order of execution of statements separated by “,” does not matter.
On the other hand, statements separated by a “;” take place on successive clock pulses. In
other words, if statements are separated by “;” the one on the left must complete before
the one on the right starts. However, some things written with one RTL statement can
take several clocks to complete.
So in the instruction interpretation, fetch-execute cycle, we can see that the first
statement. ! Run & Strt : Run ← 1, executes first. After this statement has executed and
set run to 1, the statements IR ← M [PC] and PC ← PC + 4 are executed concurrently.
Note that in statements separated by “,”, all right hand sides of Register Transfers are
evaluated before any left hand side is modified (generally though assignment).
Using RTL to describe the dynamic properties of the SRC
The RTL can be used to describe the dynamic properties.
Conditional expressions can be specified through the use of RTL. The following example
will illustrate this
(op=14) : R [ra] ← R [rb] - R[rc];
The ← operator is the RTL assignment operator. ‘;’ is the termination operator. This
conditional expression implies that “IF the op field is equal to 14, THEN calculate the
difference of the value in the register specified by the rb field and the value in the register
specified by the rc field, and store the result in the register specified by the ra field.”
Effective address calculations in RTL (performed at runtime)

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 67

In some instructions, the address of an operand or the destination register may not be

specified directly. Instead, the effective address may have to be calculated at runtime.

These effective address calculations can be represented in RTL, as illustrated through the

examples below.

Displacement address
disp<31..0> := ((rb=0) : c2<16..0> {sign extend},
 (rb≠0) : R [rb] + c2<16..0> {sign extend}),
The displacement (or the direct) address is being calculated in this example. The “,”
operator separates statements in a single instruction, and indicates that these statements
are to be executed simultaneously. However, since in this example these are two disjoint
conditions, therefore, only one action will be performed at one time.
Note that register R0 cannot be added to displacement. rb = 0 just implies we do not need
to use the R [rb] field.
Relative address
rel<31..0> := PC<31..0> + c1<21..0> {sign extend},
In the above example, a relative address is being calculated by adding the displacement
after sign extension to the contents of the program counter register (that holds the next
instruction to be executed in a program execution sequence).
Range of memory addresses
The range of memory addresses that can be accessed using the displacement (or the
direct) addressing and the relative addressing is given.

• Direct addressing (displacement with rb=0)
o If c2<16>=0 (positive displacement) absolute addresses range from

00000000h to 0000FFFFh
o If c2<16>=1 (negative displacement) absolute addresses range from

FFFF0000h to FFFFFFFFh
• Relative addressing

o The largest positive value of C1<21..0> is 221-1 and its most negative
value is -221, so addresses up to 221-1 forward and 221 backward from the
current PC value can be specified

Instruction Interpretation
(Describing the Fetch operation using RTL)
The action performed for all the instructions before they are decoded is called ‘instruction
interpretation’. Here, an example is that of starting the machine. If the machine is not
already running (¬Run, or ‘not’ running), AND (&) it the condition start (Strt) becomes
true, then Run bit (of the processor state) is set to 1 (i.e. true).
instruction_Fetch := (
 ! Run & Strt: Run ← 1 ; instruction_Fetch
 Run : (IR ← M [PC], PC ← PC + 4; instruction_Execution));
The := is the naming operator. The ; operator is used to add comments in RTL. The ,
operator, specifies that the statements are to be executed simultaneously, (i.e. in a single
clock pulse). The ; operator is used to separate sequential statements. ← is an assignment
operator. & is a logical AND, ~ is a logical OR, and ! is the logical NOT. In the
instruction interpretation phase of the fetch-execute cycle, if the machine is running (Run

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 68

is true), the instruction register is loaded with the instruction at the location M [PC] (the
program counter specifies the address of the memory at which the instruction to be
executed is located). Simultaneously, the program counter is incremented by 4, so as to
point to the next instruction, as shown in the example above. This completes the
instruction interpretation.
Instruction Execution
(Describing the Execute operation using RTL)
Once the instruction is fetched and the PC is incremented, execution of the instruction
starts. In the following, we denote instruction Fetch by “iF” and instruction execution by
“iE”.
iE:= (
 (op<4..0>= 1) : R [ra] ← M [disp],
 (op<4..0>= 2) : R [ra] ← M [rel],
 . . .
 . . .
 (op<4..0>=31) : Run ← 0,); iF);
As shown above, Instruction Execution can be described by using a long list of
conditional operations, which are inherently “disjoint”.
One of these statements is executed, depending on the condition met, and then the
instruction fetch statement (iF) is invoked again at the end of the list of concurrent
statements. Thus, instruction fetch (iF) and instruction execution statements invoke each
other in a loop. This is the fetch-execute cycle of the SRC.

Concurrent Statements
 The long list of concurrent, disjoint instructions of the instruction execution (iE) is
basically the complete instruction set of the processor. A brief overview of these
instructions is given below.
Load-Store Instructions
(op<4..0>= 1) : R [ra] ← M [disp], load register (ld)
This instruction is to load a register using a displacement address specified by the
instruction, i.e. the contents of the memory at the address ‘disp’ are placed in the register
R [ra].
 (op<4..0>= 2) : R [ra] ← M [rel], load register relative (ldr)
If the operation field ‘op’ of the instruction decoded is 2, the instruction that is executed
is loading a register (target address of this register is specified by the field ra) with
memory contents at a relative address, ‘rel’. The relative address calculation has been
explained in this section earlier.
(op<4..0>= 3) : M [disp] ← R [ra], store register (st)
If the op-code is 3, the contents of the register specified by address ra, are stored back to
the memory, at a displacement location ‘disp’.
(op<4..0>= 4) : M[rel] ← R[ra], store register relative (str)
If the op-code is 4, the contents of the register specified by the target register address ra,
are stored back to the memory, at a relative address location ‘rel’.
(op<4..0>= 5) : R [ra] ← disp, load displacement address (la)
For op-code 5, the displacement address disp is loaded to the register R (specified by the
target register address ra).
(op<4..0>= 6) : R [ra] ← rel, load relative address (lar)
For op-code 6, the relative address rel is loaded to the register R (specified by the target
register address ra).

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 69

Branch Instructions
(op<4..0>= 8) : (cond : PC ← R [rb]), conditional branch (br)
If the op-code is 8, a conditional branch is taken, that is, the program counter is set to the
target instruction address specified by rb, if the condition ‘cond’ is true.
(op<4..0>= 9) : (R [ra] ← PC,
 cond : (PC ← R [rb])), branch and link (brl)
If the op field is 9, branch and link instruction is executed, i.e. the contents of the
program counter are stored in a register specified by ra field, (so control can be returned
to it later), and then the conditional branch is taken to a branch target address specified by
rb. The branch and link instruction is useful for returning control to the calling program
after a procedure call returns.
The conditions that these ‘conditional’ branches depend on are specified by the field c3
that has 3 bits. This simply means that when c3<2..0> is equal to one of these six values.
We substitute the expression on the right hand side of the : in place of cond
These conditions are explained here briefly.
 cond := (
 c3<2..0>=0 : 0, never
 If the c3 field is 0, the branch is never taken.
 c3<2..0>=1 : 1, always
 If the field is 1, branch is taken
 c3<2..0>=2 : R [rc]=0, if register is zero
 If c3 = 2, a branch is taken if the register rc = 0.
 c3<2..0>=3 : R [rc] ≠ 0, if register is nonzero
 If c3 = 3, a branch is taken if the register rc is not equal to 0.
 c3<2..0>=4 : R [rc]<31>=0 if positive or zero
 If c3 is 4, a branch is taken if the register value in the register specified
 by rc is greater than or equal to 0.
 c3<2..0>=5 : R [rc]<31>=1), if negative
 If c3 = 5, a branch is taken if the value stored in the register specified by
 rc is negative.
Arithmetic and Logical instructions
(op<4..0>=12) : R [ra] ← R [rb] + R [rc],
If the op-code is 12, the contents of the registers rb and rc are added and the result is
stored in the register ra.
(op<4..0>=13) : R [ra] ← R [rb] + c2<16..0> {sign extend},
If the op-code is 13, the content of the register rb is added with the immediate data in the
field c2, and the result is stored in the register ra.
(op<4..0>=14) : R [ra] ← R [rb] – R [rc],
If the op-code is 14, the content of the register rc is subtracted from that of rb, and the
result is stored in ra.
(op<4..0>=15) : R [ra] ← -R [rc],
If the op-code is 15, the content of the register rc is negated, and the result is stored in ra.
(op<4..0>=20) : R [ra] ← R [rb] & R [rc],
If the op field equals 20, logical AND of the contents of the registers rb and rc is obtained
and the result is stored in register ra.
(op<4..0>=21) : R [ra] ← R [rb] & c2<16..0> {sign extend},
If the op field equals 21, logical AND of the content of the registers rb and the immediate
data in the field c2 is obtained and the result is stored in register ra.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 70

(op<4..0>=22) : R [ra] ← R [rb] ~ R [rc],
If the op field equals 22, logical OR of the contents of the registers rb and rc is obtained
and the result is stored in register ra.
(op<4..0>=23) : R [ra] ← R [rb] ~ c2<16..0> {sign extend},
If the op field equals 23, logical OR of the content of the registers rb and the immediate
data in the field c2 is obtained and the result is stored in register ra.
(op<4..0>=24) : R [ra] ← ¬R [rc],
If the op-code equals 24, the content of the logical NOT of the register rc is obtained, and
the result is stored in ra.
Shift instructions
(op<4..0>=26): R [ra]<31..0 > ← (n α 0) © R [rb] <31..n>,
If the op-code is 26, the contents of the register rb are shifted right n bits times. The bits
that are shifted out of the register are discarded. 0s are added in their place, i.e. n number
of 0s is added (or concatenated) with the register contents. The result is copied to the
register ra.
(op<4..0>=27) : R [ra]<31..0 > ← (n α R [rb] <31>) © R [rb] <31..n>,
For op-code 27, shift arithmetic operation is carried out. In this operation, the contents of
the register rb are shifted right n times, with the most significant bit, bit 31, of the register
rb added in their place. The result is copied to the register ra.
(op<4..0>=28) : R [ra]<31..0 > ← R [rb] <31-n..0> © (n α 0),
For op-code 28, the contents of the register rb are shifted left n bits times, similar to the
shift right instruction. The result is copied to the register ra.
(op<4..0>=29) : R [ra]<31..0 > ← R [rb] <31-n..0> © R [rb]<31..32-n >,
The instruction corresponding to op-code 29 is the shift circular instruction. The contents
of the register rb are shifted left n times, however, the bits that move out of the register in
the shift process are not discarded; instead, these are shifted in from the other end (a
circular shifting). The result is stored in register ra.
where
n := ((c3<4..0>=0) : R [rc],
 (c3<4..0>!=0) : c3 <4..0>),
Notation: α means replication
 © Means concatenation
Miscellaneous instructions
(op<4..0>= 0) , No operation (nop)
If the op-code is 0, no operation is carried out for that clock period. This instruction is
used as a stall in pipelining.
(op<4..0>= 31) : Run ← 0, Halt the processor (Stop)
); iF);
If the op-code is 31, run is set to 0, that is, the processor is halted.
After one of these disjoint instructions is executed, iF, i.e. instruction Fetch is carried out
once again, and so the fetch-execute cycle
continues.
Flow diagram
Flow diagram is the symbolic
representation of Fetch-Execute cycle. Its
top block indicates instruction fetch and
then next block shows the instruction
decode by looking at the first 5-bits of the

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 71

fetched instruction which would represent op-code which may be from 0 to
31.Depending upon the contents of this op-code the appropriate processing would take
place. After the appropriate processing, we would move back to top block, next
instruction is fetched and the same process is repeated until the instruction with op-code
31 would reach and halt the system.
Note:For SRC Assembler and Simulator consult Appendix.

