
Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 86

Lecture Handout

Computer Architecture

Lecture No. 7

Reading Material
 Hnadouts Slides

Summary

8) Outline of the thinking process for ISA Design
9) Introduction to the ISA of FALCON-A

Instruction Set Architecture (ISA) Design: Outline of the thinking
process
In this module we will learn to appreciate, understand and apply the approach adopted in
designing an instruction set architecture. We do this by designing an ISA for a new
processor. We have named our processor FALCON-A, which is an acronym for First
Architecture for Learning Computer Organization and Networks (version A). The term
Organization is intended to include Architecture and Design in this acronym.
Elements of the ISA
Before we go onto designing the instruction set architecture for our processor FALCON-
A, we need to take a closer look at the defining components of an ISA. The following
three key components define any instruction set architecture.

1. The operations the processor can execute
2. Data access mode for use as operands in the operations defined
3. Representation of the operations in memory

We take a look at all three of the components in more detail, and wherever appropriate,
apply these steps to the design of our sample processor, the FALCON-A. This will help
us better understand the approach to be adopted for the ISA design of a processor. A
more detailed introduction to the FALCON-A will be presented later.
The operations the processor can execute
All processors need to support at least three categories (or functional groups) of
instructions
– Arithmetic, Logic, Shift
– Data Transfer
– Control

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 87

ISA Design Steps – Step 1
We need to think of all the instructions of each type that ought to be supported by our
processor, the FALCON-A. The following are the instructions that we will include in the
ISA for our processor.

Arithmetic:
 add, addi (and with an immediate operand), subtract, subtract-immediate,
multiply, divide
Logic:
 and, and-immediate, or, or-immediate, not
Shift:
 shift left, shift right, arithmetic shift right
Data Transfer:
 Data transfer between registers, moving constants to registers, load operands from
memory to registers, store from registers to memory and the movement of data between
registers and input/output devices
Control:
 Jump instructions with various conditions, call and return from subroutines,
instructions for handling interrupts
Miscellaneous instructions:
 Instructions to clear all registers, the capability to stop the processor, ability to
“do nothing”, etc.
ISA Design Steps – Step 2
Once we have decided on the instructions that we want to add support for in our
processor, the second step of the ISA design process is to select suitable mnemonics for
these instructions. The following mnemonics have been selected to represent these
operations.
Arithmetic:
add, addi, sub ,subi ,mul ,div
Logic:
and, andi, or, ori, not
Shift:
shiftl, shiftr, asr
Data Transfer:
load, store, in, out, mov, movi
Control:
jpl, jmi, jnz, jz, jump, call, ret, int.iret
Miscellaneous instructions:
nop, reset, halt
ISA Design Steps – Step 3
The next step of the ISA design is to decide upon the number of bits to be reserved for
the op-code part of the instructions. Since we have 32 instructions in the instruction set, 5
bits will suffice (as 25 =32) to encode these op-codes.
ISA Design Steps – Step 4
The fourth step is to assign op-codes to these instructions. The assigned op-codes are
shown below.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 88

Arithmetic:
add (0), addi (1), sub (2), subi (3), mul (4),div (5)
Logic:
and (8), andi (9), or (10), ori (11), not (14)

Shift:
shiftl (12), shiftr (13), asr (15)
Data Transfer:
load (29), store (28), in (24), out (25), mov (6), movi (7)
Control:
jpl (16), jmi (17), jnz (18), jz (19), jump (20), call (22), ret (23), int (26), iret (27)
Miscellaneous instructions:
nop (21), reset (30), halt (31)
Now we list these instructions with
their op-codes in the binary form, as
they would appear in the machine
instructions of the FALCON-A.
Data access mode for
operations
As mentioned earlier, the instruction
set architecture of a processor defines
a number of things besides the
instructions implemented; the
resources each instruction can access,
the number of registers available to the processor, the number of registers each
instruction can access, the instructions that are allowed to access memory, any special
registers, constants and any alternatives to the general-purpose registers. With this in
mind, we go on to the next steps of our ISA design.
ISA Design Steps – Step 5
We now need to select the number and types of operands for various instructions that we
have selected for the FALCON-A ISA.
ALU instructions may have 2 to 3 registers as operands. In case of 2 operands, a constant
(an immediate operand) may be included in the instruction.
For the load/store type instructions, we require a register to hold the data that is to be
loaded from the memory, or stored back to the memory. Another register is required to
hold the base address for the memory access. In addition to these two registers, a field is
required in the instruction to specify the
constant that is the displacement to the base
address.
In jump instructions; we require a field for
specifying the register that holds the value that
is to be compared as the condition for the
branch, as well as a destination address, which
is specified as a constant.
Once we have decided on the number and
types of operands that will be required in each
of the instruction types, we need to address the

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 89

issue of assigning specific bit-fields in the instruction for each of these operands. The
number of bits required to represent each of these operands will eventually determine the
instruction word size. In our example processor, the FALCON-A, we reserve eight
general-purpose registers. To encode a register in the instructions, 3 bits are required (as
23 =8). The registers are encoded in the binary as shown in the given table.
Therefore, the instructions that we will add support for FALCON-A processor will have
the given general format. The instructions
in the FALCON-A processor are going to
be variations of this format, with four
different formats in all. The exact format is dependent on the actual number of operands
in a particular instruction.
ISA Design Steps – Step 6
The next step towards completely defining the instruction set architecture of our
processor is the design of memory and its organization. The number of the memory cells
that we may have in the organization depends on the size of the Program Counter register
(PC), and the size of the address bus. This is because the size of the program counter and
the size of the address bus put a limitation on the number of memory cells that can be
referred to for loading an instruction for execution. Additionally, the size of the data bus
puts a limitation on the size of the memory word that can be referred to in a single clock
cycle.
ISA Design Steps – Step 7
Now we need to specify which instructions will be allowed to access the memory. Since
the FALCON-A is intended to be a RISC-like machine, only the load/ store instructions
will be allowed to access the memory.
ISA Design Steps – Step
8
Next we need to select the memory-
addressing modes. The given table lists
the types of addressing modes that will
be supported for the load/store
instructions.
FALCON-A: Introduction
FALCON stands for First Architecture for Learning Computer Organization and
Networks. It is a ‘RISC-like’ general-purpose processor that will be used as a teaching
aid for this course. Although the FALCON-A is a simple machine, it is powerful enough
to explain a variety of fundamental concepts in the field of Computer Architecture .
Programmer’s view of the FALCON-A
FALCON-A, an example of a GPR
(General Purpose Register) computer,
is the first version of the FALCON
processor. The programmer’s view of
the FALCON-A is given in the figure
shown. As it is clear from the figure,
the CPU contains a register file of 8
registers, named R0 through R7. Each
of these registers is 16 bits in length.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 90

Aside from these registers, there are two special-purpose registers, the Program Counter
(PC), and the Instruction Register (IR). The main memory is organized as 216 x 8 bits, i.e.
216 cells of 1 byte each. The memory word size is 2 bytes (or 16 bits). The input/output
space is 256 bytes (8 bit I/O ports). The storage in these registers and memory is in the
big-endian format.

