
Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 125 

Computer Architecture 
 

Lecture No. 10 
 

Reading Material 
        Handouts                                                                                                Slides    
 
Summary 

3) The FALCON-E 
4) Instruction Set Architecture Comparison 

THE FALcON-E 
INTRODUCTION 
FALCON stands for First Architecture for Learning Computer Organization and 
Networks. We are already familiar with our example processor, the FALCON-A, which 
was the first version of the FALCON processor. In this section we will develop a new 
version of the processor. Like its predecessor, the FALCON-E is a General-Purpose 
Register machine that is simple, yet is able to elucidate the fundamentals of computer 
design and architecture.  
The FALCON-E is characterized by the following  

• Eight General Purpose Registers (GPRs), named R0, R1…R7. Each registers is 4 
bytes long (32-bit registers). 

• Two special purposes registers, named BP and SP. These registers are also 32-bit 
in length. 

• Two special registers, the Program Counter (PC) and the Instruction Register 
(IR). PC points to the next instruction to be executed, and the IR holds the current 
instruction. 

• Memory word size is 32 bits (4 
bytes).  

• Memory space is 232 bytes 
• Memory is organized as 1-byte 

cells, and hence it is 232 x 8 
bits.  

• Memory is accessed in 32-bit 
words (4-byte chunks, or 4 
consecutive cells) 

• Byte storage format is little 
endian. 

 
Programmer’s view of the FALCON-E 
The programmer’s view of the FALCON-E is shown in the given figure.  
FALCON-E Notation 
We take a brief look at the notation that we will employ for the FACLON-E. 
Register contents are referred to in a similar fashion as the FALCON-A, i.e. the register 
name in square brackets. So R[3] means contents of register R3. 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 126 

Memory contents (or the memory 
location) can be referred to in a similar 
way. Therefore, M[8] means contents 
of memory location 8. 
A memory word is stored in the 
memory in the little endian format. 
This means that the least significant 
byte is stored first (or the little end comes first!). For instance, a memory word at address 
8 is defined as the 32 bits at addresses 11, 10, 9, and 8 (little-endian). So we can employ a 
special notation to refer to the memory words. Again, we will employ © as the 
concatenation operator. In our notation for the FALCON-E, the memory word stored at 
address 8 is represented as: 
M[8]<31…0>:=M[11]©M[10]©M[9]©M[8] 
The shown figure will make this easier to understand.  
FALCON-E Features 
The following features characterize the FALCON-E 

• Fixed instruction size, which is 32 bits. So the instruction size is 1 word. 
• All ALU instructions have three operands 
• Memory access is possible only through the load and store instructions. Also, only 

a limited addressing modes are supported by the FALCON-E 
FALCON-E Instruction Formats 
Four different instruction formats are supported by the FALCON-E. These are  
Type A instructions 
The type A instructions have 5 bits reserved for the operation code (abbreviated op-code), 
and the rest of the bits are either not used or specify a displacement. 

 
Type B instructions 
The type B instructions also have 5 bits (27 through 31) reserved for the op-code. There 
is a register operand field, ra, and an immediate or displacement field in addition to the 
op-code field. 

 
Type C instructions 
Type C instructions have the 5-bit op-code field, two 3-bit operand registers (rb is the 
source register, ra is the destination register), a 17-bit immediate or displacement field, as 
well as a 3-bit function field. The function field is used to differentiate between 
instructions that may have the same op-code, but different operations. 

 
Type D instructions 
Type D instructions have the 5-bit op-code field, three 3-bit operand registers, 14 bits are 
unused, and a 3-bit function field. 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 127 

 
 
Encoding for the General Purpose Registers (GPRs) 
In the instruction formats discussed above, we used register operands ra, rb and rc. It is 
important to know that these are merely placeholders, and not the real register names. In 
an actual instruction, any one of the 8 registers of our general-purpose register file may 
be used. We need to encode our registers so we can refer to them in an instruction. Note 
that we have reserved 3 bits for each of the register field. This is because we have 8 
registers to represent, and they can be completely represented by 3 bits, since 23 = 8. The 
following table shows the binary encoding of the general-purpose registers. 

 
There are two more special registers that we need to represent; the SP and the BP. We 
will use these registers in place of the operand register rb in the load and store 
instructions only, and therefore, we may encode these as 

 

 

Instructions, Instruction Formats 
The following is a brief introduction to the various instructions of the FALCON-E, 
categorized with respect to the instruction formats. 

Type A instructions 
Four instructions of the FALCON-E belong to type A. These are  



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 128 

• nop (op-code = 0) 
This instruction instructs the processor to do nothing. It is generally useful in 
pipelining. We will study more on pipelining later in the course. 

• ret (op-code = 15) 
The return instruction is used to return control to the normal flow of a program 
after an interrupt or a procedure call concludes 

• iret (op-code = 17) 
The iret instruction instructs the processor to return control to the address 
specified by the immediate field of the instruction. Setting the program counter to 
the specified address returns control. 

• near jmp (op-code = 18) 
A near jump is a PC-relative jump. The PC value is incremented (or decremented) 
by the immediate field value to take the jump. 

Type B instructions 
Five instructions belong to the type B format of instructions. These are: 

• push (op-code = 8) 
This instruction is used to push the contents of a register onto the stack. For 
instance, the instruction,  
push R4 
will push the contents of register R4 on top of the stack 

• pop (op-code =  9)   
The pop instruction is used to pop a value from the top of the stack, and the value 
is read into a register. For example, the instruction 
pop R7 
will pop the upper-most element of the stack and store the value in register R7 

• ld (op-code = 10) 
This  instruction with op-code (10) loads a memory word from the address 
specified by the immediate filed value. This word is brought into the operand 
register ra. For example, the instruction, 
ld R7, 1254h 
will load the contents of the memory at the address 1254h into the register R7. 

            
• st (op-code =  12) 

The store instruction of (opcode 12) stores a value contained in the register 
operand into the memory location specified by the immediate operand field. For 
example, in 
st R7, 1254h 
the contents of register R7 are saved to the memory location 1254h. 

Type C instructions 
There are four data transfer instructions, as well as nine ALU instructions that belong to 
type C instruction format of the FALCON-E. 
The data transfer instructions are 

• lds (op-code = 4) 
The load instruction with op-code (4)loads a register from the memory, after 
calculating the address of the memory location that is to be accessed. The 
effective address of the memory location to be read is calculated by adding the 
immediate value to the value stored by the register rb. For instance, in the 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 129 

example below, the immediate value 56 is added to the value stored by the 
register R4, and the resultant value is the address of the memory location which is 
read 

   lds R3, R4(56) 
 In RTL, this can be shown as 

R [3]     ← M[R [4]+56] 
• sts (op-code = 5) 

This instruction is used to store the register contents to the memory location, by 
first calculating the effective memory address. The address calculation is similar 
to the lds instruction. An example: 

 sts R3, R4 (56)  
In RTL, this is shown as  
M[R [4]+56]     ← R [3] 

• in (op-code = 6)  
This instruction is to load a register from an input/output device. The effective 
address of the I/O device has to be calculated before it is accessed to read the 
word into the destination register ra, as shown in the example: 

 in R5, R4(100) 
In RTL: 
 R[5]   ←    IO[R[4]+100] 

• out (op-code = 7) 
This instruction is used to write / store the register contents into an input/output 
device. Again, the effective address calculation has to be carried out to evaluate 
the destination I/O address before the write can take place. For example,  
out R8, R6 (36) 
RTL representation of this is  
IO[R [6]+36]  ← R [8] 

  Three of the ALU instructions that belong to type C format are 
• addi (op-code = 2) 

The addi instruction is to add a constant to the value of operand register rb, and 
assign the result to the destination register ra. For example, in the following 
instruction, 56 is added to the value of register R4, and result is assigned to the 
register R3. 
addi R3, R4, 56 
In RTL this can be shown as  
R[3]     ←    R[4]+56 
Note that if the immediate constant specified was a negative number, then this 
would become a subtract operation. 

• andi (op-code = 2) 
This instruction is to calculate the logical AND of the immediate value and the rb 
register value. The result is assigned to destination register ra. For instance 
andi R3, R4, 56 

 R[3]     ←    R[4]&56 
 Note that the logical AND is represented by the symbol ‘&’ 
• ori (op-code = 2) 

This instruction calculates the logical OR of the immediate field and the value in 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 130 

operand register rb. The result is assigned to the destination register ra. Following 
is an example: 
ori R3, R4, 56  
The RTL representation of this instruction: 
R [3]  ← R [4]~56 

 Note that the symbol ‘~’ is used to represent logical OR. 
 

Type D Instructions 
Four of the instructions that belong to this instruction format type are the ALU 
instructions shown below. There are other instructions of this type as well, listed in the 
tables at the end of this section. 

• add (op-code = 1) 
This instruction is used to add two numbers. The numbers are stored in the registers 
specified by rb and rc. Result is stored into register ra. For instance, the instruction, 
add R3, R5, R6  

     adds the numbers in register R5, R6, storing the result in R3. In RTL, this is given by 
R [3]  ← R [5] + R [6] 
• sub (op-code = 1) 

This instruction is used to carry out 2’s complement subtraction. Again, register 
addressing mode is used, as shown in the example instruction 
sub R3, R5, R6 

 RTL representation of this is 
R[3]  ← R[5] - R[6] 

• and (op-code = 1)  
For carrying out logical AND operation on the values stored in registers, this 
instruction is employed. For instance 
and R8, R3, R4 
In RTL, we can write this as 
R [8]  ← R [3] & R [4] 

• or (op-code = 1) 
For evaluating logical OR of values stored in two registers, we use this 
instruction. An example is 
or R8, R3, R4  
In RTL, this is 
R [8]  ← R [3] ~ R [4] 

 

Falcon-E  
Instruction Summary 
The following are the tables that list the instructions that form the instruction set of the 
FALCON-E. These instructions have been grouped with respect to the functionality they 
provide. 
 
 
 
 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 131 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 132 

 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 133 

 
 

 
 

 

 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 134 

 
 
Instruction Set Architecture Comparison 
In this lecture, we compare the instruction set architectures of the various processors we 
have described/ designed up till now. These processors are: 

• EAGLE 
• FALCON-A 
• FALCON-E 
• SRC 

Classifying Instruction Set Architectures 
In the design of the ISA, the choice of some of the parameters can critically affect the 
code density (which is the number of instructions required to complete a given task), 
cycles per instruction (as some instructions may take more than one clock cycle, and the 
number of cycles per instruction varies from instruction to instruction, architecture to 
architecture), and cycle time (the total cycle time to execute a given piece of code). 
Classification of different architectures is based on the following parameters. 

 
 
 
 
Instruction Length 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 135 

With reference to the instruction lengths in a particular ISA, there are two decisions to be 
made; whether the instruction will be fixed in length or variable, and what will be the 
instruction length or the range (in case of variable instruction lengths). 

 
Fixed versus variable 
Fixed instruction lengths are desirable when simplicity of design is a goal. It provides 
ease of implementation for assembling and pipelining. However, fixed instruction length 
can be wasteful in terms of code density. All the RISC machines use fixed instruction 
length format 
 
Instruction Length 
The required instruction length mainly depends on the number of instruction required to 
be in the instruction set of a processor (the greater the number of instructions supported, 
the more bits are required to encode the operation code), the size of the register file 
(greater the number of registers in the register file, more is the number of bits required to 
encode these in an instruction), the number of operands supported in instructions (as 
obviously, it will require more bits to encode a greater number of operands in an 
instruction), the size of immediate operand field (the greater the size, the more the range 
of values that can be specified by the immediate operand) and finally, the code density 
(which implies how many instructions can be encoded in a given number of bits). 
A summary of the instruction lengths of our processors is given in the table below. 

 
Instruction types and sub-types 
The given table summarizes the number of instruction types and sub-types of the 
processors we have studied. We have already studied these instruction types, and their 
sub-types in detail in the related sections. 

 
Number of operands in the instructions 
The number of operands that may be required in an instruction depends on the type of 
operation to be performed by that instruction; some instruction may have no operands, 
other may have up to 3. But a limit on the maximum number of operands for the 
instruction set of a processor needs to be defined explicitly, as it affects the instruction  



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 136 

 
 

length and code density. The maximum number of operands supported by the instruction 
set of each processor under study is given in the given table. So FALCON-A, FALCON-
E and the SRC processors may have 3, 2, 1 or no operands, depending on the instruction. 
EAGLE has a maximum number of 2 operands; it may have one operand or no operands 
in an instruction. 
Explicit operand specification in an instruction gives flexibility in storage. Implicit 
operands like an accumulator or a stack reduces the instruction size, as they need not be 
coded into the instruction. Instructions of the processor EAGLE have implicit operands, 
and we saw that the result is automatically stored in the accumulator, without the 
accumulator being specified as a destination operand in the instruction.   
Number and Size of General Purpose Registers 
While designing a processor, another decision that has to be made is about the number of 
registers present in the register file, and the size of the registers.  
Increasing the number of registers in the register file of the CPU will decrease the 
memory traffic, which is a desirable attribute, as memory accesses take relatively much 
longer time than register access. Memory traffic decreases as the number of registers is 
increased, as variables are copied into the registers and these do not have to be accessed 
from memory over and over again. If there is a small number of registers, the values 
stored previously will have to be saved back to memory to bring in the new values; more 
registers will solve the problem of swapping in, swapping out. However, a very large 
register file is not feasible, as it will require more bits of the instruction to encode these 
registers. The size of the registers affects the range of values that can be stored in the 
registers.  
The number of registers in the register file, along with the size of the registers, for each of 
the processors under study, is in the given table. 

 
Memory specifications 
Memory design is an integral part of the processor design. We need to decide on the 
memory space that will be available to the processor, how the memory will be organized, 
memory word size, memory access bus width, and the storage format used to store words 
in memory. The memory specifications for the processor under comparison are: 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 137 

 
Data transfer instructions 
Data needs to be transferred between storage devices for processing. Data transfers may 
include loading, storing back or copying of the data. The different ways in which data 
transfers may take place have their related advantages and disadvantages. These are listed 
in the given table. 

 
Following are the data transfer instructions included in the instruction sets of our 
processors. 
Register to register transfers 
As we can see from the given table on the next page, in the processor EAGLE, register to 
register transfers are of two types only: register to accumulator, or accumulator to 
register. Accumulator is a special-purpose register.  
FALCON-A has a mov instruction, which can be used to move data of any register to any 
other register. FALCON-E has the instructions ‘lds’ and ‘sts’ which are used to load/store 
a register from/to memory after effective address calculation. 
SRC does not provide any instruction for data movement between general-purpose 
registers. However, this can be accomplished indirectly, by adopting either of the 
following two approaches: 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 138 

• A register’s contents can be loaded into another register via memory. First storing 
the content of a register to a particular memory location, and then reading the 
contents of the memory from that location into the register we want to copy the 
value to can achieve this. However, this method is very inefficient, as it requires 
memory accesses, which are inherently slow operations. 

• A better method is to use the addi instruction with the constant set to 0. 

 
Register to memory 
EAGLE has instructions to load values from memory to the special purpose register, 
names the accumulator, as well as saving values from the accumulator to memory. Other 
register to memory transfers is not possible in the EAGLE processor. FALCON-A, 
FALOCN-E and the SRC have simple load, store instructions and all register-memory 
transfers are supported. 
Memory to memory 
In any of the processors under study, memory-to-memory transfers are not supported. 
However, in other processors, these may be a possibility. 

 
Control Flow Instructions 
All processors have instructions to control the flow of programs in execution. The general 
control flow instructions available in most processors are: 

• Branches (conditional) 
• Jumps (unconditional) 
• Calls (procedure calls) 
• Returns (procedure returns) 

Conditional Branches 
Whereas jumps, calls and call returns changes the control flow in a specific order, 
branches depend on some conditions; if the conditions are met, the branch may be taken, 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 139 

otherwise the program flow may continue linearly. The branch conditions may be 
specified by any of the following methods: 

 
• Condition codes 
• Condition register 
• Comparison and branching 

Condition codes 
The ALU may contain some special bits (also called flags), which may have been set (or 
raised) under some special circumstances. For instance, a flag may be raised if there is an 
overflow in the addition results of two register values, or if a number is negative. An 
instruction can then be ordered in the program that may change the flow depending on 
any of these flag’s values. The EAGLE processor uses these condition codes for branch 
condition evaluation.   
Condition register 
A special register is required to act as a branch register, and any other arbitrary register 
(that is specified in the branch instruction), is compared against that register, and the 
branching decision is based on the comparison result of these two registers. None of the 
processors under our study use this mode of conditional branching. 
Compare and branch 
In this mode of conditional branching, comparison is made part of the branching 
instruction. Therefore, it is somewhat more complex than the other two modes. All the 
processors we are studying use this mode of conditional branching.  
Size of jumps  
Jumps are deviations from the linear program flow by a specified constant. All our 
processors, except the SRC, support PC-relative jumps. The displacement (or the jump) 
relative to the PC is specified by the constant field in the instruction. If the constant field 
is wider (i.e. there are more bits reserved for the constant field in the instruction), the 
jump can be of a larger magnitude. Shown table specifies the displacement size for 
various processors. 

 
Addressing Modes 
All processors support a variety of addressing modes. An addressing mode is the method 
by which architectures specify the address of an object they will access. The object may 
be a constant, a register or a location in memory.  
Common addressing modes are 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 140 

• Immediate 
An immediate field may be provided in instructions, and a constant value may be 
given in this immediate field, e.g. 123 is an immediate value. 

• Register 
A register may contain the value we refer to in an instruction, for instance, 
register R4 may contain the value being referred to. 

• Direct 
By direct addressing mode, we mean the constant field may specify the location 
of the memory we want to refer to. For instance, [123] will directly refer to the 
memory location 123’s contents. 

• Register Indirect 
A register may contain the address of memory location to which we want to refer 
to, for example, M [R3]. 

• Displacement 
In this addressing mode, the constant value specified by the immediate field is 
added to the register value, and the resultant is the index of memory location that 
is referred to, e.g. M [R3+123] 

• Relative 
Relative addressing mode implies PC-relative addressing, for example, [PC+123] 
will refer to the memory location that is 123 words farther than the memory index 
currently stored in the program counter. 

• Indexed or scaled 
The values contained in two registers are added and the resultant value is the 
index to the memory location we refer to, in the indexed addressing mode. For 
example, M [[R1]+[R2]]. In the scaled addressing mode, a register value may be 
scaled as it is added to the value of the other register to obtain the index of 
memory location to be referred to.  

• Auto increment/ decrement 
In the auto increment mode, the value held in a register is used as the index to 
memory location that holds the value of operand. After the operand’s value is 
retrieved, the register value is automatically increased by 1 (or by any specified 
constant). e.g. M [R4]+, or M [R4]+d. In the auto decrement mode, the register 
value is first decremented and then used as a reference to the memory location 
that referred to in the instruction, e.g. -M [R4]. 

 
As may be obvious to the reader, some of these addressing modes are quite simple, others 
are relatively complex. The complex addressing modes (such as the indexed) reduce the 
instruction count (thus improving code density), at the cost of more complex 
implementation.  
The given table lists the addressing modes supported by the processors we are studying. 
 Note that the register-addressing mode is a special case of the relative addressing mode, 
with the constant equal to 0, and only the PC can be used as a source. Also note that, in 
the shown table, relative implies PC-relative. 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 141 

 
Displacement addressing mode 
We have already talked about the displacement-addressing mode. We look at this 
addressing mode at length now.  
The displacement-addressing mode is the most common of the addressing mode used in 
general purpose processors. Some other modes such as the indexed based plus index, 
scaled and register indirect are all slightly modified forms of the displacement-addressing 
mode. The size of displacement plays a key role in efficient address calculation.  The 
following table specifies the size of the displacement field in different processors under 
study.  

 
The given table lists the size of the immediate field in our processors. 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 142 

 
Instructions common to all Instruction Set Architectures 
In this section we have listed the instructions that are common to the Instruction Set 
Architectures of all the processors under our study.  

• Arithmetic Instructions 
 add, addi & sub. 

• Logic Instructions 
 and, andi, or, ori, not. 

• Shift Instructions. 
 Right shift, left shift & arithmetic right shift. 

• Data movement Instructions. 
 Load and store instructions. 

• Control Instructions 
 Conditional and unconditional branches, nop & reset. 
The following tables list the assembly language instruction codes of these common 
instructions for all the processors under comparison. 

 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 143 

 

 
 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 144 

 
 

 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 145 

 
 

 
 
Instructions unique to each processor 
Now we take a look at the instructions that are unique to each of the processors we are 
studying.  
EAGLE 
The EAGLE processor has a minimal instruction set. Following are the instructions that 
are unique only to the EAGLE processor. Note that these instructions are unique only 
with reference to the processor set under our study; some other processors may have 
these instructions.  

• movia 
This instruction is for moving the immediate value to the accumulator (the special 
purpose register) 

• a2r 
This instruction is for moving the contents of the accumulator to a register 

• r2a 
For moving register contents to the accumulator 

• cla 
For clearing (setting to zero) the value in the accumulator 

FALCON-A 
There is only one instruction unique to the FALCON-A processor; 

• ret  
This instruction is used to return control to a calling procedure. The calling 
procedure may save the PC value in a register ra, and when this instruction is 
called, the PC value is restored. In RTL, we write this as 

 PC  R [ra]; 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 146 

FALCON-E 
The instructions unique to the FALCON-E processor are listed: 

• push 
To push the contents of a specified general purpose register to the stack 

• pop 
To pop the value that is at the top of the stack 

• ldr 
To load a register with memory contents using displacement addressing mode 

• str 
To store a register value into memory, using displacement addressing mode 

• bl 
To branch if source operand is less than target address 

• bg 
To branch if source operand is greater than target address  

• muli 
To multiply an immediate value with a value stored in a register 

• divi 
To divide a register value by the immediate value 

 
• xor, xori 

To evaluate logical ‘exclusive or’  
• ror, rori 

SRC 
Following are the instructions that are unique to the SRC processor, among of the 
processors under study 

• ldr 
To load register from memory using PC-relative address 

• lar 
To load a register with a word from memory using relative address 

• str 
To store register value to memory using relative address 

• brlnv 
This instruction is to tell the processor to ‘never branch’ at that point in program. 
The instruction saves the program counter’s contents to the register specified 

• brlpl 
This instruction instructs the processor to branch to the location specified by a 
register given in the instruction, if the condition register’s value is positive. 
Return address is saved before branching. 

• brlmi 
This instruction instructs the processor to branch to the location specified by a 
register given in the instruction, if the condition register’s value is negative. 
Return address is saved before branching. 

• brlzr 
This instruction instructs the processor to branch to the location specified by a 
register given in the instruction, if the condition register’s value equals zero. 
Return address is saved before branching. 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 147 

• brlnz 
This instruction instructs the processor to branch to the location specified by a 
register given in the instruction, if the condition register’s value does not equal 
zero. Return address is saved before branching. 

Problem Comparison 
Given is the code for a simple C statement: 
a=(b-2)+4c  
The given table gives its implementation in all the four processors under comparison. 
Note that this table highlights the code density for each of the processors; EAGLE, which 
has relatively fewer specialized instructions, and so it takes more instructions to carry out 
this operation as compared with the rest of the processors. 



Advanced Computer Architecture-CS501                                            

Last Modified: 01-Nov-06                                                                                                  Page 148 

 
 
 
 


