
Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 72

Advanced Computer Architecture

Lecture No. 6

Reading Material

 Handouts Slides

Summary

• Using Behavioral RTL to Describe the SRC (continued)
• Implementing Register Transfer using Digital Logic Circuits

Using behavioral RTL to Describe the SRC (continued)

Once the instruction is fetched and the PC is incremented, execution of the instruction
starts. In the following discussion, we denote instruction fetch by “iF” and instruction
execution by “iE”.

iE:= (
 (op<4..0>= 1) : R [ra] ← M [disp],
 (op<4..0>= 2) : R [ra] ← M [rel],
 . . .
 . . .
 (op<4..0>=31) : Run ← 0,); iF);

As shown above, instruction execution can be described by using a long list of
conditional operations, which are inherently “disjoint”. Only one of these statements is
executed, depending on the condition met, and then the instruction fetch statement (iF) is
invoked again at the end of the list of concurrent statements. Thus, instruction fetch (iF)
and instruction execution statements invoke each other in a loop. This is the fetch-execute
cycle of the SRC.

Concurrent Statements
The long list of concurrent, disjoint instructions of the instruction execution (iE) is
basically the complete instruction set of the processor. A brief overview of these
instructions is given below:

Load-Store Instructions
(op<4..0>= 1) : R [ra] ← M [disp], load register (ld)
This instruction is to load a register using a displacement address specified by the
instruction, i.e., the contents of the memory at the address ‘disp’ are placed in the register
R [ra].

(op<4..0>= 2) : R [ra] ← M [rel], load register relative (ldr)

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 73

If the operation field ‘op’ of the instruction decoded is 2, the instruction that is executed
is loading a register (target address of this register is specified by the field ra) with
memory contents at a relative address, ‘rel’. The relative address calculation has been
explained in this section earlier.
(op<4..0>= 3) : M [disp] ← R [ra], store register (st)
If the op-code is 3, the contents of the register specified by address ra, are stored back to
the memory, at a displacement location ‘disp’.
(op<4..0>= 4) : M[rel] ← R[ra], store register relative (str)
If the op-code is 4, the contents of the register specified by the target register address ra,
are stored back to the memory, at a relative address location ‘rel’.
(op<4..0>= 5) : R [ra] ← disp, load displacement address (la)
For op-code 5, the displacement address disp is loaded to the register R (specified by the
target register address ra).
(op<4..0>= 6) : R [ra] ← rel, load relative address (lar)
For op-code 6, the relative address rel is loaded to the register R (specified by the target
register address ra).

Branch Instructions
(op<4..0>= 8) : (cond : PC ← R [rb]), conditional branch (br)
If the op-code is 8, a conditional branch is taken, that is, the program counter is set to the
target instruction address specified by rb, if the condition ‘cond’ is true.
(op<4..0>= 9) : (R [ra] ← PC,
 cond : (PC ← R [rb])), branch and link (brl)
If the op field is 9, branch and link instruction is executed, i.e. the contents of the
program counter are stored in a register specified by ra field, (so control can be returned
to it later), and then the conditional branch is taken to a branch target address specified by
rb. The branch and link instruction is useful for returning control to the calling program
after a procedure call returns.
The conditions that these ‘conditional’ branches depend on, are specified by the field c3
that has 3 bits. This simply means that when c3<2..0> is equal to one of these six values,
we substitute the expression on the right hand side of the : in place of cond.
These conditions are explained here briefly.
 cond := (
 c3<2..0>=0 : 0, never
 If the c3 field is 0, the branch is never taken.
 c3<2..0>=1 : 1, always
 If the field is 1, branch is taken
 c3<2..0>=2 : R [rc]=0, if register is zero
 If c3 = 2, a branch is taken if the register rc = 0.
 c3<2..0>=3 : R [rc] ≠ 0, if register is nonzero
 If c3 = 3, a branch is taken if the register rc is not equal to 0.
 c3<2..0>=4 : R [rc]<31>=0 if positive or zero
 If c3 is 4, a branch is taken if the register value in the register specified
 by rc is greater than or equal to 0.
 c3<2..0>=5 : R [rc]<31>=1), if negative
 If c3 = 5, a branch is taken if the value stored in the register specified by
 rc is negative.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 74

Arithmetic and Logical instructions
(op<4..0>=12) : R [ra] ← R [rb] + R [rc],
If the op-code is 12, the contents of the registers rb and rc are added and the result is
stored in the register ra.
(op<4..0>=13) : R [ra] ← R [rb] + c2<16..0> {sign extended},
If the op-code is 13, the content of the register rb is added with the immediate data in the
field c2, and the result is stored in the register ra.
(op<4..0>=14) : R [ra] ← R [rb] – R [rc],
If the op-code is 14, the content of the register rc is subtracted from that of rb, and the
result is stored in ra.
(op<4..0>=15) : R [ra] ← -R [rc],
If the op-code is 15, the content of the register rc is negated, and the result is stored in ra.
(op<4..0>=20) : R [ra] ← R [rb] & R [rc],
If the op field equals 20, logical AND of the contents of the registers rb and rc is obtained
and the result is stored in register ra.
(op<4..0>=21) : R [ra] ← R [rb] & c2<16..0> {sign extended},
If the op field equals 21, logical AND of the content of the registers rb and the immediate
data in the field c2 is obtained and the result is stored in register ra.
(op<4..0>=22) : R [ra] ← R [rb] ~ R [rc],
If the op field equals 22, logical OR of the contents of the registers rb and rc is obtained
and the result is stored in register ra.
(op<4..0>=23) : R [ra] ← R [rb] ~ c2<16..0> {sign extended},
If the op field equals 23, logical OR of the content of the registers rb and the immediate
data in the field c2 is obtained and the result is stored in register ra.
(op<4..0>=24) : R [ra] ← !R [rc],
If the op-code equals 24, the content of the logical NOT of the register rc is obtained, and
the result is stored in ra.

Shift instructions
(op<4..0>=26): R [ra]<31..0 > ← (n α 0) © R [rb] <31..n>,
If the op-code is 26, the contents of the register rb are shifted right n bits times. The bits
that are shifted out of the register are discarded. 0s are added in their place, i.e. n number
of 0s is added (or concatenated) with the register contents. The result is copied to the
register ra.
(op<4..0>=27) : R [ra]<31..0 > ← (n α R [rb] <31>) © R [rb] <31..n>,
For op-code 27, shift arithmetic operation is carried out. In this operation, the contents of
the register rb are shifted right n times, with the most significant bit, i.e., bit 31, of the
register rb added in their place. The result is copied to the register ra.
(op<4..0>=28) : R [ra]<31..0 > ← R [rb] <31-n..0> © (n α 0),
For op-code 28, the contents of the register rb are shifted left n bits times, similar to the
shift right instruction. The result is copied to the register ra.
(op<4..0>=29) : R [ra]<31..0 > ← R [rb] <31-n..0> © R [rb]<31..32-n >,
The instruction corresponding to op-code 29 is the shift circular instruction. The contents
of the register rb are shifted left n times, however, the bits that move out of the register in
the shift process are not discarded; instead, these are shifted in from the other end (a
circular shifting). The result is stored in register ra.
where

 n := ((c3<4..0>=0) : R [rc],

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 75

 (c3<4..0>!=0) : c3 <4..0>),

Notation:

α means replication
© means concatenation

Miscellaneous instructions
(op<4..0>= 0) , No operation (nop)
If the op-code is 0, no operation is carried out for that clock period. This instruction is
used as a stall in pipelining.
(op<4..0>= 31) : Run ← 0, Halt the processor (Stop)
); iF);
If the op-code is 31, run is set to 0, that is, the processor stops execution.
After one of these disjoint instructions is executed, iF, i.e. instruction Fetch is carried out
once again, and so the fetch-execute cycle continues.

Implementing Register Transfers using Digital Logic Circuits

We have studied the register transfers in the previous sections, and how they help in
implementing assembly language. In this section we will review how the basic digital
logic circuits are used to implement instructions register transfers. The topics we will
cover in this section include:

1. A brief (and necessary) review of logic circuits
2. Implementing simple register transfers
3. Register file implementation using a bus
4. Implementing register transfers with mathematical operations
5. The Barrel Shifter
6. Implementing shift operations

Review of logic circuits
Before we study the implementation of register transfers using logic circuits, a brief
overview of some of the important logic circuits will prove helpful. The topics we review
in this section include

1. The basic D flip flop
2. The n-bit register
3. The n-to-1 multiplexer
4. Tri-state buffers

The basic D flip flop
A flip-flop is a bi-stable device,
capable of storing one bit of
Information. Therefore, flip-flops
are used as the building blocks of a
computer’s memory as well as CPU
registers.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 76

There are various types of flip-flops; most common type, the D flip-flop is shown in the
figure given. The given truth table for this positive-edge triggered D flip-flop shows that
the flip-flop is set (i.e. stores a 1) when the data input is high on the leading (also called
the positive) edge of the clock; it is reset (i.e., the flip-flop stores a 0) when the data input
is 0 on the leading edge of the clock. The clear input will reset the flip-flop on a low
input.
The n-bit register
A n-bit register can be formed by
grouping n flip-flops together. So a
register is a device in which a
group of flip-flops operate
synchronously.
A register is useful for storing
binary data, as each flip-flop can
store one bit. The clock input of
the flip-flops is grouped
together, as is the enable input.
As shown in the figure, using
the input lines a binary number
can be stored in the register by
applying the corresponding
logic level to each of the flip-
flops simultaneously at the
positive edge of the clock.
The next figure shows the
symbol of a 4-bit register used
for an integrated circuit. In0
through In3 are the four input
lines, Out0 through Out3 are the
four output lines, Clk is the
clock input, and En is the enable
line. To get a better
understanding of this register,
consider the situation where we want
to store the binary number 1000 in the
register. We will apply the number to
the input lines, as shown in the figure given.
On the leading edge of the clock, the number will be stored in the register. The enable
input has to be high if the number is to be stored into the register.
.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 77

Waveform/Timing diagram

The n-to-1 multiplexer
A multiplexer is a device, constructed
through combinational logic, which
takes n inputs and transfers one of
them as the output at a time. The input
that is selected as the output depends
on the selection lines, also called the
control input lines. For an n-to-1

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 78

multiplexer, there are n input lines, log2n control lines, and 1 output line. The given
figure shows a 4-to-1 multiplexer. There are 4 input lines; we number these lines as line 0
through line 3. Subsequently, there are 2 select lines (as log24 = 2).
For a better understanding, let us consider a case where we want to transfer the input of
line 3 to the output of the multiplexer. We will need to apply the binary number 11 on the
select lines (as the binary number 11 represents the decimal number 3). By doing so, the
output of the multiplexer will be the input on line 3, as shown in the test circuit given.
Timing waveform

Tri-state buffers
The tri-state buffer, also called the three-
state buffer, is another important
component in the digital logic domain. It
has a single input, a single output, and
an enable line. The input is concatenated
to the output only if it is enabled through
the enable line, otherwise it gives a high
impedance output, i.e. it is tri-stated, or
electrically disconnected from the input
These buffers are available both in the
inverting and the non-inverting form. The
inverting tri-state buffers output the
‘inverted’ input when they are enabled,
as opposed to their non-inverting
counterparts that simply output the input
when enabled. The circuit symbol of the
tri-state buffers is shown. The truth table

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 79

further clarifies the working of a non-inverting tri-state buffer.
 We can see that when the enable input (or the control input) c is low (0), the output is
high impedance Z. The symbol of a 4-bit tri-state buffer unit is shown in the figure. There
are four input lines, an equal number of
output lines, and an enable line in this
unit. If we apply a high on the input 3
and 2, and a low on input 1 and 0, we
get the output 1100, only when the
enable input is high, as shown in the
given
figure.

Implementing simple register transfers
We now build on our knowledge of the primitive logic circuits to understand how register
transfers are implemented. In this section we will study the implementation of the
following

• Simple conditional transfer
• Concept of control signals
• Two-way transfers
• Connecting multiple registers
• Buses
• Bus implementations

Simple conditional transfer
In a simple conditional transfer, a condition is checked, and if it is true, the register
transfer takes place. Formally, a conditional transfer is represented as
 Cond: RD ← RS
This means that if the condition ‘Cond’ is true, the contents of the register named RS (the
source register) are copied to the register RD (the destination register). The following
figure shows how the registers may be interconnected to achieve a conditional transfer. In

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 80

this circuit, the output of the source register RS is connected to the input of the
destination registers RD. However, notice that the transfer will not take place unless the
enable input of the destination register is activated. We may say that the ‘transfer’ is
being controlled by the enable line (or the control signal). Now, we are able to control the
transfer by selectively enabling the control signal, through the use of other combinational
logic that may be the equivalent of our condition. The condition is, in general, a Boolean
expression, and in this example, the condition is equivalent to LRD =1.
Two-way transfers
In the above example, only one-way transfer was possible, i.e., we could only copy the
contents of RS to RD if the condition was met. In order to be able to achieve two-way
transfers, we must also provide a path from the output of the register RD to input of
register RS. This will enable us to implement

Cond1: RD ← RS
Cond2: RS ← RD
Connecting multiple registers
We have seen how two registers can be connected. However, in a computer we need to
connect more than just two registers. In order to connect these registers, one may argue
that a connection between the input and output of each be provided. This solution is
shown for a scenario where there are 5 registers that need to be interconnected.
We can see that in this solution, an m-bit register requires two connections of m-wires
each. Hence five m-bit registers in a “point-to-point” scheme require 20 connections;
each with m wires. In general, n registers in a point to point scheme require n (n-1)
connections. It is quite obvious that this solution is not going to scale well for a large

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 81

number of registers, as is the case in real machines. The solution to this problem is the
use of a bus architecture, which is explained in the following sections.

Buses
A bus is a device that provides a shared data
path to a number of devices that are connected
to it, via a ‘set of wires’ or a ‘set of
conductors’. The modern computer systems
extensively employ the bus architecture.
Control signals are needed to decide which two
entities communicate using the shared medium,
i.e. the bus, at any given time. This control
signals can be open collector
gate based, tri-state buffer
based, or they can be
implemented using
multiplexers.

Register file implementation
using the bus architecture
A number of registers can be
inter-connected to form a
register file, through the use of a
bus. The given diagram shows
eight 4-bit registers (R0, R1, …,
R7) interconnected through a 4-
bit bus using 4-bit tri-state
buffer units (labeled AA_TS4).
The contents of a particular
register can be transferred onto
the bus by applying a logical
high input on the enable of the
corresponding tri-state buffer.
For instance, R1out can be used
to enable the tri-state buffers of
the register R1, and in turn
transfer the contents of the
register on the bus.
Once the contents of a particular
register are on the bus, the
contents may be transferred, or
read into any other register.
More than one register may be
written in this manner; however,
only one register can write its
value on the bus at a given time.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 82

Implementing register transfers with mathematical operations
We have studied the implementation of simple register transfers; however, we frequently
encounter register transfers with mathematical operations. An example is
(opc=1): R4← R3 + R2;
These mathematical operations may be achieved by introducing appropriate
combinational logic; the above operation can be implemented in hardware by including a
4-bit adder with the register files connected through the bus. There are two more registers
in this configuration, one for holding one of the operands, and the other for holding the
result before it is transferred to the destination register. This is shown in the figure below.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 83

We now take a look at
the steps taken for the
(conditional,
mathematical) transfer
(opc=1): R4← R3 + R2.
First of all, if the
condition opc = 1 is met,
the contents of the first
operand register, R3, are
transferred to the
temporary register A
through the bus. This is
done by activating
R3out. It lets the contents of the register R3 to be loaded on the bus. At the same time,
applying a logical high input to LA enables the load for the register A. This lets the
binary number on the bus (the contents of register R3) to be loaded into the register A.
The next step is to enable R2out to load the contents of the register R2 onto the bus. As
can be observed from the figure, the output of the register A is one of the inputs to the 4-
bit adder; the other input to the adder is the bus itself. Therefore, as the contents of
register R2 are loaded onto the bus, both the operands are available to the adder. The
output can then be stored to the register RC by enabling its write. So a high input is
applied to LC to store the result in register RC.
The third and final step is to store (transfer) the resultant number in the destination
register R4. This is done by enabling Cout, which writes the number onto the bus, and
then enabling the read of the register R4 by activating the control signal to LR4. These
steps are summarized in the given table.

The barrel shifter
Shift operations are frequently used operations, as shifts can be used for the
implementation of multiplication and division etc. A bi-directional shift register with a
parallel load capability can be used to perform shift operations. However, the delays in
such structures are dependent on the number of shifts that are to be performed, e.g., a 9
bit shift requires nine clock periods, as one shift is performed per clock cycle. This is not
an optimal solution. The barrel shifter is an alternative, with any number of shifts
accomplished during a single clock period. Barrel shifters are constructed by using
multiplexers. An n-bit barrel shifter is a combinational circuit implemented using n
multiplexers. The barrel provides a shifted copy of the input data at its output. Control
inputs are provided to specify the number of times the input data is to be shifted. The
shift process can be a simple one with 0s used as fillers, or it can be a rotation of the input
data. The corresponding figure shows a barrel shifter that shifts right the input data; the
number of shifts depends on the bit pattern applied on the control inputs S0, S1.
 The function table for the barrel shifter is given. We see from the table that in order to
apply single shift to the input number, the control signal is 01 on (S1, S0), which is the
binary equivalent of the decimal number 1. Similarly, to apply 2 shifts, control signal 10

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 84

(on S1, S0) is applied; 10 is the binary
equivalent of the decimal number 2. A
control input of 11 shifts the number 3
places to the right.
Now we take a look at an example of
the shift operation being implemented
through the use of the barrel shifter:
R4← ror R3 (2 times);
The shift functionality can be
incorporated into the register file
circuit with the bus architecture we
have been building, by introducing the
barrel shifter, as shown in the given
figure.
To perform the operation,
R4← ror R3 (2 times),
the first step is to activate R3out, nb1
and LC. Activating R3out will load the
contents of the register R3 onto the bus.
Since the bus is directly connected to
the input of the barrel shifter, this
number is applied to the input side. nb1
and nb0 are the barrel shifter’s control
lines for specifying the number of shifts
to be applied. Applying a high input to
nb1 and a low input to nb0 will shift the
number two places to the right.
Activating LC will load the shifted
output of the barrel shifter into the

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 85

register C. The second step is to transfer the contents of the register C to the register R4.
This is done by activating the control Cout, which will load the contents of register C
onto the data bus, and by activating the control LR4, which will let the contents of the
bus be written to the register R4. This will complete the conditional shift-and-store
operation. These steps are summarized in the table shown below.

