
Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 150

Lecture Handouts

Computer Architecture

Lecture No. 12

Reading Material
Vincent P. Heuring&Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 4.1, 4.2, 4.3

Summary

7) The design process
8) A Uni-Bus implementation for the SRC
9) Structural RTL for the SRC instructions

Central Processing Unit Design

This module will explore the design of the central processing
unit from the logic designer’s view. A unibus implementation
of the SRC is discussed in detail along with the Data Path
Design and the Control Unit Design.
The topics covered in this module are outlined below:

1. The Design Process
2. Unibus Implementation of the SRC
3. Structural RTL for the SRC
4. Logic Design for one bus SRC
5. The Control Unit
6. 2-bus and 3-bus designs
7. The machine reset
8. The machine exceptions

As we progress through this list of topics, we will learn how to convert the earlier
specified behavioral RTL into a concrete structural RTL. We will also learn how to
interconnect various programmer visible registers to get a complete data path and how to
incorporate various control signals into it. Finally, we will add the machine reset and
exception capability to our processor.
The design process
The design process of a processor starts with the specification of the behavioral RTL for
its instruction set. This abstract description is then converted into structural RTL which
shows the actual implementation details. Since the processor can be divided into two
main sub-systems, the data path and the control unit, we can split the design procedure
into two phases.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 151

1. The data path design
2. The control unit design

It is important that the design activity of these
important components of the processor be carried
out with the pros and cons of adopting different
approaches in mind.
As we know, the execution time is dependent on
the following three factors.
ET = IC x CPI x T
During the design procedure we specify the
implementation details at an advanced level.
These details can affect the clock cycle per
instruction and the clock cycle time. Hence
following things should be kept in mind during the design phase.

• Effect on overall performance
• Amount of control hardware
• Development time

Processor Design
Let us take a look at the steps involved in the processor design procedure.

1. ISA Design
The first step in designing a processor is the specification of the instruction set of
the processor. ISA design includes decisions involving number and size of
instructions, formats, addressing modes, memory organization and the
programmer’s view of the CPU i.e. the number and size of general and special
purpose registers.

2. Behavioral RTL Description
In this step, the behavior of processor in response to the specific instructions is
described in register transfer language. This abstract description is not bound to
any specific implementation of the processor. It presents only those static
(registers) and dynamic aspects (operations) of the machine that are necessary to
understand its functionality. The unit of activity here is the instruction execution
unlike the clock cycle in actual case. The functionality of all the instructions is
described here in special register transfer notation.

3. Implementation of the Data Path
The data path design involves decisions like the placement and interconnection of
various registers, the type of flip-flops to be used and the number and kind of the
interconnection buses. All these decisions affect the number and speed of register
transfers during an operation. The structure of the ALU and the design of the
memory-to-CPU interface also need to be decided at this stage. Then there are the
control signals that form the interface between the data path and the control unit.
These control signals move data onto buses, enable and disable flip-flops, specify
the ALU functions and control the buses and memory operations. Hence an
integral part of the data path design is the seamless embedding of the control
signals into it.

4. Structural RTL Description

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 152

In accordance with the chosen data path implementation, the structural RTL for every
instruction is described in this step. The structural RTL is formed according to the
proposed micro-architecture which includes many hidden temporary registers
necessary for instruction execution. Since the structural RTL shows the actual
implementation steps, it should satisfy the time and space requirements of the CPU as
specified by the clocking interval and the number of registers and buses in the data
path.

5. Control Unit Design
The control unit design is a rather tricky process as it involves timing and
synchronization issues besides the usual combinational logic used in the data path
design. Additionally, there are two different approaches to the control unit design; it
can be either hard-wired or micro-programmed. However, the task can be made
simpler by dividing the design procedure into smaller steps as follows.

a. Analyze the structural RTL and prepare a list of control signals to be
activated during the execution of each RTL statement.

b. Develop logic circuits necessary to generate the control signals
c. Tie everything together to complete the design of the control unit.

Processor Design
 A Uni-bus Data Path Implementation for the SRC
In this section, we will discuss the uni-bus implementation of the data path for the SRC.
But before we go onto the design phase, we will discuss what a data path is. After the
discussion of the data path design, we will discuss the timing step generation, which
makes possible the synchronization of the data path functions.

The Data Path
The data path is the arithmetic portion of the Von Neumann architecture. It consists of
registers, internal buses, arithmetic units and shifters. We have already discussed the
decisions involved in designing the data path. Now we shall have an overview of the 1-
Bus SRC data path design. As the name suggests, this implementation employs a single
bus for data flow. After that we develop each of its blocks in greater detail and present
the gate level implementation.
Overview of the Unibus SRC Data
Path
The 1-bus implementation of the SRC
data path is shown in the figure given.
The control signals are omitted here
for the sake of simplicity. Following
units are present in the SRC data path.

1. The Register File
The general-purpose register
file includes 32 registers R0 to
R31 each 32 bit wide. These
registers communicate with
other components via the internal processor bus.

2. MAR

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 153

The Memory Address Register takes input from the ALSU as the address of the
memory location to be accessed and transfers the memory contents on that
location onto the memory sub-system.

3. MBR
The Memory Buffer Register has a bi-directional connection with both the
memory sub-system and the registers and ALSU. It holds the data during its
transmission to and from memory.

4. PC
The Program Counter holds the address of the next instruction to be executed. Its
value is incremented after loading of each instruction. The value in PC can also be
changed based on a branch decision in ALSU. Therefore, it has a bi-directional
connection with the internal processor bus.

5. IR
The Instruction Register holds the instruction that is being executed. The
instruction fields are extracted from the IR and transferred to the appropriate
registers according to the external circuitry (not shown in this diagram).

6. Registers A and C
The registers A and C are required to hold an operand or result value while the
bus is busy transmitting some other value. Both these registers are programmer
invisible.

7. ALSU
There is a 32-bit Arithmetic Logic Shift Unit, as shown in the diagram. It takes
input from memory or registers via the bus, computes the result according to the
control signals applied to it, and places it in the register C, from where it is finally
transferred to its destination.

Timing Step Generator
To ensure the correct and
controlled execution of instructions
in a program, and all the related
operations, a timing device is
required. This is to ensure that the
operations of essentially different
instructions do not mix up in time.
There exists a ‘timing step
generator’ that provides mutually
exclusive and sequential timing
intervals. This is analogous to the
clock cycles in the actual processor. A possible implementation of the timing step
generator is shown in the figure.
Each mutually exclusive step is carried out in one timing interval. The timing intervals
can be named T0, T1…T7. The given figure is helpful in understanding the ‘mutual
exclusiveness in time’ of these timing intervals.

Processor design
Structural RTL descriptions of selected
SRC instructions
Structural RTL for the SRC

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 154

The structural RTL describes how a particular operation is performed using a specific
hardware implementation. In order to present the structural RTL we assume that there
exists a “timing step generator”, which provides mutually exclusive and sequential timing
intervals, analogous to the clock cycles in actual processor.

Structural RTL for Instruction Fetch
The instruction fetch procedure takes three time steps as shown in the table. During the
first time step, T0, address of the
instruction is moved to the Memory
Address Register (MAR) and value of
PC is incremented. In T1 the
instruction is brought from the
memory into the Memory Buffer
Register(MBR), and the incremented
PC is updated. In the third and final time-step of the instruction fetch phase, the
instruction from the memory buffer register is written into the IR for execution.What
follows the instruction fetch phase, is the instruction execution phase. The number of
timing steps taken by the execution phase generally depends on the type and function of
instruction. The more complex the instruction and its implementation, the more timing
steps it will require to complete execution. In the following discussion, we will take a
look at various types of instructions, related timing steps requirements and data path
implementations of these in terms of the structural RTL.

Structural RTL for Arithmetic/Logic Instructions
The arithmetic/logic instructions come in two formats, one with the immediate operand
and the other with register operand. Examples of both are shown in the following tables.
Register-to-Register sub
Register-to-register subtract (or sub) will take three timing steps to complete execution,
as shown in the table. Here we have assumed
that the instruction given is:
 sub ra, rb, rc
Here we assume that the instruction fetch

process has taken up the first three timing

steps. In step T3 the internal register A

receives the contents of the register rb. In the next timing step, the value of register rc is

subtracted (since the op-code is sub) from A. In the final step, this result is transferred

into the destination register ra. This concludes the instruction fetch-execute cycle and at

the end of it, the timing step generator is initialized to T0.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 155

The given figure refreshes our

knowledge of the data path. Notice that

we can visualize how the steps that we

have just outlined can be carried out, if

appropriate control signals are applied

at the appropriate timing.
As will be obvious, control signals need to be applied to the ALSU, based on the
decoding of the op-code field of an instruction. The given table lists these control signals:
Note that we have used uppercase
alphabets for naming the ALSU
functions. This is to differentiate these
control signals from the actual
operation-code mnemonics we have
been using for the instructions.
The SHL, SHR, SHC and the SHRA
functions are listed assuming that a
barrel shifter is available to the
processor with signals to differentiate
between the various types of shifts that
are to be performed.
Structural RTL for Register-to-Register add
To enhance our understanding of the instruction execution phase implementation, we will
now take a look at some more instructions of
the SRC. The structural RTL for a simple add
instruction add ra, rb, rc is given in table.
The first three instruction fetch steps are
common to all instructions. Execution of
instruction starts from step T3 where the first
operand is moved to register A. The second
step involves computation of the sum and
result is transferred to the destination in step T5. Hence the complete execution of the add
instruction takes 6 time steps. Other arithmetic/logic instructions having the similar
structural RTL are “sub”, “and” and “or”. The only difference is in the T4 step where
the sign changes to (-), (^), or (~) according to the opcode.
Structural RTL for the not instruction
The first three steps T0 to T2 are used up in fetching the instruction as usual. In step T3,
the value of the operand specified by the register is brought into the ALSU, which will
use the control function NOT, negate the value (i.e. invert it), and the result moves to the
register C. In the time step R4, this result is assigned to the destination register through
the internal bus. Note that we need control signals to coordinate all of this; a control
signal to allow reading of the instruction-specified source register in T3, control signal
for the selection of appropriate function to be carried out at the ALSU, and control signal

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 156

to allow only the instruction-specified
destination register to read the result value
from the data bus.
The table shown outlines these steps for the
instruction: not ra, rb
Structural RTL for the addi instruction
Again, the first three time steps are for the
instruction fetch. Next, the first operand is brought into ALSU in step T3 through register
A. The step T4 is of interest here as the second operand c2 is extracted from the
instruction in IR register, sign extended to 32 bits, added to the first operand and written
into the result register C. The execution of instruction completes in step T5 when the
result is written into the destination register. The sign extension is assumed to be carried
out in the ALSU as no separate extension unit is provided.
Sign extension for 17-bit c2 is the same as:(15αIR<16> ©IR<16..0>)
Sign extension for 22-bit c1 is the same as:(10αIR<21> ©IR<21..0>)
The given table outlines the time steps for the instruction addi:
Other instructions that have the same
structural RTL are subi, andi and ori.
RTL for the load (ld) and store (st)
instructions
The syntax of load instructions is:
ld ra, c2(rb)
And the syntax of store instructions is:
st ra, c2(rb)
The given table outlines the time steps in
fetching and executing a load and a store
instruction. Note that the first 6 time steps (T0
to T5) for both the instructions are the same.
The first three steps are those of instruction
fetch. Next, the register A gets the value of
register rb, in case it is not zero. In time step T4, the constant is sign-extended, and added
to the value of register A using the ALSU. The result is assigned to register C. Note that
in the RTL outlined above, we are sign extending a field of the Instruction Register(32-
bit). It is so because this field is the constant field in the instruction, and the Instruction
Register holds the instruction in execution. In step T5, the value in C is transferred to the
Memory Address Register (MAR). This completes the effective address calculation of the
memory location to be accessed for the load/ store operation.If it is a load instruction in
time step T6, the corresponding memory location is accessed and result is stored in
Memory Buffer Register (MBR). In step T7, the result is transferred to the destination
register ra using the data bus.If the instruction is to store the value of a register, the time
step T6 is used to store the value of the register to the MBR. In the next and final step, the
value stored in MBR is stored in the memory location indexed by the MAR.We can look
at the data-path figure and visualize how all these steps can take place by applying
appropriate control signals. Note that, if more time steps are required, then a counter with
more bits and a larger decoder can be used, e.g., a 4-bit counter along with a 4-to-16
decoder can produce up to 16 time steps.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 157

