
Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 158

Advanced Computer Architecture

Lecture No. 13

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 4.2.2, slides

Summary

• Structural RTL Description of the SRC (continued…)
• Structural RTL Description of the FALCON-A

This lecture is a continuation of the previous lecture.

Structural RTL for branch instructions
Let us take a look at the structural RTL for branch instructions. We know that there are
several variations of the branch instructions including unconditional branch and different
conditional branches. We look at the RTL for ‘branch if zero’ (brzr) and ‘branch and link
if zero’ brlzr’ conditional branches.
The syntax for the branch if zero (brzr) is:
 brzr rb, rc
As you may recall, this instruction
instructs the processor to branch to the
instruction at the address held in
register rb, if the value stored in
register rc is zero. Time steps for this
instruction are outlined in the table.
The first three steps are of the
instruction fetch phase. Next, the value
of register rc is checked and depending
on the result, the condition flag CON is set. In time step T4, the program counter is set to
the register rb value, depending on the CON bit (the condition flag).
The syntax for the branch and link if zero (brlzr) is:
 brlzr ra, rb, rc
This instruction is the same as the
instruction brzr but additionally the
return address is saved (linking
procedure). The time steps for this
instruction are shown in the table.
Notice that the steps for this
instruction are the same as the
instruction brzr with an additional step
after the condition bit is set; the current

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 159

value of the program counter is saved to register ra.
Structural RTL for shift instructions
Shift instructions are rather
complicated in the sense that they
require extra hardware to hold and
decrement the count. For an ALSU
that can perform only single bit shifts,
the data must be repeatedly cycled
through the ALSU and the count
decremented until it reaches zero. This
approach presents some timing
problems, which can be overcome by
employing multiple-bit shifts using a
barrel shifter.
 The structural RTL for shr ra, rb, rc or shr ra, rb, c3 is given in the corresponding
table shown. Here n represents a 5-bit register; IR bits 0 to 4 are copied in to it. N is the
decimal value of the number in this register. The actual shifting is being done in step T5.
Other instructions that will have similar tables are: shl, shc, shra
e.g., for shra, T5 will have C← (NαR [rb] <31>) © R[rb] <31...N>;

Structural RTL Description of FALCON-A Instructions

Uni-bus data path implementation

Comparing the uni-bus implementation of FALCON-A with that of SRC results in the
following differences:

• FALCON-A processor bus has 16 lines or is 16-bits wide while that of SRC is
32-bits wide.

• All registers of FALCON-A are of 16-bits while in case of SRC all registers are
32-bits.

• Number of registers in FALCON-A are 8 while in SRC the number of registers is
32.

• Special registers i.e. Program Counter (PC) and Instruction Register (IR) are 16-
bit registers while
in SRC these are
32-bits.

• Memory Address
Register (MAR)
and Memory Buffer
Register (MBR) are
also of 16-bits
while in SRC these
are of 32-bits.

MAR and MBR are dual
port registers. At one side
they are connected to
internal bus and at other

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 160

side to external memory in order to point to a particular address for reading or writing
data from or to the memory and MBR would get the data from the memory.
ALSU functions needed
ALSU of FALCON-A has slightly different functions. These functions are given in the
table.
Note that mul and div
are two significant
instructions in this
instruction set. So
whenever one of these
instructions is activated,
the ALSU unit would
take the operand from
its input and provide the
output immediately, if
we neglect the
propagation delays to
its output. In case of
FACON-A, we have
two registers A and AH
each of 16-bits. AH
would contain the
higher 16-bits or most significant 16-bits of a 32-bit operand. This means that the ALSU
provides the facility of using 32-bit operand in certain instructions. At the output of
ALSU we could have a 32-bit result and that can not be saved in just one register C so we
need to have another one that is CH. CH can store the most significant 16-bits of the
result.
Why do we need to add AH and CH?
This is because we have mul and div instructions in the instruction set of the FALCON-
A. So for that case, we can implement the div instruction in which, at the input, one of the
operand which is dividend would be 32-bits or in case of mul instruction the output
which is the result of multiplication of two 16-bit numbers, would be 32-bit that could be
placed in C and CH. The data in these 2 registers will be concatenated and so would be
the input operand in two registers AH and A. Conceptually one could consider the A and
AH together to represent 32-bit operand.
Structural RTL for subtract
instruction
 sub ra, rb, rc
In sub instruction three registers are
involved. The first three steps will
fetch the sub instruction and in T3,
T4, T5 the steps for execution of
the sub instruction will be
performed.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 161

Structural RTL for addition
instruction

 add ra, rb, rc
The table of add instruction is

almost same as of sub instruction

except in timing step T4 we have +

sign for addition instead of – sign

as in sub instruction. Other instructions that belong to the same group are ‘and’, ‘or’ and

‘sub’.

Structural RTL for multiplication instruction
 mul ra, rb, rc
This instruction is only present in this processor and not in SRC. The first three steps are

exactly same as of other

instructions and would fetch the

mul instruction. In step T3 we will

bring the contents of register R [rb]

in the buffer register A at the input

of ALSU. In step T4 we take the

multiplication of A with the contents of R[rc] and put it at the output of the ALSU in two

registers C and CH. CH would contain the higher 16-bits while register C would contain

the lower 16-bits. Now these two registers cannot transfer the data in one bus cycle to the

registers, since the width is 16-bits. So we need to have 2 timing steps, in T5 we transfer

the higher byte to register R[0] and in T6 the lower 16-bits are transferred to the

placeholder R[a]. As a result of multiplication instruction we need 3 timing steps for

Instruction Fetch and 4 timing steps for Instruction Execution and 7 steps altogether.

Structural RTL for division instruction

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 162

 div ra, rb, rc
In this instruction first three steps

are the same. In step T3 the

contents of register rb are placed in

buffer register A and in step T4 we

take the contents of register R[0] in

to the register AH. We assume

before using the divide instruction that we will place the higher 16-bits of dividend to

register R[0]. Now in T5 the actual division takes place in two concurrent operations. We

have the dividend at the input of ALSU unit represented by concatenation of AH and A.

Now as a result of division instruction, the first operation would take the remainder. This

means divide AH concatenated with A with the contents given in register rc and the

remainder is placed in register CH at the output of ALSU. The quotient is placed in C. In

T6 we take C to the register R[ra] and in T7 remainder available in CH is taken to the

default register R[0] through the bus. In divide instruction 5 timing steps are required to

execute the instruction while 3 to fetch the instruction.

Note: Corresponding to mul and div instruction one should be careful about the
additional register R[0] that it should be properly loaded prior to use the instructions e.g.
if in the divide instruction we don’t have the appropriate data available in R[0] the result
of divide instruction would be wrong.

Structural RTL for not instruction
 not ra, rb
In this instruction first three steps
will fetch the instruction. In T3 we
perform the not operation of
contents in R[rb] and transfer them
in to the buffer register C. It is
simply the one’s complement
changing of 0’s to 1’s and 1’s to
0’s. In timing step T4 we take the
contents of register C and transfer to register R[ra] through the bus as shown in its
corresponding table.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 163

Structural RTL for add immediate instruction
 addi ra, rb, c1
In this instruction c1 is a constant as a part of the instrucion. First three steps are for
Instruction Fetch operation. In T3
we take the contents of register R
[rb] in to the buffer register A. In
T4 we add up the contents of A
with the constant c1 after sign
extension and bring it to C.
Sign extension of 5-bit c1 and

8-bit constant c2
 Sign extension for 5-bit c1 is: (11αIR<4> ©IR<4.. 0>)

We have immediate constant c1 in the form of lower 5-bits and bit number 4 indicates the
sign bit. We just copy it to the left most 11 positions to make it a 16-bit number.

 Sign extension for 8-bit c2 is: (8αIR<7> ©IR<7.. 0>)
In the same way for constant c2 we need to place the sign bit to the left most 8 position to
make it 16-bit number.

Structural RTL for the load
and store instruction
Tables for load and store
instructions are same as
SRC except a slight
difference in the notation.
So when we have square
brackets [R [rb]+c1], it
corresponds to the base
address in R[rb] and an offset taken from c1.

Structural RTL for conditional jump
instructions
 jz ra, [c2]
 In first three steps of this table, the
instruction is fetched. In T3 we set a 1-
bit register “CON” to true if the
condition is met.
How do we test the condition?

This is tested by the contents given by
the register ra. So condition within
square brackets is R[ra]. This means
test the data given in register ra. There
are different possibilities and so the data could be positive, negative or zero. For this
particular instruction it would be tested if the data were zero. If the data were zero, the
“CON” would be 1.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 164

In T4 we just take the contents of the PC into the buffer register A. In T5 we add up the
contents of A to the constant c2 after sign extension. This addition will give us the
effective address to which a jump would be taken. In T6, this value is copied to the PC.
In FALCON-A, the number of conditional jumps is more than in SRC. Some of which
are shown below:

• jz (op-code= 19) jump if zero
 jz r3, [4] (R[3]=0): PC← PC+ 2;

• jnz (op-code= 18) jump if not zero
 jnz r4, [variable] (R[4]≠0): PC← PC+ variable;

• jpl (op-code= 16) jump if positive
 jpl r3, [label] (R[3]≥0): PC ← PC+ (label-PC);

• jmi (op-code= 17) jump if negative
 jmi r7, [address] (R[7]<0): PC← PC+ address;
The unconditional jump instruction will be explained in the next lecture.

