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Introduction to I/O Subsystems 
 
This module is about the computer’s input and output. As we have seen in the case of 
memory subsystems, that when we use the terms “ read”  and “write”, then these terms 
are from the CPU’s point of view. Similarly, when we use the terms “input” and “output” 
then these are also from the CPU’s point of view. It means that when we are talking about 
an input cycle, then the CPU is receiving data from a peripheral device and the peripheral 
device is providing data. Similarly, when we talk about an output cycle then the CPU is 
sending data to a peripheral device and the peripheral device is receiving data. I/O 
Subsystems are similar to memory subsystems in many aspects. For example, both 
exchange bits or bytes. This transfer is usually controlled by the CPU. The CPU sends 
address information to the memory and the I/O subsystems. Then these subsystems 
decode the address and decide which device should be involved in the transfer. Finally 
the appropriate data is exchanged between the CPU and the memory or the I/O device. 
Memory and I/O subsystems differ in the following ways: 

1. Wider range of data transfer speed:  
I/O devices can be very slow such as a keyboard in which case the interval between 
two successive bytes (or keystrokes) can be in seconds. On the other extreme, I/O 
devices can be very fast such as a disk drive sending data to the CPU or a stream of 
packets arriving over a network, in which case the interval between two successive 
bytes can be in microseconds or even nanoseconds. While I/O devices can have such 
a wide range of data transfer speed compared to the CPU’s speed, the case of memory 
devices is not so. Even if a memory device is slow compared to the CPU, the CPU’s 
speed can be made compatible by inserting wait states in the bus cycle. 
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2. Asynchronous activity:  
Memory subsystems are almost always synchronous. This means that most memory 
transfers are governed by the CPU’s clock. Generally this is not the case with I/O 
subsystems. Additional signals, called handshaking signals, are needed to take care of 
asynchronous I/O transfers. 
3. Larger degradation in data quality:  
Data transferred by I/O subsystems can carry more noise. As an example, telephone 
line noise can become part of the data transferred by a modem. Errors caused by 
media defects on hard drives can corrupt the data. This implies that effective error 
detection and correction techniques must be used with I/O subsystems. 
4. Mechanical nature of many I/O devices:  
Many I/O devices or a large portion of I/O devices use mechanical parts which 
inherently have a high failure rate. In case an I/O device fails, interruptions in data 
transfer will occur, reducing the throughput. As an example, if a printer runs out of 
paper, then additional bytes cannot be sent to it. The CPU’s data should be buffered 
(or kept in a temporary place) till the paper is supplied to the printer, otherwise the 
CPU will not be able to do anything else during this time. 

To deal with these differences, special software programs called device drivers are made 
a part of the operating system. In most cases, device drivers are written in assembly 
language. 
You would recall that in case of memory subsystems, each location uses a unique address 
from the CPU’s address space. This is generally not the case with I/O devices. In most 
cases, a group or block of contiguous addresses is assigned to an I/O device, and data is 
exchanged byte-by-byte. Internal buffers (memory) within the device store this data if 
needed. 
In the past, people have paid a lot of attention to improve the CPU’s performance, as a 
result of which the performance improvement of I/O subsystems was ignored. (I/O 
subsystems were even called the “orphans” of computer architecture by some people). 
Perhaps, many benchmark programs and metrics that were developed to evaluate 
computer systems focused on the CPU or the memory performance only. Performance of 
I/O subsystems is as important as that of the CPU or the memory, especially in today’s 
world. For example, the transaction processing systems used in airline reservation 
systems or the automated teller machines in banks have a very heavy I/O traffic, 
requiring improved I/O performance. To illustrate this point, look at the following 
example.  
Suppose that a certain program takes 200 seconds of elapsed time to execute.  Out of 
these 200 seconds, 180 seconds is the CPU time and the rest is I/O time. If the CPU 
performance improves by 40% every year for the next seven years because of 
developments in technology,  but the I/O performance stays the same, let us look at the 
following table, which shows the situation at the end of each year. Remember that  
Elapsed time = CPU time + I/O time. 
This gives us the I/O time = 200 – 180 = 20 seconds at the beginning, which is 10 % of 
the elapsed time. 
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Year # CPU 
Time 

I/O 
Time

Elapsed
Time 

   I/O Time x100  % 
Elapsed Time 

0 180 20 200 10 % 
1 129 20 149 13.42 % 
2 92 20 112 17.85 % 
3 66 20 86 23.25 % 
4 47 20 67 29.85 % 
5 34 20 54 37.03 % 
6 24 20 44 45.45 % 
7 17 20 37 54.05 % 

 
It can be easily seen that over seven years, the I/O time will become more than 50 % of 
the total time under these conditions.  Therefore, the improvement of I/O performance is 
as important as the improvement of CPU performance. I/O performance will also be 
discussed in detail in a later section. 
 
Major components of an I/O 
subsystem 
 
I/O subsystems have two major parts: 
• The I/O interface, which is the 
electronic circuitry that connects 
 the CPU to the I/O device. 
• Peripherals, which are the 
devices used to communicate with the 
 CPU, for example, the 
keyboard, the monitor, etc. 
 
Computer Interface 
 
A Computer Interface is a piece of hardware whose primary purpose is to connect 
together any of the following types of computer elements in such a way that the signal 
levels and the timing requirements of the elements are matched by the interface. Those 
elements are:  

• The processor unit  
• The memory subsystem(s)  
• Peripheral (or I/O) devices  
• The buses (also called "links")  

In other words, an interface is an electronic circuit that matches the requirements of the 
two subsystems between which it is connected. An interface that can be used to connect 
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the microcomputer bus to peripheral devices is called an I/O Port. I/O ports serve the 
following three purposes:  

• Buffering (i.e., holding temporarily) the data to and from the computer bus.  
• Holding control information that dictates how a transfer is to be conducted.  
 
 
• Holding status information so that the processor can monitor the activity of the 

interface and its associated I/O element.  
This control information is usually provided by the CPU and is used to tell the device 
how to perform the transfer, e.g., if the CPU wants to tell a printer to start a new page, 
one of the control signals from the CPU can be used for a paper advance command, 
thereby telling the printer to start printing from the top of the next page. In the same way 
the CPU may send a control signal to a tape drive connected in the system asking it to 
activate the rewind mechanism so that the start of the tape is positioned for access by the 
CPU. Status information from various devices helps the CPU to know what is going on in 
the system.  Once again, using the printer as an example, if the printer runs out of paper, 
this information should be sent to the CPU immediately.  In the same way, if a hard drive 
in the system crashes, or if a sector is damaged and cannot be read, this information 
should also be conveyed to the CPU as soon as possible 
The term “buffer” used in the above discussion also needs to be understood. In most 
cases, the word buffer refers to I/O registers in an interface where data, status or control 
information is temporarily stored. A block of memory locations within the main memory 
or within the peripheral devices is also called a buffer if it is used for temporary storage. 
Special circuits used in the interfaces 
for voltage/current matching, at the 
input and the output, are also called 
buffers.  
The given figure shows a block 
diagram of a typical I/O subsystem 
connected with the other components 
in a computer.   The thick horizontal 
line is the system bus that serves as a 
back-bone in the entire computer 
system. It is used to connect the 
memory subsystems as well as the I/O 
subsystems together. The CPU also 
connects to this bus through a “bus 
interface unit”, which is not shown in 
this figure.  Four I/O modules are 
shown in the figure.  One module is 
used to connect a keyboard and a 
mouse to the system bus. A second 
module connects a monitor to the 
system bus. Another module is used 
with a hard disk and a fourth I/O 
module is used by a modem.  All these 
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modules are examples of I/O ports. A somewhat detailed view of these modules is shown 
in the next figure. 
As we already know that the system bus actually consists of three buses, namely the 
address bus, the data bus and the control bus. These three buses are being applied to the 
I/O module in this figure. At the bottom, we see a set of data, status and control lines 
from each “device interface logic” block.  Each of these sets connects to a peripheral 
device.  I/O decoding logic is also shown in this figure. 
 
Memory Mapped I/O versus Isolated I/O 
 
Although this concept was explained earlier as 
well, it will be useful to review it again in this 
context.  In isolated I/O, a separate address 
space of the CPU is reserved for I/O 
operations.  This address space is totally 
different from the address space used for 
memory devices. In other words, a CPU has 
two distinct address spaces, one for memory 
and one for input/output. Unique CPU 
instructions are associated with the I/O space, 
which means that if those instructions are 
executing on the CPU, then the accessed 
address space will be the I/O space and hence 
the devices mapped on the I/O space. 
The x86 family with the in and the out 
instructions is a well known example 
of this situation. Using the in 
instruction, the Pentium processor can 
receive information from a peripheral 
device, and using the out instruction, 
the Pentium processor can send 
information to a peripheral device. 
Thus, the I/O devices are mapped on 
the I/O space in case of the Pentium 
processor. In some processors, like the 
SRC, there is no separate I/O space.  In 
this case, some address space out of 
the memory address space must be used to map I/O devices. The benefit will be that all 
the instructions which access memory can be used for I/O devices.  There is no need for 
including separate I/O instructions in the ISA 
of the processor.  However, the disadvantage 
will be that the I/O interface will become 
complex. If partial decoding is used to reduce 
the complexity of the I/O interface, then a lot 
of memory addresses will be consumed. The 
given figure shows the memory address space 
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as well as the I/O address space for the Pentium processor.  The I/O space is of size 64 
Kbytes, organized as eight banks of 8 Kbytes each. 
A similar diagram for the FALCON-A was shown earlier and is repeated here for easy 
reference. 
The next question to be answered is how the CPU will differentiate between these two 
address spaces. How will the system components know whether a particular transfer is 
meant for memory or an I/O device? The answer is simple: by using signals  
 
from the control bus, the CPU will indicate which address space is meant during a 
particular transfer.  Once again, using the Pentium as an example, if the in instruction is 
executing on the processor, the IOR# signal will become active and the MEMR# signal 
will be deactivated.  For a mov instruction, the control logic will activate the MEMR# 
signal instead of the IOR# signal.  
 
Considerations during I/O Subsystem Design 
 
Certain things must be taken care of during the design of an I/O subsystem. 
Data location:  
The designer must identify the device where the data to be accessed is available, the 
address of this device and how to collect the data from this device. For example, if a 
database needs to be searched for a record that is stored in the fourth sector of the second 
track of the third platter on a certain hard drive in the system, then this information is 
related to data location.  The particular hard drive must be selected out of the possibly 
many hard drives in the system, and the address of this record in terms of platter number, 
track number and sector number must be given to this hard drive.  
Data transfer:  
This includes the direction of transfer of data; whether it is out of the CPU or into the 
CPU, whether the data is being sent to the monitor or the hard drive, or whether it is 
being received from the keyboard or the mouse. It also includes the amount of data to be 
transferred and the rate at which it should be transferred. If a single mouse click is to be 
transferred to the CPU, then the amount of data is just one bit; on the other hand, a block 
of data for the hard drive may be several kilo bytes.  Similarly, the rate of the transfer of 
data to a printer is very different from the transfer rate needed for a hard drive. 
Data synchronization: 
This means that the CPU should input data 
from an input device only when the device is 
ready to provide data and send data to an 
output device only when it is ready to receive 
data.  
There are three basic schemes which can be 
used for synchronization of an I/O data 
transmission: 

• Synchronous transmission 
• Semi-synchronous transmission 
• Asynchronous transmission 

Synchronous transmission:  
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This can be understood by looking at the waveforms shown in Figure A. 
M stands for the bus master and S stands for the slave device on the bus. The master and 
the slave are assumed to be permanently connected together, so that there is no need for 
the selection of the particular slave device out of the many devices that may be present in 
the system. It is also assumed that the slave device can perform the transfer at the speed 
of the master, so no handshaking signals are needed.  
 
At the start of the transfer operation, the master activates the Read signal, which indicates 
to the slave that it should respond with data. The data is provided by the slave, and the 
master uses the Enable signal to latch it. All 
activity takes place synchronously with the 
system clock (not shown in the figure). A 
familiar example of synchronous transfer is a register-to-register transfer within a CPU. 
Semi-synchronous transmission:  
Figure B explains this type of transfer. All activity is still synchronous with the system 
clock, but in some situations, the slave device 
may not be able to provide the data to the 
master within the allotted time. The additional 
time needed by the slave, can be provided by 
adding an integral number of clock periods to 
the master’s cycle time. 
The slave indicates its readiness by activating 
the complete signal. Upon receiving this 
signal, the master activates the Enable signal 
to latch the data provided by the slave. 
Transfers between the CPU and the main 
memory are examples of semi-synchronous 
transfer. 
Asynchronous transmission: 
This type of transfer does not require a 
common clock. The master and the slave 
operate at different speeds. Handshaking  
signals are necessary in this case, and are used 
to coordinate the data transfer between the 
master and the slave as shown in the Figure C. 
When the master wants to initiate a data 
transfer, it activates its Ready signal. The 
slave detects this signal, and if it can provide 
data to the master, it does so and also activates 
its Acknowledge signal. Upon receiving the 
Acknowledge signal, the master uses the 
Enable signal to latch the incoming data .The 
master then deactivates its Ready line, and in 
response to it, the slave removes its data and 
deactivates its Acknowledge line. 
In all the three cases discussed above, the 

Figure A 

Figure A 

Figure B 

Figure C 
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waveforms correspond to an “input” or a “read”  
operation. A similar explanation will apply to an “output” or a “write” operation. It 
should also be noted that the latching of the incoming data can be done by the master 
either by using the rising edge of the Enable signal or by using its falling-edge. This will 
depend on the way the intermediate circuitry between the master and the slave is 
designed. 
 
 
 
Serial and Parallel Transfers 
 
There are two ways in which data can be transferred between the CPU and an I/O device: 
serial and parallel. 
Serial Transfer, or serial communication of data between the CPU and the I/O devices, 
refers to the situation when all the data bits in a "piece of information", (which is a byte 
or word mostly), are transferred one bit at a time, over a single pair of wires.  
Advantages:  

• Easy to implement, especially by using UARTs7 or USARTs8.  
• Low cost because of less wires.  
• Longer distance between transmitter and receiver. 

Disadvantages:  
• Slow by its very nature.  
• Inefficient because of the associated overhead, as we will see when we discuss the 

serial wave forms. 
Parallel Transfer, or parallel communication of data between the CPU and the I/O 
devices, refers to the situation when all the bits of data (8 or 16 usually), are transferred 
over separate lines simultaneously, or in parallel.  
Advantages:  

• Fast (compared to serial communication) 
Disadvantages:  

• High cost (because of more lines).  
• Cost increases with distance.  
• Possibility of interference (noise) increases with distance.  

Remember that the terms "serial" and "parallel" are with respect to the computer I/O 
ports and not with respect to the CPU.  The CPU always transfers data in parallel.  
Types of serial communication 
There are two types of serial communication: 
            Asynchronous:  

• Special bit patterns separate the characters.  
• "Dead time" between characters can be of any length.  
• Clocks at both ends need not have the same frequency (within permissible 

limits).  
Synchronous:  

                                                 
7 Universal Asynchronous Receiver Transmitter. 
8 Universal Synchronous Asynchronous Receiver Transmitter. 
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• Characters are sent back to back.  
• Must include special "sync" characters at the beginning of each message.  
• Must have special "idle" characters in the data stream to fill up the time 

when no information is being sent.  
• Characters must be precisely spaced.  
• Activity at both ends must be coordinated by a single clock. (This implies 

that the clock must be transmitted with data).  
 
 
The "maximum information rate" of a synchronous line is higher than that of an 
asynchronous line with the same "bit rate", because the asynchronous transmission must 
use extra bits with each character. Different protocols are used for serial and parallel 
transfer. A protocol is a set of rules understood by both the sender and the receiver. In 
some cases, these protocols can be predefined for a certain system.   As an alternate, 
some available standard protocols can be used. 
Error conditions related to serial communication 
(Some related to synchronous transmission, some to asynchronous, and some to both).  

• Framing Error: is said to occur when a 0 is received instead of a stop bit (which is 
always a 1). It means that after the detection of the beginning of a character with a 
start bit, the appropriate number of stop bits was not detected. [A]  

• Parity Error: is said to occur when the parity* of the received data is not the same 
as it should be. [B] (PARITY is equivalent to the number of 1's; it is either EVEN 
or ODD. A PARITY BIT is an extra bit added to the data, for the purpose of error 
detection and correction. If even parity is used, the parity bit is set so that the total 
number of 1’s, including the parity bit, is even. The same applies to odd parity.) 

• Overrun Error: means that the prior character that was received, was not yet read 
from the USART's "receive data register" by the CPU, and is overwritten by the 
new received character. Thus the first character was lost, and should be 
retransmitted. [A] 

• Under-run Error: If a character is not available at the beginning of an interval, an 
under-run is said to occur. The transmitter will insert an idle character till the end 
of the interval. [S] 

 
I/O Buses 
 
The block diagram of a general purpose 
computer system that has been referred to 
repeatedly in this course has three buses 
in addition to the three most important 
blocks. These three buses are collectively 
referred to as the system bus or the 
computer bus9. The block diagram is 

                                                 
9 In some cases, the external CPU bus is the same as the system bus, especially in the case of small, 
dedicated systems. However, for most systems, there is a “bus interface unit” between the CPU and the 
system bus. The bus interface unit is not shown in the figure. 

The bus interface 
unit is usually 
between the CPU 
and System bus. 

Computer Bus or   
System Bus
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repeated here for an easy reference in Figure 1. 
Another organization that is used in modern computers is shown in Figure 2. It has a 
memory bus for connecting the CPU to the memory subsystem. This bus      
is separate from the I/O bus that is used to connect peripherals and I/O devices to the 
system.   
Examples of I/O buses include the PCI bus and the ISA bus. These I/O buses provide an 
“abstract interface” that can be used for interfacing a large variety of peripherals to the 
system with minimum hardware. It is also possible to standardize I/O buses, as done by 
several agencies, so that third party manufacturers can build add-on sub systems for 
existing architectures.  
 
The location of these I/O buses may be different in different  
computers. 
Earlier generation computers used a 
single bus over which the CPU could 
communicate with the memory as well 
as the I/O devices. This meant that the 
bandwidth of the bus was shared 
between the memory and I/O devices. 
However, with the passage of time, 
computer architects drifted towards 
separate memory and I/O buses, 
thereby giving more flexibility to users 
wanting to upgrade their existing 
systems. 
A main disadvantage of I/O buses (and 
the buses in general) is that every bus has a fixed bandwidth which is shared by all 
devices on the bus. Additionally, electrical constraints like transmission line effects and 
bus length further reduce the bandwidth. As a result of this, the designer has to make a 
decision whether to sacrifice interface simplicity (by connecting more devices to the bus) 
at the cost of bandwidth, or connect fewer devices to the bus and keep things simple to 
get a better bandwidth. This can be explained with the help of an example. 
Example # 1 
Problem statement: 
Consider an I/O bus that can transfer 4 bytes of data in one bus cycle. Suppose that a 
designer is considering to attach the following two components to this bus: 
Hard drive, with a transfer rate of 40 Mbytes/sec 
Video card, with a transfer rate of 128 Mbytes/sec.  
What will be the implications? 
Solution: 
The maximum frequency of the bus is 30 MHz10. This means that the maximum 
bandwidth of this bus is 30 x 4 = 120 Mbytes/sec.  Now, the demand for bandwidth from 
these two components will be 128 + 40 =168 Mbytes/sec which is more than the 120 

                                                 
10 These numbers correspond to an I/O bus that is relatively old. Modern systems use much faster buses 
than this. 

Figure 1 

Figure 2 

Figure 1 
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Mbytes/sec that the bus can provide.  Thus, if the designer uses these two components 
with this bus, one or both of these components will be operating at reduced bandwidth. 
Bus arbitration: 
Arbitration is another issue in the use of I/O buses.  Most commercially available I/O 
buses have protocols defining a number of things, for example how many devices can 
access the bus, what will happen if multiple devices want to access the bus at the same 
time, etc. In such situations, an “arbitration scheme” must be established. As an example, 
in the SCSI11 specifications, every device in the system is assigned an ID which identifies 
the device to the “bus arbiter”. If multiple devices send a request for the bus, the device 
with the highest priority will be given access to the bus first. Such a scheme is easy to 
implement because the arbiter can easily decide which device should be given access to 
the bus, but its disadvantage is that the device with a low priority will  
 
 
not be able to get access to the bus12.  An alternate scheme would be to give the highest 
priority to the device that has been waiting for the longest time for the bus. As a result of 
this arbitration, the access time, or the latency, of such buses will be further reduced.  
Details about the PCI and some other buses will be presented in a separate section. 
Example # 2 
Problem statement: 
If a bus requires 10 nsec for bus requests, 10 nsec for arbitration and the average time to 
complete an operation is 15 nsec after the access to the bus has been granted, is it 
possible for such a bus to perform 50 million IOPS? 
Solution: 
For 50 million IOPS, the average time for each IOP is 1 / (50 x 106) =20 nsec.  Given the 
information about the bus, the sum of the three times is 10 + 10 + 15 = 35 nsec for a 
complete I/O operation.  This means that the bus can perform a maximum of 1 / (35 x 10-

9) = 28.6 million IOPS.   
Thus, it will not be able to perform 50 million IOPS. 
  
 
 
 
 
 

                                                 
11 Small Computer System Interface. 
12 Such a situation is called “starvation”. 


