
Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 91

Computer Architecture

Lecture No. 8

Reading Material
 Handouts Slides

Summary

1) Introduction to the ISA of the FALCON-A
2) Examples for the FALCON-A

Introduction to the ISA of the FALCON-A

We take a look at the notation that we are going to employ when studying the FALCON-
A. We will refer to the contents of a register by enclosing in square brackets the name of
the register, for instance, R [3] refers to the contents of the register 3. Memory contents
are to be referred to in a similar fashion; for instance, M [8] refers to the contents of
memory at location 8 (or the 8th
memory cell).
Since memory is organized into cells
of 1 byte, whereas the memory word
size is 2 bytes, two adjacent memory
cells together make up a memory
word. So, memory word at the
memory address 8 would be defined
as 1 byte at address 8 and 1 byte at
address 9. To refer to 16-bit memory
words, we make use of a special
notation, the concatenation of two memory locations. Therefore, to refer to the 16-bit
memory word at location 8, we would write M[8]©M[9]. As we employ the big-endian
format,
M [8]<15…0>:=M[8]©M[9]
So in our notation © is used to represent concatenation.
Little endian puts the smallest numbered byte at the least-significant position in a word,
whereas in big endian, we place the largest numbered byte at the most significant
position. Note that in our case, we use the big-endian convention of ordering bytes.
However, within each byte itself, the ordering of the bits is little endian.
FALCON-A Features
The FALCON-A processor has fixed-length instructions, each 16 bits (2 bytes) long.
Addressing modes supported are limited, and memory is accessed through the load/store
instructions only.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 92

FALCON-A Instruction Formats
Three categories of instructions are going to be supported by the FALCON-A processor;
arithmetic, control, and data transfer instructions. Arithmetic instructions enable
mathematical computations. Control instructions help change the flow of the program as
and when required. Data transfer operations move data between the processor and
memory. The arithmetic category also includes the logical instructions. Four different
types of instruction formats are used to specify these instructions. A brief overview of the
various fields in these instructions formats follows.
Type I instruction format is shown in
the given figure. In it, 5 bits are
reserved for the op-code (bits 11
through 15). The rest of the bits are
unused in this instruction type,
which means they are not
considered.
Type II instruction shown in the
given figure, has a 5-bit op-code
field, a 3-bit register field, and an 8-bit
constant (or immediate operand) field.
Type III instructions contain the 5-bit
op-code field, two 3-bit register fields
for source and destination registers,
and an immediate operand field of
length 5 bits.
Type IV instructions contain the op-
code field, two 3-bit register fields, a
constant filed on length 3 bits as well
as two unused bits. This format is shown in
the given figure.
Encoding of registers
We have a register file comprising of
eight general-purpose registers in the
CPU. To encode these registers in the
binary, so they can be referred to in
various instructions, we require log2(8)
= 3 bits. Therefore, we have already
allocated three bits per register in the
instructions, as seen in the various
instruction formats. The encoding of
registers in the binary format is shown
in the given table.
It is important to note here that the
register R0 has special usage in some
cases. For instance, in load/ store
operations, if register R0 is used as a
second operand, its value is considered to be zero. R0 has special usage in the multiply
and divide (mul & div) instructions as well.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 93

Instructions and instruction formats
We return to our discussion of instruction formats in this section. We will now classify
which instructions belong to what instruction format types.
Type I
Five of the instructions included in the instruction set of FALCON-A belong to type I
instruction format. These are

1. nop (op-code = 21)
This instruction is to instruct the processor to ‘do nothing’, or, in other words, do
‘no operation’. This instruction is generally useful in pipelining. We will study
pipelining later in the course.

2. reset (op-code = 30)
3. halt (op-code=31)
4. int (opcode= 26)
5. iret (op-code= 27)

All of these instructions take no operands, therefore, besides the 5 bits used for the op-
code, the rest of the bits are unused.
Type II
There are nine FALCON-A instructions that belong to this type. These are listed below.

1. movi (op-code = 7)
The movi instruction loads a register with the constant (or the immediate value)
specified as the second operand. An example is

 movi R3, 56 R[3] ← 56
This means that the register R3 will have the value 56 stored in it as this instruction
is executed.
2. in (op-code = 24)

This instruction is to load the specified register from input device. An example
and its interpretation in register transfer language are
in R3, 57 R [3] ← IO [57]

3. out (op-code = 25)
The ‘out’ instruction will move data from the register to the output device
specified in the instruction, as the example demonstrates:
out R7, 34 IO [34] ← R [7]

4. ret (op-code=23)
This instruction is to return control from a subroutine. This is done using a
register, where the return address is stored. As shown in the example, to return
control, the program counter is assigned the contents of the register.

 ret R3 PC ← R [3]
5. jz (op-code= 19)

When this instruction is executed, the value of the register specified in the field ra
is checked, and if it is equal to zero, the Program Counter is advanced by the
jump(value) specified in the instruction.
jz r3, [4] (R[3]=0): PC← PC+ 4;
In this example, register r3’s value is checked, and if found to be zero, PC is
advanced by 4.

6. jnz (op-code= 18) This instruction is the reverse of the jz instruction, i.e., the
jump (or the branch) is taken, if the contents of the register specified are not equal
to zero.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 94

 jnz r4, [variable] (R[4]≠0): PC← PC+ variable;

7. jpl (op-code= 16) In this instruction, the value contained in the register specified
in the field ra is checked, and if it is positive, the jump is taken.

 jpl r3, [label] (R[3]≥0): PC ← PC+ (label-PC);

8. jmi (op-code= 17) In this case, PC is advanced (jump/branch is taken) if the
register value is negative

 jmi r7, [address] (R[7]<0): PC← PC+ address;

Note that, in all the instructions for jump, the jump can be specified by a constant, a
variable, a label or an address (that holds the value by which the PC is to be advanced).
A variable can be defined through the use of the ‘.equ’ directive. An address (of data) can
be specified using the directive ‘.db’ or ‘.dw’. A label can be specified with any
instruction. In its usage, we follow the label by a colon ‘:’ before the instruction itself.
For example, the following is an instruction that has a label ‘alfa’ attached to it
alfa: movi r3 r4
Labels implement relative jumps, 128 locations backwards or 127 locations forward
(relative to the current position of program control, i.e. the value in the program counter).
The compiler handles the interpretation of the field c2 as a constant/ variable/ label/
address. The machine code just contains an 8-bit constant that is added to the program
counter at run-time.

9. jump (op-code= 20)
This instruction instructs the processor to advance the program counter by the
displacement specified, unconditionally (an unconditional jump). The assembler
allows the displacement (or the jump) to be specified in any of the following ways

jump [ra + constant]
 jump [ra + variable]
 jump [ra + address]
 jump [ra + label]

The types of unconditional jumps that are possible are
• Direct
• Indirect
• PC relative (a ‘near’ jump)
• Register relative (a ‘far’ jump)

The c2 field may be a constant, variable, an address or a label.
A direct jump is specified by a PC-label.
An indirect jump is implemented by using the C2 field as a variable.
In all of the above instructions, if the value of the register ra is zero, then the Program
Counter is incremented (or decremented) by the sign-extended value of the constant
specified in the instruction. This is called the PC-relative jump, or the ‘near’ jump. It is
denoted in RTL as:
(ra=0):PC← PC+(8αC2<7>)©C2<7..0>;
If the register ra field is non-zero, then the Program Counter is assigned the sum of the
sign-extended constant and the value of register specified in the field ra. This is known as
the register-relative, or the ‘far’ jump. In RTL, this is denoted as:
(ra≠0):PC← R[ra]+(8αC2<7>)©C2<7..0>;

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 95

Note that C2 is computed by sign extending the constant, variable, address, or (label –
PC). Since we have 8 bits available for the C2 field (which can be a constant, variable,
address or a PC-label), the range for the field is -128 to + 127. Also note that the compiler
does not allow an instruction with a negative sign before the register name, such as ‘jump
[-r2]’. If the C2 field is being used as an address, it should always be an even value for
the jump instruction. This is because our instruction word size is 16 bits, whereas in
instruction memory, the instruction memory cells are of 8 bits each. Two consecutive
cells together make an instruction.
Type III
There are nine instructions of the FALCON-A that belong to Type III. These are:

1. andi (op-code = 9)
The andi instruction bit-wise ‘ands’ the constant specified in the instruction with
the value stored in the register specified in the second operand register and stores
the result in the destination register. An example is:
andi r4, r3, 5
This instruction will bit-wise and the constant 5 and R[3], and assign the value
thus obtained to the register R[4], as given .
 R [4] ← R [3] & 5

2. addi (op-code = 1)
This instruction is to add a constant value to a register; the result is stored in a
destination register. An example:

 addi r4, r3,4 R [4] ← R [3] + 4
3. subi (op-code = 3)

The subi instruction will subtract the specified constant from the value stored in a
source register, and store to the destination register. An example follows.
subi r5, r7, 9 R [5] ← R [7] – 9

4. ori (op-code= 11)
Similar to the andi instruction, the ori instruction bit-wise ‘ors’ a constant with a
value stored in the source register, and assigns it to the destination register. The
following instruction is an example.
ori r4, r7, 3 R[4] ← R[7] ~ 3

5. shiftl (op-code = 12)
This instruction shifts the value stored in the source register (which is the second
operand), and shifts the bits left as many times as is specified by the third
operand, the constant value. For instance, in the instruction
shiftl r4, r3, 7
The contents of the register are shifted left 7 times, and the resulting number is
assigned to the register r4.

6. shiftr (op-code = 13)
This instruction shifts to the right the value stored in a register. An example is:
shiftr r4, r3,9

7. asr (op-code = 15)
 An arithmetic shift right is an operation that shifts a signed binary number
stored in the source register (which is specified by the second operand), to the
right, while leaving the sign-bit unchanged. A single shift has the effect of
dividing the number by 2. As the number is shifted as many times as is specified
in the instruction through the constant value, the binary number of the source
register gets divided by the constant value times 2. An example is

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 96

asr r1, r2, 5
This instruction, when executed, will divide the value stored in r2 by 10, and
assign the result to the register r1.

8. load (op-code= 29)
This instruction is to load a register from the memory. For instance, the
instruction
load r1, [r4 +15]
will add the constant 15 to the value stored in the register r4, access the memory
location that corresponds to the number thus resulting, and assign the memory
contents of this location to the register r1; this is denoted in RTL by:
 R[1] ← M[R[4]+15]

9. store (op-code= 28)
This instruction is to store a value in the register to a particular memory location.
In the example:
store r6, [r7+13]
The contents of the register r6 are being stored to the memory location that
corresponds to the sum of the constant 13 and the value stored in the register r7.
 M[R[7]+13] ← R[6]

Type III Modified
There are 3 instructions in the modified form of the Type III instructions. In the modified
Type III instructions, the field c1 is unused.

1. mov (op-code = 6)
This instruction will move (copy) data of a source register to a destination
register. For instance, in the following example, the contents of the register r3 are
copied to the register r4.

 mov r4, r3
In RTL, this can be represented as
 R[4] ← R[3]

2. not (op-code = 14)
This instruction inverts the contents of the source register, and assigns the value
thus obtained to the destination register. In the following example, the contents of
register r2 are inverted and assigned to register r4.
not r4, r2
In RTL:
 R[4] ← !R[2]

3. call (op-code = 22)
Procedure calls are often encountered in programming languages. To add support
for procedure (or subroutine) calls, the instruction call is used. This instruction
first stores the return address in a register and then assigns the Program Counter a
new value (that specifies the address of the subroutine). Following is an example
of the call instruction
call r4, r3
This instruction saves the current contents (the return address) of the Program
Counter into the register r4 and assigns the new value to the PC from register r3.
 R[4] ← PC, PC ← R[3]

Type IV
Six instructions belong to the instruction format Type IV. These are

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 97

1. add (op-code = 0)
This instruction adds contents of a register to those of another register, and
assigns to the destination register. An example:

 and r4, r3, r5
 R[4] ← R[3] +R[5]

2. sub (op-code = 2)
This instruction subtracts value of a register from another the value stored in
another register, and assigns to the destination register. For example,

sub r4, r3, r5
In RTL, this is denoted by
 R[4] ← R[3] – R[5]

3. mul (op-code = 4)
The multiply instruction will store the product of two register values, and stores in
the destination register. An example is

 mul r5, r7, r1
 The RTL notation for this instruction will be
 R[0] © R[5] ← R[7]*R[1]
 4. div (op-code= 5)
This instruction will divide the value of the register that is the second operand, by the
number in the register specified by the third operand, and assign the result to the
destination register.
 div r4, r7, r2 R[4]←R[0] ©R[7]/R[2],R[0]←R[0] ©R[7]%R[2]
 5. and (op-code= 8)
This ‘and’ instruction will obtain a bit-wise ‘and’ of the values of two registers and
assigns it to a destination register. For instance, in the following example, contents of
register r4 and r5 are bit-wise ‘anded’ and the result is assigned to the register r1.

and r1, r4, r5
In RTL we may write this as
 R[1] ← R[4] & R[5]

6. or (op-code= 10)
 To bit-wise ‘or’ the contents of two registers, this instruction is used. For instance,

or r6, r7,r2
In RTL this is denoted as
 R[6] ← R[7] ~ R[2]

FALCON-A: Instruction Set Summary
We have looked at the various types of instruction formats for the FALCON-A, as well as
the instructions that belong to each of these instruction format types. In this section, we
have simply listed the instructions on the basis of their functional groups; this means that
the instructions that perform similar class of operations have been listed together.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 98

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 99

Examples for FALCON-A
In this section we take up a few sample problems related to the FALCON-A processor.
This will enhance our understanding of the FALCON-A processor, as well as of the
general concepts related to general processors and their instruction set architectures. The
problems we will look at include
1. Identification of the instruction types and operands
2. Addressing modes and RTL description
3. Branch condition and status of the PC
4. Binary encoding for instructions
Example 1:
Identify the types of given FALCON-A instructions and specify the values in the fields

Solution
The solution to this problem is quite straightforward. The types of these instructions, as
well as the fields, have already been discussed in the preceding sections.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 100

We can also find the machine code for these instructions. The machine code (in the
hexadecimal representation) is given for these instructions in the given table.

Example 2:
Identify the addressing modes and Register Transfer Language (RTL) description
(meaning) for the given FALCON-A instructions

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 101

Solution
Addressing modes relate to the way architectures specify the address of the objects they
access. These objects may be constants and registers, in addition to memory locations.

Example 3: Specify the condition for the branch instruction and the status of the PC after
the branch instruction executes with a true branch condition

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 102

Solution
We have looked at the various jump instructions in our study of the FALCON-A. Using
that knowledge, this problem can be solved easily.

Example 4: Specify the binary encoding of the different fields in the given FALCON-A
instructions.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 103

Solution
We can solve this problem by referring back to our discussion of the instruction format
types. The op-codes for each of the instructions can also be looked up from the tables. ra,
rb and rc (where applicable) registers’ values are obtained from the register encoding
table we looked at. The constants C1 and C2 are there in instruction type III and II
respectively. The immediate constant specified in the instruction can also be simply
converted to binary, as shown.

