
Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 165

Advanced Computer Architecture

Lecture No. 14

Reading Material

 Handouts Slides

Summary

• Structural RTL Description of the FALCON-A (continued…)
• External FALCON-A CPU Interface

This lecture is a continuation of the previous lecture.

Un-conditional jump instruction
 jump (op-code= 20)
In the un-conditional jump with op-code 20, the op-code is followed by a 3-bit identifier
for register ra and then followed by an 8-bit constant c2.
Forms allowed by the assembler to define the jump are as follows:
 jump [ra + constant]
 jump [ra + variable]
 jump [ra + address]
 jump [ra + label]

For all the above instructions:
 (ra=0):PC← PC+(8αC2<7>)©C2<7..0>,
 (ra≠0):PC← R[ra]+(8αC2<7>)©C2<7..0>;4

In the case of a constant, variable, an address or (label-PC) the jump ranges from –128 to 127 because of the restriction on 8-bit
constant c2. Now, for example if we have jump [r0+a], it means jump to a. On the other hand if we have jump [– r2] that is not
allowed by the assembler. The target address should be even because we have each instruction with 2 bytes. So the types available for
the un-conditional jumps are either direct, indirect, PC-relative or register relative. In the case of direct jump the constant c2 would
define the target address and in the case of indirect jump constant c2 would define the indirect location of memory from where we
could find out the address to jump. While in the case of PC-relative if the contents of register ra are zero then we have near jump and
the type of jump for this would be PC-relative. If ra is not be zero then we have a far jump and the contents of register ra will be added
with the constant c2 after sign-extension to determine the jump address.

4 c2 is computed by sign extending the constant,variable,address or (label-PC)

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 166

Structural RTL description for un-conditional jump instruction

 jump [ra+c2]

In first three steps, T0-T2, we would fetch the jump instruction, while in T3 we would either take the contents of PC and place them in
a temporary register A if the condition given in jump instruction is true, that is if the ra field is zero, otherwise we would place the
contents of register ra in the temporary register A. Comma ‘,’ indicates that these two instructions are concurrent and only one of them
would execute at a time. If the ra field is zero then it would be PC-relative jump otherwise it would be register-relative jump. In step
T4 we would add the constant c2 after sign-extension to the contents of temporary register A. As a result we would have the effective
address in the buffer register C, to which
we need to jump. In step T5 we will take
the contents of C and load it in the PC,
which would be the required address for
the jump.

Structural RTL for the shift
instruction

 shiftr ra, rb, c1

First three steps would fetch the shift
instruction. c1 is the count field. It is a 5-
bit constant and is obtained from the lower 5-bits of the instruction register IR. In step T3 we would load the 5-bit register ‘n’ from the
count field or the lower 5-bits of the IR and then in T4 depending upon the value of ‘N’ which indicates the decimal value of ‘n’, we
would take the contents of register rb and shift right by N-bits which would indicate how many shifts are to be performed. ‘n’
indicates the register while ‘N’ indicates the decimal value of the bits present in the register ‘n’. So as a result we need to copy the
zeros to the left most bits, this shows that zeros are replicated ‘N’ times and are concatenated with the shifted bits that are actually
15…N. In T5, we take the contents from
C through the bus and feed it to the
register ra which is the destination
register. Other instructions that would
have similar tables are ‘shiftl’ and ‘asr’.

In case of asr, when the data is shifted
right, instead of copying zeros on the left
side, we would copy the sign bit from the
original data to the left-most position.

Other instructions

Other instructions are mov, call and ret.
Note that these instructions were not available with the SRC processor.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 167

Structural RTL for the mov instruction

 mov ra, rb

In mov instruction the data in register rb, which is
the source register, is to be moved in the register ra,
which is the destination register. In first three steps,
mov instruction is fetched. In step T3 the contents of
register rb are placed in buffer register C through the
ALSU unit while in step T4 the buffer register C
transfers the data to register ra through internal uni-
bus.

Structural RTL for the mov immediate
instruction

 movi ra, c2

In this instruction ra is the destination register and
constant c2 is to be moved in the ra. First three steps
would fetch the move immediate instruction. In step
T3 we would take the constant c2 and place it into the
buffer register C. Buffer register C is 16-bit register
and c2 is 8-bit constant so we need to concatenate the
remaining leftmost bits with the sign bit which is bit
‘7’ shown within angle brackets. This sign bit which is
the most significant bit would be ‘1’ if the number is
negative and ‘0’ if the number is positive. So
depending upon this sign bit the remaining 8-bits are replicated with this sign bit to make a 16-bit constant to be placed in the buffer
register C. In step T4 the contents of C are taken to the destination register ra.

In case of FALCON-A, ‘in’ and ‘out’ instructions are present which are not present in the SRC processor. So, for this we assume that
there would be interconnection with the input and output addresses up to 0..255.

Structural RTL for the in instruction

 in ra, c2

First three steps would fetch the instruction In step T3
we take the IO [c2] which indicates that go to IO
address indicated by c2 which is a positive constant in
this case and then data would be taken to the buffer
register C. In step T4 we would transfer the data from
C to the destination register ra.

Structural RTL for the out instruction

 out ra, c2

This instruction is opposite to the ‘in’ instruction.
First three instructions would fetch the instruction. In
step T3 the contents of register ra are placed in to the
buffer register C and then in Step T4 from C the data
is placed at the output port indicated by the c2
constant. So this instruction is just opposite to the ‘in’
instruction.

Structural RTL for the call instruction

 call ra, rb

In this instruction we need to give the control to the
procedure, sub-routine or to another address specified
in the program. First three steps would fetch the call
instruction. In step T3 we store the present contents of
PC in to the buffer register C and then from C we transfer
the data to the register ra in step T4. As a result register ra
would contain the original contents of PC and this would
be a pointer to come back after executing the sub-routine
and it would be later used by a return instruction. In step
T5 we take the contents of register rb, which would
actually indicate to the point where we want to go. So in
step T6 the contents of C are placed in PC and as a result
PC would indicate the position in the memory from where
new execution has to begin.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 168

Structural RTL for return
instruction
 ret ra
After instruction fetch in first 3 steps
T0-T2, the register data in ra is placed
in the buffer register C through ALSU
unit. PC is loaded with contents of this
buffer register in step T4. Assuming
that bus activity is synchronized,
appropriate control signals are
available to us now.
Control signals required at different
timing steps of FALCON-A
instructions
The following table shows the details of the control signals needed. The first column is
the time step, as before. In the second column the structural RTLs for the particular step
is given, and the
corresponding
control signals are
shown in the third
column. Internal bus
is active in step T0,
causing the contents
of the PC to be
placed in the Memory Address register MAR and simultaneously the PC is incremented
by 2 and placed it in the buffer register C. Recalling previous lectures, to write data in to
a particular register we need to enable the load signal. In case of fetch instruction in step
T0, control signal LMAR is enabled to cause the data from internal bus to be written in to
the address register. To provide data to the bus through tri-state buffers we need to
activate the ‘out’ control signal named as ‘PCout’, making contents of the PC available to
the ALSU and so control unit provides the increment signal ‘INC2’ to increment the PC.
As the ALSU is the combinational circuit, the PCout signal causes the contents over the
2nd input of ALSU incremented by 2 and so the data is available in buffer register C.
Control signal “LC” is required to write data into the buffer register C form the ALSU
output. Now note that ‘INC2’ is one of the ALSU functions and also it is a control signal.
So knowing the control signals, which need to be activated at a particular step, is very
important.
So, at step T0 the control signal ‘PCout’ is activated to provide data to the internal bus.
Now control signal ‘LMAR’ causes the data from the bus to be read into the register
MAR. The ALSU function ‘INC2’ increments the PC to 2 and the output are stored in the
buffer register C by the control signal ‘LC’. The data from memory location addressed by
MAR is read into Memory Buffer Register MBR in the next timing step T1. In the mean
time there is no activity on the internal bus, the output from the buffer register C (the
incremented value of the PC) is placed in the PC through bus. For this the control signal
‘LPC’ is activated.
To enable tri-state buffer of Memory Address Register MAR, we need control signal
‘MARout’. Another control signal is required in step T1 to enable memory read i.e.
‘MRead’. In order to enable buffer register C to provide its data to the bus we need

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 169

‘Cout’ control signal and in order to enable the PC to read from C we need to enable its
load signal, which is ‘LPC’. To read data coming from memory into the Memory Buffer
Register MBR, ‘LMBR’control signal is enabled. So in T2 we need 5 control signals, as
shown.
In T2, the instruction register IR is loaded with data from the MBR, so we need two-
control signals,’MBRout’ to enable its tri-state buffers and the other signal required is the
load signal for IR register ‘LIR’. Fetch operation is completed in steps T0-T2 and
appropriate control signals are generated. Those control signals, which are not shown,
would remain de-activated. All control signals are activated simultaneously so the order
of these controls signals is immaterial. Recall that in SRC the fetch operation is
implemented in the same way, but ‘INC4’ is used instead of ‘INC2’ because the
instruction length is 4 bytes.
Now we take a look at other examples for control signals required during execution
phase.
For various instructions, we will define other control signals needed in the execution
phase of each instruction but fetch cycle will be the same for all instructions.
Another important fact is the interface of the CPU with an external memory and the I/O
depending upon whether the I/O is memory mapped or non-memory mapped. The
processor will generate some control signals, used by the memory or I/O to read/write
data to/from the I/O devices or from the memory. Another assumption is that the memory
read is fast enough. Therefore data from memory must be available to the processor in a
fixed time interval, which in this particular example is T2.
For a slow data transfer, the concept of handshaking is used. Some idle states are
introduced and buffer is prepared until the data is available. But for simplicity, we will
assume that memory is fast enough and data is available in buffer register MBR to the
CPU.

External FALCON-A CPU Interface
This figure is a symbolic

representation of the

FALCON-A in the form of

a chip. The external

interface consists of a 16-

bit address bus, a 16-bit

data bus and a control bus

on which different control signals like MRead, MWrite, IORead, IOWrite are present.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 170

Example Problem

(a) What will be the logic levels on the external FALCON-A buses when each of the
given FALCON-A
instruction is executing
on the processor?
Complete the table
given. All numbers are
in the decimal number
system, unless noted
otherwise.
(b) Specify memory-
addressing modes for
each of the FALCON-
A instructions given.

Assumptions
For this particular
example we will
assume that all memory
contents are properly
aligned, i.e. memory addresses start at address divisible by 2.
PC= C348h

This table contains a partial memory map showing the addresses and the corresponding
data values.

The next table shows the register map showing the contents of all the CPU registers.

Another important thing to note is that memory storage is big-endian.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 171

Solution:

In this table the second column contains the RTL descriptions of the instructions. We
have to specify the address bus and data bus contents for each instruction execution. For
load instruction the contents of register r5+12 are placed on the address bus. From
register map shown in the previous table we can see that the contents of r5 are 1234h.
Now contents of r5 are added with displacement value 12 in decimal .In other words the
address bus will carry the hexadecimal value 1234h+ Ch = 1240h.Now for load
instruction, the contents of memory location at address 1240h will be placed on the data
bus. From the memory map shown in the previous table we can see that memory location
1240h contains 785h. Now to read this data from this location, MRead control signal will
be activated shown by 1 in the next column and MWrite would be 0.Similarly RTL

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 172

description is given for the 2nd instruction. In this instruction, only registers are involved
so there is no need to activate external bus. So data bus, address bus and control bus
columns will contain ‘?’ or ‘unknown’. The next instruction is jump. Here PC is
incremented by the jump offset, which is 52 in this case. As before, the external bus will
remain inactive and control signals will be zero. The next instruction is store. Its RTL
description is given. For store instruction, the register contents have to be placed at
memory location addressed by R [3] +17. As this is a memory write operation, the
MWrite will be 1 and MRead will be zero. Now the effective address will be determined
by adding the contents of R [3] with the displacement value 17 after its conversion to the
hexadecimal. The resulting effective address would be C300h. In this way we can
complete the table for other instructions.

Addressing Modes
This table lists the addressing mode for each instruction given in the previous example.

