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• Using Behavioral RTL to Describe the SRC (continued) 
• Implementing Register Transfer using Digital Logic Circuits 
 

Using behavioral RTL to Describe the SRC (continued) 
 
Once the instruction is fetched and the PC is incremented, execution of the instruction 
starts. In the following discussion, we denote instruction fetch by “iF” and instruction 
execution by “iE”.  
 
iE:= (  
           (op<4..0>= 1) : R [ra] ←  M [disp],   
           (op<4..0>= 2) : R [ra] ←  M [rel],  
                                 . . . 
                                 . . .       
           (op<4..0>=31) : Run ←  0,); iF); 
 
As shown above, instruction execution can be described by using a long list of 
conditional operations, which are inherently “disjoint”. Only one of these statements is 
executed, depending on the condition met, and then the instruction fetch statement (iF) is 
invoked again at the end of the list of concurrent statements. Thus, instruction fetch (iF) 
and instruction execution statements invoke each other in a loop. This is the fetch-execute 
cycle of the SRC.  
 

Concurrent Statements 
The long list of concurrent, disjoint instructions of the instruction execution (iE) is 
basically the complete instruction set of the processor. A brief overview of these 
instructions is given below: 
 
Load-Store Instructions 
(op<4..0>= 1) : R [ra] ←  M [disp], load register (ld) 
This instruction is to load a register using a displacement address specified by the 
instruction, i.e., the contents of the memory at the address ‘disp’ are placed in the register 
R [ra]. 
 
 
(op<4..0>= 2) : R [ra] ←  M [rel], load register relative (ldr) 
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If the operation field ‘op’ of the instruction decoded is 2, the instruction that is executed 
is loading a register (target address of this register is specified by the field ra) with 
memory contents at a relative address, ‘rel’. The relative address calculation has been 
explained in this section earlier.  
(op<4..0>= 3) : M [disp] ←  R [ra], store register (st) 
If the op-code is 3, the contents of the register specified by address ra, are stored back to 
the memory, at a displacement location ‘disp’.  
(op<4..0>= 4) : M[rel] ←  R[ra], store register relative (str) 
If the op-code is 4, the contents of the register specified by the target register address ra, 
are stored back to the memory, at a relative address location ‘rel’.  
(op<4..0>= 5) : R [ra] ←  disp, load displacement address (la) 
For op-code 5, the displacement address disp is loaded to the register R (specified by the 
target register address ra).  
(op<4..0>= 6) : R [ra] ←  rel, load relative address (lar) 
For op-code 6, the relative address rel is loaded to the register R (specified by the target 
register address ra).  
 
Branch Instructions 
(op<4..0>= 8) : (cond : PC ←  R [rb]),    conditional branch (br) 
If the op-code is 8, a conditional branch is taken, that is, the program counter is set to the 
target instruction address specified by rb, if the condition ‘cond’ is true. 
(op<4..0>= 9) : (R [ra] ←  PC,  
                           cond : (PC ←  R [rb]) ),  branch and link (brl) 
If the op field is 9, branch and link instruction is executed, i.e. the contents of the 
program counter are stored in a register specified by ra field, (so control can be returned 
to it later), and then the conditional branch is taken to a branch target address specified by 
rb. The branch and link instruction is useful for returning control to the calling program 
after a procedure call returns.  
The conditions that these ‘conditional’ branches depend on, are specified by the field c3 
that has 3 bits. This simply means that when c3<2..0> is equal to one of these six values, 
we substitute the expression on the right hand side of the : in place of cond. 
These conditions are explained here briefly. 
     cond := (  
                           c3<2..0>=0 : 0,      never 
                          If the c3 field is 0, the branch is never taken. 
                           c3<2..0>=1 : 1,      always 
                           If the field is 1, branch is taken 
                           c3<2..0>=2 : R [rc]=0,            if register is zero 
                           If c3 = 2, a branch is taken if the register rc = 0. 
                           c3<2..0>=3 : R [rc] ≠ 0,      if register is nonzero 
                           If c3 = 3, a branch is taken if the register rc is not equal to 0. 
                           c3<2..0>=4 : R [rc]<31>=0     if positive or zero 
                           If c3 is 4, a branch is taken if the register value in the register specified        
                           by rc is greater than or equal to 0. 
                           c3<2..0>=5 : R [rc]<31>=1),   if negative 
                           If c3 = 5, a branch is taken if the value stored in the register specified by  
                           rc is negative. 
 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 74 

Arithmetic and Logical instructions 
(op<4..0>=12) : R [ra] ←  R [rb] + R [rc], 
If the op-code is 12, the contents of the registers rb and rc are added and the result is 
stored in the register ra. 
(op<4..0>=13) : R [ra] ←  R [rb] + c2<16..0> {sign extended}, 
If the op-code is 13, the content of the register rb is added with the immediate data in the 
field c2, and the result is stored in the register ra. 
(op<4..0>=14) : R [ra] ←  R [rb] – R [rc], 
If the op-code is 14, the content of the register rc is subtracted from that of rb, and the 
result is stored in ra. 
(op<4..0>=15) : R [ra] ←  -R [rc], 
If the op-code is 15, the content of the register rc is negated, and the result is stored in ra. 
(op<4..0>=20) : R [ra] ←  R [rb] & R [rc], 
If the op field equals 20, logical AND of the contents of the registers rb and rc is obtained 
and the result is stored in register ra. 
(op<4..0>=21) : R [ra] ←  R [rb] & c2<16..0> {sign extended}, 
If the op field equals 21, logical AND of the content of the registers rb and the immediate 
data in the field c2 is obtained and the result is stored in register ra. 
(op<4..0>=22) : R [ra] ←  R [rb] ~ R [rc], 
If the op field equals 22, logical OR of the contents of the registers rb and rc is obtained 
and the result is stored in register ra. 
(op<4..0>=23) : R [ra] ←  R [rb] ~ c2<16..0> {sign extended}, 
If the op field equals 23, logical OR of the content of the registers rb and the immediate 
data in the field c2 is obtained and the result is stored in register ra. 
(op<4..0>=24) : R [ra] ←   !R [rc], 
If the op-code equals 24, the content of the logical NOT of the register rc is obtained, and 
the result is stored in ra. 
 
Shift instructions 
(op<4..0>=26): R [ra]<31..0 > ←  (n α 0) © R [rb] <31..n>, 
If the op-code is 26, the contents of the register rb are shifted right n bits times. The bits 
that are shifted out of the register are discarded. 0s are added in their place, i.e. n number 
of 0s is added (or concatenated) with the register contents. The result is copied to the 
register ra. 
(op<4..0>=27) : R [ra]<31..0 > ←  (n α R [rb] <31>) © R [rb] <31..n>, 
For op-code 27, shift arithmetic operation is carried out. In this operation, the contents of 
the register rb are shifted right n times, with the most significant bit, i.e., bit 31, of the 
register rb added in their place. The result is copied to the register ra. 
(op<4..0>=28) : R [ra]<31..0 > ←  R [rb] <31-n..0> © (n α 0), 
For op-code 28, the contents of the register rb are shifted left n bits times, similar to the 
shift right instruction. The result is copied to the register ra. 
(op<4..0>=29) : R [ra]<31..0 > ←  R [rb] <31-n..0> © R [rb]<31..32-n >, 
The instruction corresponding to op-code 29 is the shift circular instruction. The contents 
of the register rb are shifted left n times, however, the bits that move out of the register in 
the shift process are not discarded; instead, these are shifted in from the other end (a 
circular shifting). The result is stored in register ra. 
where 

 n := ( (c3<4..0>=0) : R [rc],  
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 (c3<4..0>!=0) : c3 <4..0> ), 
 
Notation:    

α means replication  
© means concatenation 

 
Miscellaneous instructions 
(op<4..0>= 0) ,    No operation (nop) 
If the op-code is 0, no operation is carried out for that clock period. This instruction is 
used as a stall in pipelining.  
(op<4..0>= 31) : Run ←  0, Halt the processor (Stop)  
         );      iF  ); 
If the op-code is 31, run is set to 0, that is, the processor stops execution. 
After one of these disjoint instructions is executed, iF, i.e. instruction Fetch is carried out 
once again, and so the fetch-execute cycle continues.  
 

Implementing Register Transfers using Digital Logic Circuits 
 
We have studied the register transfers in the previous sections, and how they help in 
implementing assembly language. In this section we will review how the basic digital 
logic circuits are used to implement instructions register transfers. The topics we will 
cover in this section include: 

1. A brief (and necessary) review of logic circuits 
2. Implementing simple register transfers 
3. Register file implementation using a bus 
4. Implementing register transfers with mathematical operations 
5. The Barrel Shifter 
6. Implementing shift operations 
 

Review of logic circuits 
Before we study the implementation of register transfers using logic circuits, a brief 
overview of some of the important logic circuits will prove helpful. The topics we review 
in this section include  

1. The basic D flip flop 
2. The n-bit register 
3. The n-to-1 multiplexer 
4. Tri-state buffers 

 
 
 
The basic D flip flop 
A flip-flop is a bi-stable device, 
capable of storing one bit of 
Information. Therefore, flip-flops 
are used as the building blocks of a 
computer’s memory as well as CPU 
registers. 
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There are various types of flip-flops; most common type, the D flip-flop is shown in the 
figure given. The given truth table for this positive-edge triggered D flip-flop shows that 
the flip-flop is set (i.e. stores a 1) when the data input is high on the leading (also called 
the positive) edge of the clock; it is reset (i.e., the flip-flop stores a 0) when the data input 
is 0 on the leading edge of the clock. The clear input will reset the flip-flop on a low 
input. 
The n-bit register 
A n-bit register can be formed by 
grouping n flip-flops together. So a 
register is a device in which a 
group of flip-flops operate 
synchronously.  
A register is useful for storing 
binary data, as each flip-flop can 
store one bit. The clock input of 
the flip-flops is grouped 
together, as is the enable input. 
As shown in the figure, using 
the input lines a binary number 
can be stored in the register by 
applying the corresponding 
logic level to each of the flip-
flops simultaneously at the 
positive edge of the clock.  
The next figure shows the 
symbol of a 4-bit register used 
for an integrated circuit. In0 
through In3 are the four input 
lines, Out0 through Out3 are the 
four output lines, Clk is the 
clock input, and En is the enable 
line. To get a better 
understanding of this register, 
consider the situation where we want 
to store the binary number 1000 in the 
register. We will apply the number to 
the input lines, as shown in the figure given.  
On the leading edge of the clock, the number will be stored in the register. The enable 
input has to be high if the number is to be stored into the register. 
.  
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Waveform/Timing diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The n-to-1 multiplexer 
A multiplexer is a device, constructed 
through combinational logic, which 
takes n inputs and transfers one of 
them as the output at a time. The input 
that is selected as the output depends 
on the selection lines, also called the 
control input lines. For an n-to-1 
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multiplexer, there are n input lines, log2n control lines, and 1 output line. The given 
figure shows a 4-to-1 multiplexer. There are 4 input lines; we number these lines as line 0 
through line 3. Subsequently, there are 2 select lines (as log24 = 2). 
For a better understanding, let us consider a case where we want to transfer the input of 
line 3 to the output of the multiplexer. We will need to apply the binary number 11 on the 
select lines (as the binary number 11 represents the decimal number 3). By doing so, the 
output of the multiplexer will be the input on line 3, as shown in the test circuit given. 
Timing waveform 

 
 
 
 
Tri-state buffers 
The tri-state buffer, also called the three-
state buffer, is another important 
component in the digital logic domain. It 
has a single input, a single output, and 
an enable line. The input is concatenated 
to the output only if it is enabled through 
the enable line, otherwise it gives a high 
impedance output, i.e. it is tri-stated, or 
electrically disconnected from the input 
These buffers are available both in the 
inverting and the non-inverting form. The 
inverting tri-state buffers output the 
‘inverted’ input when they are enabled, 
as opposed to their non-inverting 
counterparts that simply output the input 
when enabled. The circuit symbol of the 
tri-state buffers is shown. The truth table 
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further clarifies the working of a non-inverting tri-state buffer. 
 We can see that when the enable input (or the control input) c is low (0), the output is 
high impedance Z. The symbol of a 4-bit tri-state buffer unit is shown in the figure. There 
are four input lines, an equal number of 
output lines, and an enable line in this 
unit. If we apply a high on the input 3 
and 2, and a low on input 1 and 0, we 
get the output 1100, only when the 
enable input is high, as shown in the 
given 
figure.

 
 

Implementing simple register transfers 
We now build on our knowledge of the primitive logic circuits to understand how register 
transfers are implemented. In this section we will study the implementation of the 
following 

• Simple conditional transfer 
• Concept of control signals 
• Two-way transfers 
• Connecting multiple registers 
• Buses 
• Bus implementations 

Simple conditional transfer 
In a simple conditional transfer, a condition is checked, and if it is true, the register 
transfer takes place. Formally, a conditional transfer is represented as  
                Cond: RD ← RS 
This means that if the condition ‘Cond’ is true, the contents of the register named RS (the 
source register) are copied to the register RD (the destination register). The following 
figure shows how the registers may be interconnected to achieve a conditional transfer. In 
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this circuit, the output of the source register RS is connected to the input of the 
destination registers RD. However, notice that the transfer will not take place unless the 
enable input of the destination register is activated. We may say that the ‘transfer’ is 
being controlled by the enable line (or the control signal). Now, we are able to control the 
transfer by selectively enabling the control signal, through the use of other combinational 
logic that may be the equivalent of our condition. The condition is, in general, a Boolean 
expression, and in this example, the condition is equivalent to LRD =1.   
Two-way transfers 
In the above example, only one-way transfer was possible, i.e., we could only copy the 
contents of RS to RD if the condition was met. In order to be able to achieve two-way 
transfers, we must also provide a path from the output of the register RD to input of 
register RS. This will enable us to implement  

Cond1: RD ← RS 
Cond2: RS ← RD 
Connecting multiple registers 
We have seen how two registers can be connected. However, in a computer we need to 
connect more than just two registers. In order to connect these registers, one may argue 
that a connection between the input and output of each be provided. This solution is 
shown for a scenario where there are 5 registers that need to be interconnected.   
We can see that in this solution, an m-bit register requires two connections of m-wires 
each.  Hence five m-bit registers in a “point-to-point” scheme require 20 connections; 
each with m wires. In general, n registers in a point to point scheme require n (n-1) 
connections. It is quite obvious that this solution is not going to scale well for a large 
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number of registers, as is the case in real machines. The solution to this problem is the 
use of a bus architecture, which is explained in the following sections. 
 
 
 
Buses 
A bus is a device that provides a shared data 
path to a number of devices that are connected 
to it, via a ‘set of wires’ or a ‘set of 
conductors’. The modern computer systems 
extensively employ the bus architecture. 
Control signals are needed to decide which two 
entities communicate using the shared medium, 
i.e.  the bus, at any given time. This control 
signals can be open collector 
gate based, tri-state buffer 
based, or they can be 
implemented using 
multiplexers.  
 
Register file implementation 
using the bus architecture 
A number of registers can be 
inter-connected to form a 
register file, through the use of a 
bus. The given diagram shows 
eight 4-bit registers (R0, R1, …, 
R7) interconnected through a 4-
bit bus using 4-bit tri-state 
buffer units (labeled AA_TS4). 
The contents of a particular 
register can be transferred onto 
the bus by applying a logical 
high input on the enable of the 
corresponding tri-state buffer. 
For instance, R1out can be used 
to enable the tri-state buffers of 
the register R1, and in turn 
transfer the contents of the 
register on the bus.  
Once the contents of a particular 
register are on the bus, the 
contents may be transferred, or 
read into any other register. 
More than one register may be 
written in this manner; however, 
only one register can write its 
value on the bus at a given time. 
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Implementing register transfers with mathematical operations 
We have studied the implementation of simple register transfers; however, we frequently 
encounter register transfers with mathematical operations. An example is 
(opc=1): R4← R3 + R2; 
These mathematical operations may be achieved by introducing appropriate 
combinational logic; the above operation can be implemented in hardware by including a  
4-bit adder with the register files connected through the bus. There are two more registers 
in this configuration, one for holding one of the operands, and the other for holding the 
result before it is transferred to the destination register. This is shown in the figure below.  
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We now take a look at 
the steps taken for the 
(conditional, 
mathematical) transfer 
(opc=1): R4← R3 + R2. 
First of all, if the 
condition opc = 1 is met, 
the contents of the first 
operand register, R3, are 
transferred to the 
temporary register A 
through the bus. This is 
done by activating 
R3out. It lets the contents of the register R3 to be loaded on the bus. At the same time, 
applying a logical high input to LA enables the load for the register A. This lets the 
binary number on the bus (the contents of register R3) to be loaded into the register A. 
The next step is to enable R2out to load the contents of the register R2 onto the bus. As 
can be observed from the figure, the output of the register A is one of the inputs to the 4-
bit adder; the other input to the adder is the bus itself. Therefore, as the contents of 
register R2 are loaded onto the bus, both the operands are available to the adder. The 
output can then be stored to the register RC by enabling its write. So a high input is 
applied to LC to store the result in register RC.  
The third and final step is to store (transfer) the resultant number in the destination 
register R4. This is done by enabling Cout, which writes the number onto the bus, and 
then enabling the read of the register R4 by activating the control signal to LR4. These 
steps are summarized in the given table. 
 
The barrel shifter 
Shift operations are frequently used operations, as shifts can be used for the 
implementation of multiplication and division etc. A bi-directional shift register with a 
parallel load capability can be used to perform shift operations. However, the delays in 
such structures are  dependent on the number of shifts that are to be performed, e.g., a 9 
bit shift requires nine clock periods, as one shift is performed per clock cycle. This is not 
an optimal solution. The barrel shifter is an alternative, with any number of shifts 
accomplished during a single clock period. Barrel shifters are constructed by using 
multiplexers. An n-bit barrel shifter is a combinational circuit implemented using n 
multiplexers. The barrel provides a shifted copy of the input data at its output. Control 
inputs are provided to specify the number of times the input data is to be shifted. The 
shift process can be a simple one with 0s used as fillers, or it can be a rotation of the input 
data. The corresponding figure shows a barrel shifter that shifts right the input data; the 
number of shifts depends on the bit pattern applied on the control inputs S0, S1.  
 The function table for the barrel shifter is given. We see from the table that in order to 
apply single shift to the input number, the control signal is 01 on (S1, S0), which is the 
binary equivalent of the decimal number 1. Similarly, to apply 2 shifts, control signal 10 
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(on S1, S0) is applied; 10 is the binary 
equivalent of the decimal number 2. A 
control input of 11 shifts the number 3 
places to the right. 
Now we take a look at an example of 
the shift operation being implemented 
through the use of the barrel shifter: 
R4← ror R3 (2 times); 
The shift functionality can be 
incorporated into the register file 
circuit with the bus architecture we 
have been building, by introducing the 
barrel shifter, as shown in the given 
figure. 
To perform the operation,  
R4← ror R3 (2 times),  
the first step is to activate R3out, nb1 
and LC. Activating R3out will load the 
contents of the register R3 onto the bus. 
Since the bus is directly connected to 
the input of the barrel shifter, this 
number is applied to the input side. nb1 
and nb0 are the barrel shifter’s control 
lines for specifying the number of shifts 
to be applied. Applying a high input to 
nb1 and a low input to nb0 will shift the 
number two places to the right. 
Activating LC will load the shifted 
output of the barrel shifter into the  
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register C. The second step is to transfer the contents of the register C to the register R4. 
This is done by activating the control Cout, which will load the contents of register C 
onto the data bus, and by activating the control LR4, which will let the contents of the 
bus be written to the register R4. This will complete the conditional shift-and-store 
operation. These steps are summarized in the table shown below.  

 
 
 


