
Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 201

Advanced Computer Architecture

Lecture No. 18
Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 4.8
Summary

• SRC Exception Processing Mechanism
• Introduction to Pipelining
• Complications Related to Pipelining
• Pipeline Design Requirements

Correction: Please note that the phrase “instruction fetch” should be used where the
speaker has used “instruction interpretation”.

SRC Exception Processing Mechanism

The following tables on the next few pages summarize the changes needed in the SRC
description for including exceptions:

Behavioral RTL for Exception Processing

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 202

Instruction_Fetch:=
(!Run&Strt: Run ← 1,
Run & !(ireq&IE):(IR ←M[PC],
PC ← PC + 4;
Instruction_Execution),
Run&(ireq&IE): (IPC ← PC<31..0>,
II<15..0> ← Isrc_info<15..0>,
IE ← 0: PC ← Ivect<31..0>,
iack ← 1; iack ← 0),
Instruction_Fetch);

Start
Normal Fetch

Interrupt, PC copied
II is loaded with the info.
PC loaded with new address

Additional Instructions to Support Interrupts

 Mnemonic

 Behavioral RTL

 Meaning

svi (op=16)

R[ra]<15..0> ← II<15..0>,
R[rb] ← IPC<31..0>;

Save II and IPC

ri (op=17)

II<15..0> ← R[ra]<15..0>,
IPC<31..0> ← R[rb];

Restore II and IPC

een (op=10)

IE ← 1;

Exception enable

edi (op=11)

IE ← 0;

Exception disable

rfi (op=30)

PC ← IPC, IE ← 1;

Return from interrupt

Structural RTL for the Fetch Phase including Exception Processing

Step Structural RTL for the 1-bus SRC
T0

!(ireq&IE): (MA ← PC, C ← PC + 4);
(ireq&IE): (IPC ← PC,II← Isrc_info,
IE ← 0,PC ← (22α 0)©(Isrc_vect<7..0>)© 00, iack ← 1;
iack ← 0, End) ;

T1

MD ← M[MA], PC ← C;

T2

IR ← MD;

T3

Instruction_Execution;

Combining the RTL for Reset and Exception

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 203

 Events

Normal
Fetch

Soft Reset

Hard Reset

Instruction_Fetch:=

(Run&!Rst&!(ireq&IE):(IR ← M[PC], PC ← PC+4;
Instruction_Execution),

Run&Rst: (Rst ←0 , IE ← 0, PC ← 0; Instruction_Fetch),

!Run&Strt: (Run ←1, PC ← 0, R[0..31] ← 0; Instruction_Fetch),

Run&!Rst&(ireq&IE): (IPC ← PC<31..0>,
II<15..0> ←Isrc_info<15..0>, IE ← 0, PC ← Ivect<31..0>,
iack ← 1; iack ← 0; Instruction_Fetch));

Interrupt

Introduction to Pipelining

Pipelining is a technique of overlapping multiple instructions in time. A pipelined
processor issues a new instruction before the previous instruction completes. This results
in a larger number of operations performed per unit of time. This approach also results in
a more efficient usage of all the functional units present in the processor, hence leading to
a higher overall throughput. As an example, many shorter integer instructions may be
executed along with a longer floating point multiply instruction, thus employing the
floating point unit simultaneously with the integer unit.

Executing machine instructions with and without pipelining
We start by assuming that a given processor can be split in to five different stages as
shown in the diagram below,
and as explained later in this
section. Each stage receives
its input from the previous
stage and provides its result
to the next stage. It can be
easily seen from the diagram
that in case of a non-
pipelined machine there is a
single instruction add r4, r2,
r3 being processed at a given
time, while in a pipelined
machine, five different
instructions are being processed simultaneously. An implied assumption in this case is
that at the end of each stage, we have some sort of a storage place (like temporary
registers) to hold the results of the present stage till they are used by the next stage.

Description of the Pipeline Stages
In the following paragraphs, we discuss the pipeline stages mentioned in the previous
example.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 204

1. Instruction fetch
As the name implies, the instruction is fetched from the
instruction memory in this stage. The fetched instruction bits
are loaded into a temporary pipeline register.

2. Instruction decode/operand fetch
In this stage the operands for the instruction are fetched from
the register file. If the instruction is add r1, r2, r3 the
registers r2 and r3 will be read into the temporary pipeline
registers.

3. ALU5 operation
In this stage, the fetched operand values are fed into the ALU
along with the function which is required such as addition,
subtraction, etc. The result is stored into temporary pipeline
registers. In case of a memory access such as a load or a store
instruction, the ALU calculates the effective memory address
in this stage.

4. Memory access
For a load instruction, a memory read operation takes place. For a store instruction, a
memory write operation is performed. If there is no memory access involved in the
instruction, this stage is simply bypassed.

5. Register write
The result is stored in the destination register in this stage.

Latency & throughput
Latency is defined as the time required to process a single instruction, while throughput is
defined as the number of instructions processed per second. Pipelining cannot lower the
latency of a single instruction; however, it does increase the throughput. With respect to
the example discussed earlier, in a non-pipelined machine there would be one instruction
processed after an average of 5 cycles, while in a pipelined machine, instructions are
completed after each and every cycle (in the steady-state, of course!!!). Hence, the overall
time required to execute the program is reduced.

Remember that the performance gain in a pipeline is limited by the slowest stage in the
pipeline.

Complications Related to Pipelining
Certain complications may arise from pipelining a processor. They are explained below:
Data dependence
This refers to the situation when an instruction in one stage of the pipeline uses the results
of an instruction in the previous stage. As an example let us consider the following two
instructions

5 The ALU is also called the ALSU in some cases, in particular, where its “shifting” capabilities need to be
highlighted. ALSU stands for Arithmetic Logic Shift Unit.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 205

…
S1: add r3, r2, r1
S2: sub r4, r5, r3
…

There is a data-dependence among the above two instructions. The register R3 is being
written to in the instruction S1, while it is being read from in the instruction S2. If the
instruction S2 is executed before instruction S1 is completed, it would result in an
incorrect value of R3 being used.

Resolving the dependency
There are two methods to remedy this situation:

1. Pipeline stalls
These are inserted into the pipeline to block instructions from entering the pipeline until
some instructions in the later part of the pipeline have completed execution. Hence our
modified code would become
…
S1: add r3, r2, r1
stall6
stall
stall
S2: sub r4, r5, r3
…
2. Data forwarding
When using data forwarding, special hardware is added to the processor, which allows
the results of a particular pipeline stage to be transferred directly to another stage in the
pipeline where they are required. Data may be forwarded directly from the execute stage
of one instruction to the decode stage of the next instruction. Considering the above
example, S1 will be in the execute stage when S2 will be decoded. Using a comparator
we can determine that the destination operand of S1 and source operand of S2 are the
same. So, the result of S1 may be directly forwarded to the decode stage.

Other complications include the “branch delay” and the “load delay”. These are
explained below:

Branch delay
Branches can cause problems for pipelined processors. It is difficult to predict whether a
branch will be taken or not before the branch condition is tested. Hence if we treat a
branch instruction like any normal instruction, the instructions following the branch will
be loaded in the stages following the stage which carries the branch instruction. If the
branch is taken, then those instructions would need to be removed from the pipeline and
their effects if any, will have to be undone. An alternate method is to introduce stalls, or
nop instructions, after the branch instruction.

Load delay

6 A pipeline stall can be achieved by using the nop instruction.

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 206

Another problem surfaces when a value is loaded into a register and then immediately
used in the next operation. Consider the following example:

…
S1: load r2, 34(r1)
S2: add r5, r2, r3
…

In the above code, the “correct” value of R2 will be available after the memory access
stage in the instruction S1. Hence even with data forwarding a stall will need to be placed
between S1 and S2, so that S2 fetches its operands only after the memory access for S1
has been made.

Pipeline Design Requirements
For a pipelined design, it is important that the overall meaning of the program remains
unchanged, i.e., the program should produce the same results as it would produce on a
non-pipelined machine. It is also preferred that the data and instruction memories are
separate so that instructions may be fetched while the register values are being stored
and/or loaded from data memory. There should be a single data path so as not to
complicate the flow of instructions and maintain the order of program execution. There
should be a three port register file so that if the register write and register read stages
overlap, they can be performed in parallel, i.e., the two register operands may be read
while the destination register may be written. The data should be latched in between each
pipeline stage using temporary pipeline registers. Since the clock cycle depends on the
slowest pipeline stage, the ALU operations must be able to complete quickly so that the
cycle time is not increased for the rest of the pipeline.

Designing a pipelined implementation
In this section we will discuss the various steps involved in designing a pipeline. Broadly
speaking they may be categorized into three parts:

1. Adapting the instructions to pipelined execution
The instruction set of a non-pipelined processor is generally different from that of a
pipelined processor. The instructions in a pipelined processor should have clear and
definite phases, e.g., add r1, r2, r3. To execute this instruction, the processor must first
fetch it from memory, after which it would need to read the registers, after which the
actual addition takes place followed by writing the results back to the destination register.
Usually register-register architecture is adopted in the case of pipelined processors so that
there are no complex instructions involving operands from both memory and registers.
An instruction like add r1, r2, a would need to execute the memory access stage before
the operands may be fed to the ALU. Such flexibility is not available in a pipelined
architecture.

2. Designing the pipelined data path

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 207

Once a particular instruction set has been chosen, an appropriate data path needs to be
designed for the processor. The data path is a specification of the steps that need to be
followed to execute an instruction. Consider our two examples above

For the instruction add r1, r2, r3: Instruction Fetch – Register Read – Execute – Register
Write,

whereas for the instruction add r1, r2, a (remember a represents a memory address), we
have Instruction Fetch – Register Read – Memory Access – Execute – Register Write

The data path is defined in terms of registers placed in between these stages. It specifies
how the data will flow through these registers during the execution of an instruction. The
data path becomes more complex if forwarding or bypassing mechanism is added to the
processor.

3. Generating control signals
Control signals are required to regulate and direct the flow of data and instruction bits
through the data path. Digital logic is required to generate these control signals.

