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Use of Behavioral Register Transfer Language (RTL) to describe the 
FALCON-A 
The use of RTL (an acronym for the Register Transfer Language) to describe the 
FALCON-A is discussed in this section. FALCON-A is the sample machine we are 
building in order to enhance our understanding of processors and their architecture.  
Behavior vs. Structure 
Computer design involves various levels of abstraction. The behavioral description of a 
machine is a higher level of abstraction, as compared with the structural description. Top-
down approach is adopted in computer design. Designing a computer typically starts with 
defining the behavior of the overall system. This is then broken down into the behavior of 
the different modules. The process continues, till we are able to define, design and 
implement the structure of the individual modules. 
As mentioned earlier, we are interested in the behavioral description of our machine, the 
FALCON-A, in this section.  
Register Transfer Language 
The RTL is a formal way of expressing the behavior and structure of a computer. 
Behavioral RTL 
Behavioral Register Transfer Language is used to describe what a machine does, i.e. it is 
used to define the functionality the machine provides. Basically, the behavioral 
architecture describes the algorithms used in a machine, written as a set of process 
statements. These statements may be sequential statements or concurrent statements, 
including signal assignment statements and wait statements. 
Structural RTL 
Structural RTL is used to describe the hardware implementation of the machine. The 
structural architecture of a machine is the logic circuit implementation (components and 
their interconnections), that facilitates a certain behavior (and hence functionality) for 
that machine.  
Using RTL to describe the static properties of the FALCON-A 
We can employ the RTL for the description of various properties of the FALCON-A that 
we have already discussed.  
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Specifying Registers 
In RTL, we will refer to a register by its abbreviated, alphanumeric name, followed by 
the number of bits in the register enclosed in angle brackets ‘< >’. For instance, the 
instruction register (IR), of 16 bits (numbered 0 to 15), will be referred to as, 
IR<15..0> 
Naming of the Fields in a Register 
We can name the different fields of a register using the := notation. For example, to name 
the most significant bits of the instruction register as the operation code (or simply op), 
we may write: 
op<4..0> := IR<15..11>  
Note that using this notation to name registers or register fields will not create a new copy 
of the data or the register fields; it is simply an alias for an already existing register, or 
part of a register. 
Fields in the FALCON-A Instructions 
We now use the RTL naming operator to name the various fields of the RTL instructions. 
Naming the fields appropriately helps us make the study of the behavior of a processor 
more readable.  
op<4..0>:= IR<15..11>:        operation code field 
ra<2..0> := IR<10..8>: target register field 
rb<2..0> := IR<7..5>: operand or address index 
rc<2..0> := IR<4..2>: second operand 
c1<4..0> := IR<4..0>: short displacement field 
c2<7..0> := IR<7..0>: long displacement or the immediate field 
We are already familiar with these fields, and their usage in the various instruction 
formats of the RTL.  
Describing the Processor State using RTL 
The processor state defines the contents of all the register internal to the CPU at a given 
time. Maintaining or restoring the machine or processor state is important to many 
operations, especially procedure calls and interrupts; the processor state needs to be 
restored after a procedure call or an interrupt so normal operation can continue.  
Our processor state consists of the following:  

PC<15..0>:  program counter (the PC holds the memory address of the next 
instruction) 

     IR<15..0>:  instruction register (used to hold the current instruction) 
     Run:  one bit run/halt indicator 
     Strt:  start signal 
     R [0..7]<15..0>: 8 general purpose registers, each consisting of 16 bits 
 
FALCON-A in a black 
box  
The given figure shows 
what a processor appears as 
to a user. We see a start 
button that is basically used 
to start up the processor, 
and a run indicator that 
turns on when the processor 
is in the running state. 
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There may be several other indicators as well. The start button as well as the run indicator 
can be observed on many machines. 
Using RTL to describe the dynamic properties of the FALCON-A 
We have just described some of the static properties of the FALCON-A. The RTL can 
also be employed to describe the dynamic behavior of the processor in terms of 
instruction interpretation and execution.  
Conditional expressions can be specified using the RTL. For instance, we may specify a 

conditional subtraction operation employing RTL as 

     (op=2) : R[ra] ← R[rb] - R[rc];     
This instruction means that “if” the operation code of the instruction equals 2 (00010 in 
binary), then subtract the value stored in register rc from that of register rb, and store the 
resulting value in register ra. 
Effective address calculations in RTL (performed at runtime) 
The operand or the destination address may not be specified directly in an instruction, 
and it may be required to compute the effective address at run-time. Displacement and 
relative addressing modes are instances of such situations. RTL can be used to describe 
these effective address calculations.  
Displacement address  
A displacement address is calculated, as shown: 
disp<15..0> := (R[rb]+ (11α c1<4>)© c1<4..0>); 
This means that the address is being calculated by adding the constant value specified by 
the field c1 (which is first sign extended), to the value specified by the register rb. 
Relative address 
A relative address is calculated by adding the displacement to the contents of the program 
counter register (that holds the instruction to be executed next in a program flow). The 
constant is first sign-extended. In RTL this is represented as, 
rel<15..0>:=PC+(8αc2<7>)©c2<7..0>;  
Range of memory addresses 
Using the displacement or the relative addressing modes, there is a specific range of 
memory addresses that can be accessed. 

• Range of addresses when using direct addressing mode (displacement with rb=0) 
o If c1<4>=0 (positive displacement) absolute addresses range: 00000b to 

01111b (0 to +15) 
o If c1<4>=1 (negative displacement) absolute addresses range: 11111b to 

10000b (-1 to -16) 
• Address range in case of relative addressing 

o The largest positive value that can be specified using 8 bits (since we have 
only 8 bits available in c2<7..0>), is 27-1, and the most negative value that 
can be represented using the same is 27. Therefore, the range of addresses 
or locations that can be referred to using this addressing mode is 127 
locations forward or 128 locations backward from the Program Counter 
(PC). 

Instruction Fetch Operation (using RTL) 
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We will now employ the notation that we have learnt to understand the fetch-execute 

cycle of the FALCON-A processor.  

The RTL notation for the instruction fetch process is 
instruction_Fetch := (  
 !Run&Strt : Run ← 1, 
 Run : (IR ← M[PC], PC ← PC + 2;  
             instruction_Execution) ); 
This is how the instruction-fetch phase of the fetch-execute 
cycle for FALCON-A can be represented using RTL. Recall 
that “:=’ is the naming operator, “!” implies a logical NOT, “&” 
implies a logical AND, “←” represents a transfer operation, “;” 
is used to separate sequential statements, and concurrent 
statements are separated by “,”. We can observe that in the 
instruction_Fetch phase, if the machine is not in the running 
state and the start bit has been set, then the run bit is also 
set to true. Concurrently, an instruction is fetched from the 
instruction memory; the program counter (PC) holds the next 
instruction address, so it is used to refer to the memory 
location from where the instruction is to be fetched. 
Simultaneously, the PC is incremented by 2 so it will point to 
the next instruction. (Recall that our instruction word is 2 
bytes long, and the instruction memory is organized into 1-
byte cells). The next step is the instruction execution phase.  
Difference between “,” and “;” in RTL 
We again highlight the difference between the “,” and “;”. Statements separated by a “,” 
take place during the same clock pulse. In other words, the order of execution of 
statements separated by “,” does not matter.  
On the other hand, statements separated by a “;” take place on successive clock pulses. In 
other words, if statements are separated by  “;” the one on the left must complete before 
the one on the right starts. However, some things written with one RTL statement can 
take several clocks to complete. 
We return to our discussion of the instruction-fetch phase. The statement 
 !Run&Strt : Run ← 1 
is executed when ‘Run’ is 0, and ‘Strt’ is 1, that is, Strt has been set. It is used to set the 
Run bit. No action takes place when both ‘Run’ and ‘Strt’ are 0.  
The following two concurrent register transfers are performed when ‘Run’ is set to 1, (as 
‘:’ is a conditional operator; if the condition is met, the specified action is taken). 
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 IR ← M[PC] 
 PC ← PC + 2 
Since these instructions appear concurrent, and one of the instructions is using the value 
of PC that the other instruction is updating, a question arises; which of the two values of 
the PC is used in the memory access? As a rule, all right hand sides of the register 
transfers are evaluated before the left hand side is evaluated/updated. In case of 
simultaneous register transfers (separated by a “,”), all the right hand side expressions are 
evaluated in the same clock-cycle, before they are assigned. Therefore, the old, un-
incremented value of the PC is used in the memory access, and the incremented value is 
assigned to the PC afterwards. This corresponds to “master-slave” flip-flop operation in 
logic circuits.  
This makes the PC point to the next instruction in the instruction memory. Once the 
instruction has been fetched, the instruction execution starts. We can also use i.F for 
instruction_Fetch and i.E for instruction_Execution. This will make the Fetch operation 
easy to write. 

iF := ( !Run&Strt : Run ← 1,  Run : (IR ← M[PC], PC ← PC + 2;  
iE ) ); 
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Instruction Execution (Describing the Execute operation using RTL) 
Once an instruction has been fetched from the instruction memory, and the program 
counter has been incremented to point to the next instruction in the memory, instruction 
execution commences. In the instruction fetch-execute cycle we showed in the preceding 
discussion, the entire instruction execution code was aliased iE (or 
instruction_Execution), through the assignment operator “:=”. Now we look at the 
instruction execution in detail. 
iE := (  
     (op<4..0>= 1) : R[ra] ← R[rb]+ (11α c1<4>)© c1<4..0>,    
 (op<4..0>= 2) : R[ra] ← R[rb]-R[rc],  
      . . . 
 . . .       
      (op<4..0>=31) : Run ← 0,);  iF ); 
As we can see, the instruction execution can be described in RTL by using a long list of 
concurrent, conditional operators that are inherently ‘disjoint’. Being inherently 
disjointed implies that at any instance, only one of the conditions can be met; hence one 
of the statements is executed. The long list of statements is basically all of the 
instructions that are a part of the FALCON-A instruction set, and the condition for their 
execution is related to the operation code of the instruction fetched. We will take a closer 
look at the entire list in our subsequent discussion. Notice that in the instruction execute 
phase, besides the long list of concurrent, 
disjoint instructions, there is also the 
instruction fetch or iF sequenced at the 
end. This implies that once one of the 
instructions from the list is executed, the 
instruction fetch is called to fetch the next 
instruction. As shown before, the 
instruction fetch will call the instruction 
execute after fetching a certain instruction, 
hence the instruction fetch-execute cycle 
continues. 
The instruction fetch-execute cycle is shown schematically in the above given figure.  
We now see how the various instructions in the execute code of the fetch-execute cycle 
of FALCON-A, are represented using the RTL. These instructions form the instruction 
set of the FALCON-A. 
jump instructions 
Some of the instructions listed for the instruction execution phase are jump instruction, as 
shown. (Note ‘.  .  .’ implies that more instructions may precede or follow, depending on 
whether it is placed before the instructions shown, or after).  

iE := ( 
  .  .  .  
       .  .  .  
If op-code is 20, the branch is taken unconditionally (the jump instruction).  
(op<4..0>=20) : (cond : PC ← R[ra]+C2(sign extended)),     
If the op-code is 16, the condition for branching is checked, and if the condition is being 
met, the branch is taken; otherwise it remains untaken, and normal program flow will 
continue. 
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(op<4..0>= 16) : cond : (PC ← PC+C2 (sign extended )) 
.  .  .  
.  .  . 

Arithmetic and Logical Instructions 
Several instructions provide arithmetic and logical operations functionality. Amongst the 
list of concurrent instructions of the iE phase, the instructions belonging to this category 
are highlighted: 

iE := ( 
  .  .  .  
       .  .  .  
If op-code is 0, the instruction is ‘add’. The values in register rb and rc are added and the 
result is stored in register rc 
(op<4..0>=0) : R[ra] ← R[rb] + R[rc], 
Similarly, if op-code is 1, the instruction is addi; the immediate constant specified by the 
constant field C1 is sign extended and added to the value in register rb. The result is 
stored in the register ra.   
(op<4..0>=1) : R[ra] ←R[rb] + (11α C1<4>)© C1<4..0>, 
For op-code 2, value stored in register rc is subtracted from the value stored in register rb, 
and the result is stored in register ra. 
(op<4..0>=2) : R[ra] ← R[rb] - R[rc], 
If op-code is 3, the immediate constant C1 is sign-extended, and subtracted from the 
value stored in rb. Result is stored in ra.   
(op<4..0>=3) : R[ra] ← R[rb]- (11α C1<4>)© C1<4..0>, 
For op-code 4, values of rb and rc register are multiplied and result is stored in the 
destination register. 
(op<4..0>=4) : R[ra] ← R[rb] * R[rc], 
If the op-code is 5, contents of register rb are divided by the value stored in rc, result is 
concatenated with 0s, and stored in ra. The remainder is stored in R0. 
 (op<4..0>=5) : R[ra] ← R[0] ©R[rb]/R[rc],  
                         R[0] ← R[0] ©R[rb]%R[rc], 
If op-code equals 8, bit-wise logical AND of rb and rc register contents is assigned to ra. 
(op<4..0>=8) : R[ra] ← R[rb] & R[rc], 
If op-code equals 8, bit-wise logical OR of rb and rc register contents is assigned to ra. 
(op<4..0>=10) : R[ra] ← R[rb] ~ R[c], 
 
For op-code 14, the contents of register specified by field rc are inverted (logical NOT is 
taken), and the resulting value is stored in register ra. 
(op<4..0>=14) : R[ra] ← ! R[rc], 
            .  .  .  
      .  .  . 
Shift Instructions 
The shift instructions are also a part of the instruction set for FALCON-A, and these are 
listed in the instruction execute phase in the RTL as shown.  

iE := ( 
  .  .  .  
       .  .  .  
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If the op-code is 12, the contents of the register rb are shifted right N bits. N is the 
number specified in the constant field. The space that has been created due to the shift out 
of bits is filled with 0s through concatenation. In RTL, this is shown as:   
(op<4..0>=12) : R[ra]<15..0> ← R [rb]<(15-N)..0>©(Nα0), 
If op-code is 13, rb value is shifted left, and 0s are inserted in place of shifted out 
contents at the right side of the value. The result is stored in ra. 
(op<4..0>=13) : R[ra]<15..0> ← (Nα0)©R [rb]<(15)..N>, 
For op-code 15, arithmetic shift right operation is carried out on the value stored in rb. 
The arithmetic shift right shifts a signed binary number stored in the source register to the 
right, while leaving the sign-bit unchanged. Note that α means replication, and © means 
concatenation. 
(op<4..0>=15) : R[ra]<15..0> ← Nα(R [rb]<15>)© (R [rb]<15..N>),   

.  .  .  

.  .  . 
Data transfer instructions 
Several of the instructions belong to the data transfer category.  

iE := ( 
  .  .  .  
       .  .  .  
Op-code 29 specifies the load instruction, i.e. a memory location is referenced and the 
value stored in the memory location is copied to the destination register. The effective 
address of the memory location to be referenced is calculated by sign extending the 
immediate field, and adding it to the value specified by register rb. 
(op<4..0>=29) : R[ra]← M[R[rb]+ (11α C1<4>)© C1<4..0>], 
A value is stored back to memory from a register using the op-code 28. The effective 
address in memory where the value is to be stored is calculated in a similar fashion as the 
load instruction. 
(op<4..0>=28) : M[R[rb]+ (11α C1<4>)© C1<4..0>] ← R [ra], 
The move instruction has the op-code 6. The contents of one register are copied to 
another register through this instruction. 
(op<4..0>=6) : R[ra] ← R[rb], 
To store an immediate value (specified by the field C2 of the instruction) in a register, the 
op-code 7 is employed. The constant is first sign-extended. 
(op<4..0>=7) :  R[ra] ← (8αC2<7>)©C2<7..0>, 
 
If the op-code is 24, an input is obtained from a certain input device, and the input word 

is stored into register ra. The input device is selected by specifying its address through the 

constant C2. 

(op<4..0>=24) : R[ra] ← IO[C2],  
Unconditional branch (jump)If the op-code is 25, an output (the register ra value) is sent 
to an output device (where the address of the output device is specified by the constant 
C2).  
(op<4..0>=25) : IO[C2] ← R[ra], 
            .  .  .  
      .  .  . 
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Miscellaneous instructions 
Some more instruction included in the FALCON-A are 

iE := ( 
  .  .  .  
       .  .  .  
The no-operation (nop) instruction, if the op-code is 21. This instructs the processor to do 
nothing.  
(op<4..0>= 21) :    ,  
If the op-code is 31, setting the run bit to 0 halts the processor. 
(op<4..0>= 31) : Run ← 0, Halt the processor (halt) 
At the end of this concurrent list of instructions, there is an instruction i.F (the instruction 
fetch). Hence when an instruction is executed, the next instruction is fetched, and the 
cycle continues, unless the processor is halted. 
         );      iF  ); 
 
Note: For Assembler and Simulator Consult Appendix.  
 
The EAGLE 
(Original version) 
Another processor that we are going to study is the EAGLE. We have developed two 
versions of it, an original version, and a modified version that takes care of the limitations 
in the original version. The study of multiple processors is going to help us get 
thoroughly familiar with the processor design, and the various possible designs for the 
processor. However, note that these machines are simplified versions of what a real 
machine might look like.  
Introduction 
The EAGLE is an accumulator-based machine. It is a simple processor that will help us 
in our understanding of the processor design process.  
EAGLE is characterized by the following:  

• Eight General Purpose Registers of the CPU. These are named R0, R1…R7. Each 
register is 16-bits in length. 

• Two 16-bit system registers transparent to the programmer are the Program 
Counter (PC) and the Instruction Register (IR). (Being transparent to the 
programmer implies the programmer may not directly manipulate the values to 
these registers. Their usage is the same as in any other processor) 

• Memory word size is 16 bits 
• The available memory space size is 216 bytes 
• Memory organization is 216 x 8 bits. This means that there are 216 memory cells, 

each one byte long. 
• Memory is accessed in 16 bit words (i.e., 2 byte chunks) 
• Little-endian byte storage is employed. 
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Programmer’s View of the EAGLE 
The programmer’s view of the 
EAGLE processor is shown by 
means of the given figure. 
EAGLE: Notation 
Let us take a look at the 
notation that will be employed 
for the study of the EAGLE.  
Enclosing the register name in 
square brackets refers to 
register contents; for instance, 
R[3] means contents of register 
R3.  
Enclosing the location address in square brackets, preceded by ‘M’, lets us refer to 
memory contents. Hence M [8] means contents of memory location 8.  
As little endian storage is employed, a 
memory word at address x is defined 
as the 16 bits at address x +1 and x. 
For instance, the bits at memory 
location 9,8 define the memory word at 
location 8. So employing the special 
notation for 16-bit memory words, we 
have 
M [8]<15…0>:=M [9]©M [8] 
Where © is used to represent concatenation 
 
EAGLE Features 
The following features characterize the EAGLE. 

• Instruction length is variable. Instructions are either 8 bits or 16 long, i.e., 
instruction size is either 8-bits or 16-bits. 

• The instructions may have either one or two operands. 
• The only way to access memory is through load and store instructions.  
• Limited addressing modes are supported 

EAGLE: Instruction Formats 
There are five instruction formats for the EAGLE. These are 
Type Z Instruction Format 
The Z format instructions are half-word (1 byte) 
instructions, containing just the op-code field of 8 bits, 
as shown 
Type Y Instruction Format 
The type Y instructions are also half-word. There is 
an op-code field of 5 bits, and a register operand field 
ra.  

Type X Instruction Format 
Type X instructions are also half-word instructions, 
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with a 2-bit op-code field, and two 3-bit operand register fields, as shown. 
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Type W instruction format 
The instructions in this type are 1-
word (16-bit) in length. 8 bits are 
reserved for the op-code, while the remaining 8 bits form the constant (immediate value) 
field. 

Type V instruction format 
Type V instructions are also 1-word 
instructions, containing an op-code 
field of 5 bits, an operand register field 
of 3 bits, and 8 bits for a specifying a constant. 
Encoding of the General Purpose Registers 
The encoding for the eight 
GPRs is shown in the table. 
These binary codes are to 
be used in place of the 
‘place-holders’ ra, rb in the 
actual instructions of the 
processor EAGLE. 

Listing of EAGLE 
instructions with respect to 
instruction formats 
The following is a brief introduction to the various instructions of the processor EAGLE, 
categorized with respect to the instruction formats. 

Type Z 
There are four type Z instructions,  

• halt(op-code=250) 
This instruction halts the processor 

• nop(op-code=249) 
nop, or the no-operation instruction stalls the processor for the time of execution 
of a single instruction. It is useful in pipelining.  

• init(op-code=251) 
This instruction is used to initialize all the registers, by setting them to 0 

• reset(op-code=248) 
This instruction is used to initialize the processor to a known state.In this 
instruction the control step counter is set to zero so that the operation begins at the 
start of the instruction fetch and besides this PC is also set to a known value so 
that machine operation begins at a known instruction.       

Type Y 
Seven instructions of the processor are of type Y. These are 

• add(op-code=11) 
The type Y add instruction adds register ra’s contents to register R0. For example, 
add r1   
In the behavioral RTL, we show this as  
R[0] ← R[1]+R[0] 
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• and(op-code=19)  
This instruction obtains the logical AND of the value stored in register specified 
by field ra and the register R0, and assigns the result to R0, as shown in the 
example: 
and r5 
which is represented in RTL as 
R[0] ← R[1]&R[0] 

• div(op-code=16)  
This instruction divides the contents of register R0 by the value stored in the 
register ra, and assigns result to R0. The remainder is stored in the divisor 
register, as shown in example, 
div r6 
In RTL, this is 
R[0] ← R[0]/R[6] 
R[6] ← R[0]%R[6] 

• mul (op-code = 15) 
This instruction multiplies the values stored in register R0 and the operand 
register, and assigns the result to R0). For example, 
mul r4 
In RTL, we specify this as  
R[0]  ←   R[0]*R[4] 

• not (op-code =  23) 
The not instruction inverts the operand register’s value and assigns it back to the 
same register, as shown in the example 
not r6 
R[6] ← ! R[6] 

• or (op-code=21) 
The or instruction obtains the bit-wise OR of the operand register’s and R0’s 
value, and assigns it back to R0. An example, 
or r5 
R[0]  ←  R[0] ~ R[5] 

• sub (op-code=12) 
The sub instruction subtracts the value of the operand register from R0 value, 
assigning it back to register R0. Example: 
sub r7 
In RTL: 
R[0] ← R[0] – R[7] 

Type X 
Only one instruction falls under this type. It is the ‘mov’ instruction that is useful for 
register transfers 

• mov (op-code = 0) 
The contents of one register are copied to the destination register ra. 
Example:  mov r5, r1 
RTL Notation:    R[5]← R[1] 
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Type W 
Again, only one instruction belongs to this type. It is the branch instruction 

• br (op-code = 252) 
This is the unconditional branch instruction, and the branch target is specified by 
the 8-bit immediate field. The branch is taken by incrementing the PC with the 
new value. Hence it is a ‘near’ jump. For instance, 
br 14 
PC ← PC+14 

Type V 
Most of the instructions of the processor EAGLE are of the format type V. These are 

• addi (op-code = 13) 
The addi instruction adds the immediate value to the register ra, by first sign-
extending the immediate value. The result is also stored in the register ra. For 
example, 
addi r4, 31   
In behavioral RTL, this is 
R[4] ← R[4]+(8αc<7>)©c<7…0>; 

• andi (op-code = 20 ) 
Logical ‘AND’ of the immediate value and register ra value is obtained when this 
instruction is executed, and the result is assigned back to register ra. An example, 
andi r6, 1 
R[6] ←  R[6] &1                      

• in (op-code=29) 
This instruction is to read in a word from an IO device at the address specified by 
the immediate field, and store it in the register ra. For instance,  
in r1, 45 
In RTL this is  
R[1]  ← IO[45] 

• load (op-code=8) 
The load instruction is to load the memory word into the register ra. The 
immediate field specifies the location of the memory word to be read. For 
instance,   
load r3, 6 
R[3] ← M[6] 

• brn (op-code = 28) 
Upon the brn instruction execution, the value stored in register ra is checked, and 
if it is negative, branch is taken by incrementing the PC by the immediate field 
value. An example is 
brn r4, 3 
In RTL, this may be written as  
if R[4]<0, PC ← PC+3  

• brnz (op-code = 25 ) 
For a brnz instruction, the value of register ra is checked, and if found non-zero, 
the PC-relative branch is taken, as shown in the example, 
brnz r6, 12 
Which, in RTL is 
if R[6]!=0, PC ← PC+12                      
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• brp (op-code=27) 
brp is the ‘branch if positive’. Again, ra value is checked and if found positive, the 
PC-relative near jump is taken, as shown in the example: 
brp r1, 45 
In RTL this is 
if R[1]>0, PC ← PC+45 

• brz (op-code=8) 
In this instruction, the value of register ra is checked, and if it equals zero, PC-relative 
branch is taken, as shown,  
brz r5, 8 
In RTL: 
if R[5]=0, PC ← PC+8 

• loadi (op-code=9) 
The loadi instruction loads the immediate constant into the register ra, for 
instance,  
loadi r5,54 
R[5] ← 54 

• ori (op-code=22) 
The ori instruction obtains the logical ‘OR’ of the immediate value with the ra 
register value, and assigns it back to the register ra, as shown, 
ori r7, 11 
In RTL, 
R[7] ← R[7]~11 

• out (op-code=30) 
The out instruction is used to write a register word to an IO device, the address of 
which is specified by the immediate constant. For instance, 
out 32, r5  
In RTL, this is represented by 
IO[32] ← R[5] 

• shiftl (op-code=17) 
This instruction shifts left the contents of the register ra, as many times as is 
specified through the immediate constant of the instruction. For example: 
shiftl r1, 6    

• shiftr( op-code=18) 
This instruction shifts right the contents of the register ra, as many times as is 
specified through the immediate constant of the instruction. For example: 
shiftr r2, 5 

• store (op-code=10) 
The store instruction stores the value of the ra register to a memory location 
specified by the immediate constant. An example is, 
store r4, 34 
RTL description of this instruction is 
M[34]  ←  R[4] 

• subi (op-code=14) 
The subi instruction subtracts the immediate constant from the value of register 
ra, assigning back the result to the register ra. For instance,  
subi r3, 13  
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RTL description of the instruction 
R[3] ←  R[3]-13 

(ORIGINAL) ISA for the EAGLE 
(16-bit registers, 16-bit PC and IR, 8-bit memory) 

mnemonic 
opcode 

 

operand1 

3 bits 

operand2

3 bits 

constant
 
  8 bits 

Format Behavioral RTL 

add 01011 ra - - Y  R [0] ← R [ra]+R [0];  
addi 01101 ra  - c V  R [ra] ← R [ra]+(8αc<7>)©c; 
and 10011 ra - - Y  R[0] ← R[ra]&R[0]; 
andi 10100 ra - c V  R [ra] ← R [ra]& (8αc<7>)©c; 
br 11111100 - - c W  PC ← PC+(8αc<7>)©c; 
brnv 11100 ra - c V  (R [ra]<0): PC ← PC+(8αc<7>)©c;  
brnz 11001 ra - c V  (R [ra]<>0): PC ← PC+(8αc<7>)©c; 
brpl 11011 ra - c V   (R [ra]>0): PC ← PC+(8αc<7>)©c; 
brzr 11010 ra - c V  (R [ra]=0): PC ← PC+(8αc<7>)©c; 
div 10000 ra - - Y  R [0] ← R [0]/R [a], R [ra] ←R [0]%R [ra],
halt 11111010 - - - Z  RUN← 0; 
in 11101 ra - c V  R [ra] ←IO[c]; 
init 11111011 - - - Z  R [7…0] ← 0; 
load 01000 ra - c V  R [ra] ←M[c]; 
loadi 01001 ra - c V  R [ra] ←  (8αc<7>)©c; 
mov 00 ra rb - X  R [ra] ← R [rb]; 
mul 01111 ra - - Y  R [ra] © R [r0] ← R [ra]*R [0]; 
nop 11111001 - - - Z    ; 
not 10111 ra - - Y  R [ra] ←! (R [ra]); 
or 10101 ra - - Y  R [0] ← R [ra]~R [0]; 
ori 10110 ra - c V  R [ra] ← R [ra]~ (8αc<7>)©c; 
out 11110 ra - c V  IO[c] ←R [ra]; 
reset 11111000 - - - Z   TBD; 
shiftl 10001 ra - c V  R [ra] ← R [ra]<(7-n)..0>©(nα0); 
shiftr 10010 ra - c V  R [ra] ← (nα0)©R [ra]<7...n>;  
store 01010 ra - c V  M[c]← R [ra]; 
sub 01100 ra - - Y  R [0] ← R [0]-R [a];  
subi 01110 ra - c V  R [ra] ← R [ra]- (8αc<7>)©c; 

  
 

Symbol Meaning Symbol Meaning 
α Replication % Remainder after integer division 
© Concatenation & Logical AND 
: Conditional constructs (IF-THEN) ~ Logical OR 
; Sequential constructs ! Logical NOT or complement 
, Concurrent constructs ← LOAD or assignment operator 
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Limitations of the ORIGINAL EAGLE ISA 
The original 16-bit ISA of EAGLE has severe limitations, as outlined below. 

1. Use of R0 as accumulator 
In most cases, the register R0 is being used as one of the 
source operands as well as the destination operand. Thus, 
R0 has essentially become the accumulator. However, this 
will require some additional instructions for use with the 
accumulator. That should not be a problem since there are 
some unused op-codes available in the ISA. 

2. Unequal and inefficient op-code assignment 
The designer has apparently tried to extend the number of 
operations in the ISA by op-code extension. Op-code 11111 
combine three additional bits of the instruction for five 
instructions: unconditional branch, nop, halt, reset and 
init.while there is a possibility of including three more 
instructions in this scheme, notice that op-code 00 for 
register to register mov is causing a “loss” of eight “slots” in 
the original 5-bit op-code assignment. (The mov instruction 
is, in effect, using eight op-codes). A better way would be to 
assign a 5-bit op-code to mov and use the remaining op-
codes for other instructions. 

3. Number of the operands 
Looking at the mov instruction again, it can be noted that 
this is the only instruction that uses two operands, and thus 
requires a separate format (Format#1) for instruction 
enoding. If the job of this instruction is given to two 
instructions (copy register to accumulator, and copy 
accumulator to register), the number of instruction formats 
can be reduced thereby, simplifying the assembler and the 
compiler needed for this ISA. 

4. Use of registers for branch conditions 
Note that one of the GPRs is being used to hold the branch condition. This would require 
that the result from the accumulator be copied to the particular GPR before the branch 
instruction. Including flags with the ALSU can eliminate this restriction 

 
The Modified EAGLE 
The modified EAGLE is an improved version of the processor EAGLE. As we have 
already discussed, there were several limitations in EAGLE, and these have been 
remedied in the modified EAGLE processor.  
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Introduction 
The modified EAGLE is also an accumulator-based processor. It is a simple, yet complex 
enough to illustrate the various concepts of a processor design. 
The modified EAGLE is characterized by  

• A special purpose register, the 16-bit accumulator:  ACC 
• 8 General Purpose Registers of the CPU: R0, R1, …, R7; 16-bits each 
• Two 16-bit system registers transparent to the programmer are the Program 

Counter (PC) and the Instruction Register (IR). 
• Memory word size:  16 bits 
• Memory space size: 216 bytes 
• Memory organization: 216 x 8 bits 
• Memory is accessed in 16 bit words (i.e., 2 byte chunks) 
• Little-endian byte storage is employed 
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Programmer’s View of the Modified EAGLE 
The given figure is the 
programmer’s view of the 
modified EAGLE processor. 
Notation 
The notation that is employed for 
the study of the modified EAGLE 
is the same as the original EAGLE 
processor. Recall that we know 
that: 
Enclosing the register name in 
square brackets refers to register 
contents; for instance, R [3] means contents of register R3.  
Enclosing the location address in square brackets, preceded by ‘M’, lets us refer to 
memory contents. Hence M [8] means contents of memory location 8.  
As little endian storage is employed, a memory word at address x is defined as the 16 
bits at address x+1 and x. For instance, the bits at memory location 9,8 define the 
memory word at location 8. So employing the special notation for 16-bit memory words, 
we have 
M[8]<15…0>:=M[9]©M[8] 
Where © is used to represent 
concatenation 
The memory word access and copy to a 
register is shown in the figure. 
Features 
The following features characterize the 
modified EAGLE processor. 

• Instruction length is variable. Instructions are either 8 bits or 16 long, i.e., 
instruction size is either half a word or 1 word. 

• The instructions may have either one or two operands. 
• The only way to access 

memory is through load and 
store instructions  

• Limited addressing modes are 
supported 

Note that these properties are the same 
as the original EAGLE processor 

Instruction formats 
There are four instruction format types 
in the modified EAGLE processor as 
well. These are 
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Encoding of the General Purpose Registers 

The encoding for the eight 
GPRs is shown in the table. 
These are binary codes 
assigned to the registers 
that will be used in place of 
the ra, rb in the actual 
instructions of the modified 
processor EAGLE. 
 

ISA for the Modified 
EAGLE 
(16-bit registers, 16-bit ACC, PC and IR, 8-bit wide memory, 256 I/O ports) 

Mnemonic Op-code Operand 
3bits 

Constant
8 bits Format Behavioral RTL 

Unused 00111     
addi 00100 ra  C1 X  ACC ← R[ra] +(8αC1<7>)©C1; 
subi 00101 ra C1 X  ACC ← R[ra] - (8αC1<7>)©C1; 
shiftl 01010 ra C1 X  R[ra] ← R[ra]<(15-n)..0>©(nα0); 
shiftr 01011 ra C1 X  R[ra] ← (nα0)©R[ra]<15...n>;  
andi 01100 ra C1 X  ACC ← R[ra] & (8αC1<7>)©C1; 
ori 01101 ra C1 X  ACC ← R[ra]  ~ (8αC1<7>)©C1; 
asr 01110 ra C1 X  R[ra] ← (nαR[ra}<15>)©R[ra]<15...n>;  
in 10001 ra C1 X  R[ra] ←IO[C1]; 
ldacc 10010 ra C1 X  ACC ←M[R[ra] +(8αC1<7>)©C1]; 
movir 10100 ra C1 X  R[ra] ←  (8αC1<7>)©C1; 
out 10101 ra C1 X  IO[C1] ←R[ra]; 
stacc 10111 ra C1 X  M[R[ra] +(8αC1<7>)©C1]← ACC; 
movia 10011  C1 W  ACC ←  (8αC1<7>)©C1; 
br 11000 - C1 W  PC ← PC + 8αC1<7>)©C1; 
brn 11001  C1 W  (S=1): PC ←  PC+(8αC1<7>)©C1;  
brnz 11010  C1 W  (Z=0): PC  ← PC+(8αC1<7>)©C1; 
brp 11011  C1 W  (S=0): PC ← PC+(8αC1<7>)©C1; 
brz 11100  C1 W  (Z=1): PC ← PC+(8αC1<7>)©C1; 
add 00000 ra - Y  ACC ← ACC + R[ra];      
sub 00001 ra - Y  ACC ← ACC - R[a];      

div 00010 ra - Y 
 ACC ← (R[ra] ©ACC)/R[a], 

 R[ra] ← (R[ra] ©ACC)%R[a]; 
mul 00011 ra - Y  R[ra] © ACC ← R[ra]*ACC; 
and 01000 ra - Y  ACC ← ACC & R[ra];      
or 01001 ra - Y  ACC ← ACC ~ R[ra]; 
not 01111 ra - Y  ACC ← !( R[ra]); 
a2r  10000 ra - Y  R[ra] ← ACC 
r2a 10110 ra  Y   ACC ← R[ra] 
cla 00110   Z  ACC ← 0; 
halt 11101 - - Z  RUN← 0; 
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nop 11110 - - Z    ; 
reset 11111 - - Z   TBD; 

  
 

Symbol Meaning Symbol Meaning 
α Replication % Remainder after integer division 
© Concatenation & Logical AND 
: Conditional constructs (IF-THEN) ~ Logical OR 
; Sequential constructs ! Logical NOT or complement 
, Concurrent constructs ← LOAD or assignment operator 

  
  


