
Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 195

Advanced Computer Architecture

Lecture No. 17

Reading Material
Vincent P. Heuring&Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 4.6.2, 4.7, 4.8

Summary

• 3-bus implementation for the SRC
• The Machine Reset
• Machine Exceptions

A 3-bus Implementation for the SRC

Let us now look at a 3-
bus implementation of the
data-path for the SRC as
shown in the figure. Two
buses, ‘A’ and ‘B’ bus for
reading, and a bus ‘C’ for
writing, are part of this
implementation. Hence
all the special purpose as
well as the general
purpose registers have
two read ports and one
write port.

Structural RTL for the Subtract Instruction using the 3-bus Data Path

Implementation

We now consider how instructions are fetched and executed in 3-bus architecture. For
this purpose, the same ‘sub’ instruction example is followed.

The syntax of the subtract instructions is

sub ra, rb, rc
The structural RTL for implementing this instruction is given in the table. We observe
that in this table, only two time steps are required for the instruction fetch phase. At
time step T0, the Memory Address Register receives the value of the Program Counter.
This is done in the initial phase of the time step T0. Then, the Memory Buffer Register

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 196

receives the memory word indexed by the MAR, and the PC value is incremented. At
time step T1, the instruction register is assigned the instruction word that was loaded
into the MBR in the previous time step. This concludes the instruction fetch and now
the instruction execution can commence.

In the next time step, T2, the instruction is executed by subtracting the values of
register rc from rb, and assigning the result to the register ra.
At the end of each sequence, the timing step generator is initialized to T0

Control Signals for the Fetch Operation
The given table lists the control signals in the instruction fetch phase. The control
signals for the execute phase can be written in a similar fashion.

The Machine Reset

In this section, we will discuss the following
• Reset operation
• Behavioral RTL for SRC reset
• Structural RTL for SRC reset

The reset operation
Reset operation is required to change the processor’s state to a known, defined value.
The two essential features of a reset instruction are clearing the control step counter and
reloading the PC to a predefined value. The control step counter is set to zero so that
operation is restarted from the instruction fetch phase of the next instruction. The PC is
reloaded with a predefined value usually to execute a specific recovery or initializing
program.
In most implementations the reset instruction also clears the interrupt enable flags so as
to disable interrupts during the initialization operation. If a condition code register is
present, the reset instruction usually clears it, so as to clear any effects of previously
executed instructions. The external flags and processor state registers are usually
cleared too.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 197

The reset instruction is mainly used for debugging purposes, as most processors halt
operations immediately or within a few cycles of receiving the reset instruction. The
processors state may then be examined in its halted state.
Some processors have two types of reset operations. Soft reset implies initializing PC
and interrupt flags. Hard reset initializes other processor state registers in addition to
PC and interrupts enable flags. The software reset instruction asserts the external reset
pin of the processor.

Reset operation in SRC

Hard Reset
The SRC should perform a hard reset upon receiving a start (Strt) signal. This initializes
the PC and the general registers.
Soft Reset
The SRC should perform a soft reset upon receiving a reset (rst) signal. The soft reset
results in initialization of PC only.
The reset signal in SRC is assumed to be external and asynchronous.
PC Initialization
There are basically two approaches to initialize a PC.
1. Direct Approach
The PC is loaded with the address of the startup routine upon resetting.
2. Indirect Approach
The PC is initialized with the address where the address of the startup routine is
located. The reset instruction loads the PC with the address of a jump instruction. The
jump instruction in turn contains the address of the required routine.
An example of a reset operation is found in the 8086 processor. Upon receiving the
reset instruction the 8086 initializes its PC with the address FFFF0H. This memory
location contains a jump instruction to the bootstrap loader program. This program
provides the system initialization

Behavioral RTL for SRC Reset
The original behavioral RTL for SRC without any reset operation is:
Instruction_Fetch :=(! Run&Strt: (Run ← 1; instruction_Fetch,
 Run : (IR ← M [PC]; PC ← PC+4;instruction_execution)),
instruction_execution:= (ld (:=op=1…) ;
This recursive definition implies that each instruction at the address supplied by PC is
executed. The modified RTL after adding the reset capability is
Instruction_Fetch:=(! Run&Strt :(Run ← 1,
 PC, R [0...31] ← 0),
 Run&!Rst :(IR ← M [PC],
 PC ← PC+4, instruction_execution);
 Run&Rst:(Rst ← 0, PC ← 0);
 instruction_Fetch),
The modified definition includes testing the value of the “rst” signal after execution of
each instruction. The processor may not be halted in the midst of an instruction in the
RTL definition
To actually implement these changes in the SRC, the following modification are
required to add the reset operation to the structural RTL for SRC:

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 198

• A check for the reset signal on each clock cycle
• A control signal for clearing the PC
• A control signal to load zero to control step counter

Example: The sub instruction with RESET processing
To actually reset the processor in the midst of an instruction, the “Rst” condition must
be tested after each clock cycle.

 Let us examine the contents of each phase in the given table. In step T0, if the Rst
signal is not asserted, the address of the new instruction is delivered to memory and the
value of PC is incremented by 4 and stored in another register. If the “Rst” signal is
asserted, the “Rst” signal is immediately cleared, the PC is cleared to zero and T, the
step counter is also set to zero. This behavior (in case of ‘Rst’ assertion) is the same for
all steps. In step T1, if the rst signal is not asserted, the value stored at the delivered
memory word is stored in the memory data register and the PC is set to its incremented
value.
In step T2, the stored memory data is transferred to the instruction register.
In step T3, the register operand values are read.
In step T4, the mathematical operation is executed.
In step T5, the calculated value is written back to register file.
During all these steps if the Rst signal is asserted, the value of PC is set to 0 and the
value of the step counter is also set to zero.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 199

Machine Exceptions

• Anything that interrupts the normal flow of execution of instructions in the
processor is called an exception.

• Exceptions may be generated by an external or internal event such as a mouse
click or an attempt to divide by zero etc.

• External exceptions or interrupts are generally asynchronous (do not depend on
the system clock) while internal exceptions are synchronous (paced by internal
clock)

The exception process allows instruction flow to be modified, in response to internal or
external events or anomalies. The normal sequence of execution is interrupted when an
exception is thrown.
Exception Processing
A generalized exception handler should include the following mechanisms:

1. Logic to resolve priority conflicts. In case of nested exceptions or an exception
occurring while another is being handled the processor must be able to decide
which exception bears the higher priority so as to handle it first. For example, an
exception raised by a timer interrupt might have a higher priority than keyboard
input.

2. Identification of interrupting device. The processor must be able to identify the
interrupting device that it can to load the appropriate exception handler routine.
There are two basic approaches for managing this identification: exception
vectors and “information” register. The exception vector contains the address of
the exception handling routine. The interrupting process fills the exception vector
as soon as the interruption is acknowledged. The disadvantage of this approach is
that a lot of space may be taken up by vectors and exception handler codes.
In the information register, only one general purpose exception handler is used.
The PC is saved and the address of the general purpose register is loaded into the
PC. The interrupting process must fill the information register with information to
allow identification of the cause and type of exception.

3. Saving the processor state. As stated earlier the processor state must be saved
before jumping to the exception handler routine. The state includes the current
value of the PC, general purpose registers, condition vector and external flags.

4. Exception disabling during critical operation. The processor must disable
interrupts while it is switching context from the interrupted process to the
interrupting process, so that another exception might not disrupt the transition.

Examples of Exceptions
• Reset Exception
 Reset operation is treated as an exception by some machines e.g. SPARC and

MC68000.
• Machine Check
 This is an external exception caused by memory failure
• Data Access Exception
 This exception is generated by memory management unit to protect against illegal

accesses.
• Instruction Access Exception

 Similar to data access exception

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 200

• Alignment Exception
 Generated to block misaligned data access

Types of Exception

• Program Exceptions

These are exceptions raised during the process of decoding and executing the
instruction. Examples are illegal instruction, raised in response to executing an
instruction which does not belong to the instruction set. Another example would
be the privileged instruction exception.

• Hardware Exceptions
There are various kinds of hardware exceptions. An example would be of a timer
which raises an exception when it has counted down to zero.

• Trace and debugging Exceptions
Variable trace and debugging is a tricky task. An easy approach to make it
possible is through the use of traps. The exception handler which would be called
after each instruction execution allows examination of the program variables.

• Nonmaskable Exceptions
These are high priority exceptions reserved for events with catastrophic
consequences such as power loss. These exceptions cannot be suppressed by the
processor under any condition. In case of a power loss the processor might try to
save the system state to the hard drive, or alert an alternate power supply.

• Interrupts (External Exceptions)
Exception handlers may be written for external interrupts, thus allowing programs
to respond to external events such as keyboard or mouse events.

