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Designing Parallel I/O Ports 
 
This section is about designing parallel input and output ports.  As you already know 
from the previous discussion, an interface that is used to connect the computer bus with 
I/O devices is called an I/O port. This I/O port can be connected directly to the computer 
bus (also called the system bus) or through an intermediate bus called the I/O bus. This 
intermediate bus is also called the expansion bus or the peripheral bus. In any case, the 
following general information about I/O bus cycles on a typical CPU should be kept in 
mind: At the start of a particular bus cycle (which will be an I/O bus cycle in this case), 
the CPU places an address on its address bus. This address will identify the I/O device to 
be involved in the transfer. After some time the CPU will activate certain control signals, 
which will indicate whether the particular I/O bus cycle, is an I/O read or an I/O write 
cycle. Based on these control signals, in case of I/O read cycle, the CPU will be 
expecting data from the selected input device over the data bus, and for an I/O write cycle 
the CPU will provide data to the selected device over the data bus. At the end of this I/O 
bus cycle, the address (and data) information will be removed from the buses and the 
control signals will be reset.   It can be easily understood from this discussion that we 
must match the timing requirements of the I/O ports to be designed with the timing 
parameters of the given CPU. Additionally, the voltage and current requirements of the 
I/O ports must be matched with the voltage and current specifications of the CPU.  For 
simplicity, we ignore the voltage and current matching details in this discussion and only 
focus on the logic levels and timing aspects of the design. Voltage and current related 
discussions are the topic of an electronics course. 
Thus, there are two important functions which should be built into I/O ports. 
      1. Address decoding 

2. Data isolation for input ports or data capturing for output ports. 
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1. Address decoding:  Since every I/O port has a unique identifier associated with it, 
(which is called its address, and no other port in the system should have the same 
address), by monitoring the system address bus, the I/O port knows when it is its turn to 
participate in a transfer.  At this time, the address decoder within the I/O port generates 
an asserted output which can be applied to the enable input of tri-state buffers in input 
ports or the latch enable input of latches in output ports.  
Our definition of an address decoder: 
An "Address Decoder" is a combinational (logic) 
circuit with n + r inputs and a single output, 
where 

n = the number of address lines into the 
decoder, and 

r = the number of control lines into the 
decoder.  
The output fD is active only when the 
corresponding address is present on the n address 
lines and the corresponding r control lines hold 
the "proper" (active or inactive) value. fD is 
inactive for all other situations. 
Suggestions for address decoder design: 
1.1 Start by thinking of the address decoder as a 
“big AND gate”.  We will call this a “skeleton 
address decoder” or SAD.  The output of the SAD will be active only when the correct 
address is present on the system address bus and the relevant control bus signals hold the 
proper values.  At all other times, the output of the SAD should be deactivated. 
1.2 Always write the port address of the port to be designed in binary. Associate the 
CPU’s address lines with each bit. Those lines which are zero will be inverted before 
being fed into the “big AND gate”; other address lines will not be inverted. 
1.3 List the relevant control signals for the system to which the port is to be attached. If 
the “proper” value of the signal is 0, it should be inverted before applying to the SAD, 
otherwise it is fed directly into the SAD. 
1.4 Determine whether the decoder output should be active high or low.  This will depend 
on the type of latch or buffer used in the design. If an active low decoder output is 
needed, invert the output from the “big AND gate”. 
1.5 Once the logic for the address decoder is established, the SAD can be implemented 
using any of the available methods of logic design.  For example, HDL code in Verilog or 
VHDL can be generated and the address decoder can be implemented using PLDs.  
Alternately, the SAD can be implemented using SSI building blocks. 
2. Data isolation or capturing: For input ports, the in coming data should be placed on 
the data bus only during the I/O read bus cycle. At all other times, this data should be 
isolated from the data bus otherwise it will cause “bus contention”. Tri-state buffers are 
used for this purpose. Their input lines are connected to the peripheral device supplying 
data and their output lines are connected to the data bus. The common enable line of such 
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buffers is driven with the output of the SAD. If this enable is active low, the output of the 
big AND gate in the SAD should be inverted, as described earlier. 
 
For output ports, data is made available for the peripheral device at the data bus during 
the I/O write bus cycle. During other bus cycles, this data will be removed from the data 
bus by the processor. Latches (or registers) are used for this purpose. Their input lines are 
connected to the system data bus and their output lines are connected to the peripheral 
device receiving data. The common clock (or latch enable) line of such latches is driven 
with the output of the SAD. If this clock is active low, the output of the big AND gate in 
the SAD should be inverted. 
Example # 1 
Problem Statement:  
Design a 16-bit parallel output port mapped on address DEh of the I/O space of the 
FALCON-A CPU. 
Solution:  
Using the guidelines mentioned above, we start with a 
“big AND gate” (SAD) and write the address to be 
decoded (DEh) in binary. 
Thus, DEh → 1101 1110 b. Associating one CPU address 
line with each bit, we get A0 = 0, A1=1, etc as shown in 
the table below. 
Because the I/O space on the FALCON-A is only 256 
bytes, address lines A15 .. A8 are don’t cares, and will not be 
used in this design. 
  

1 1 0 1 1 1 1 0 
A7 A6 A5 A4 A3 A2 A1 A0 

 
Thus, A0 and A5 will be applied to the “big AND gate” after inversion.  The remaining 
address lines will be connected directly to the inputs of the SAD. 
Next, we look at the relevant control signals. The only signal which should be used in this 
case is IOW#.  A logic 0 (zero) on this line indicates that 
it is active.  Thus, it should be inverted before being 
applied to the input of the SAD. 
We can easily see that our SAD intuitively conforms to 
the way we defined an address decoder.  Its output is a 1 
only when the address (xxxx xxxx 1101 1110 b) is 
present on the FALCON-A’s address bus during an I/O 
write cycle (By the way, this will take place when the 
instruction out reg, addr with addr=DEh or 222d is 
executing on the FALCON-A). At all other times, its output will 
be inactive.  
To make things simple, we use a circle (or a bubble) to indicate 
an inverter, as shown .Since this is a 16-bit output port, we will 
use two 8-bit registers to capture data from the FALCON-A’s 
data bus. The output of the SAD will be connected to the enable 
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inputs of the two registers. The D-inputs of the registers will be connected to the data bus 
and the Q outputs of the registers will be connected to the peripheral device. 
 
Practical implementation of the SAD 
 
Our SAD in this design is an AND gate with 9 inputs.  Using SSI chips, we can 
implement this SAD using an 8-input AND gate and a 2-input AND gate as shown in the 
figure shown below. 
Displaying output data using LED branches: 
An “LED branch” is a combination of a resistor and a light emitting diode (LED) in 
series. Sixteen LED branches can be used to display the output data captured by the 
registers as shown in the figure below. 
 

 
Example # 2 
Problem statement: 
Given a 16-bit parallel output port attached with the FALCON-A CPU as shown in the 
figure.  The port is mapped onto address DEh of the FALCON-A’s I/O space.  Sixteen 
LED branches are used to display the data being received from the FALCON-A’s data 
bus. Every LED branch is wired in such a way that when a 1 appears on the particular 
data bus bit, it turns the LED on; a 0 turns it off. 
Which LEDs will be ON when the instruction  
 out r2, 222 13 
executes on the CPU? Assume r2 contains 1234h. 
Solution: 

                                                 
13 Depending on the way the assembler is written, the syntax of the out instruction may allow only the 
decimal form of the port address, or only the hexadecimal form, or both. Our version of the assembler for 
the FALCON-A allows the decimal form only.  It also requires that the port address be aligned on 16-bit 
“word boundaries”, which means that every port address should be divisible by 2.  
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Since r2 contains 1234h, the bit pattern corresponding to this value will be sent out to the 
output port at address 222 (or DEh).  This is the address of the output port in this 
example. Writing the bit pattern in binary will help us determine the LEDs which will be 
ON. 
 
Now 1234h gives us the following bit associations with the data bus  
 

0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

MSB at address DEh LSB at address DFh 
 
Note that the 8-bit register which uses lines D15 .. D8 of the FALCON-A’s data bus is 
actually mapped onto address DEh of the I/O space.  This is because the architect of the 
FALCON-A had chosen a “byte-wide” (i.e., x8) organization of the address space, a 16-
bit data bus width, and the “big-endian” data format at the ISA design stage. 
Additionally, data bus lines D15...D8 will transfer the data byte of higher significance 
(MSB) using address DEh,  and D7...D0 will transfer the data byte of lower significance 
(LSB) using address DFh. Thus the LEDs at L12, L9, L5, L4 and L2 will turn on. 
 
The NUXI Problem 
 
It can be easily understood from the previous example that the big-endian format results 
in the least significant byte being transferred over the most significant side of the data 
bus, and vice versa.  The situation will be exactly opposite when the little-endian format 
is used.  In this case, the least significant byte will be transferred over the least side of the 
data bus. Now imagine a computer using the little-endian format exchanging data with a 
computer using the big-endian format over a 16-bit parallel port. (this may be the case 
when we have a network of different types of computer, for example).  The data 
transmitted by one will be received in a “swapped” form by the other, eg., the string 
“UN” will be received as “NU” and the string “IX” will be received as “XI”.  So UNIX 
changes to NUXI --- hence the name NUXI problem.  Special software is used to resolve 
this problem. 
 
Variation in the Implementation of the Address Decoder 
 
The implementation of the address decoder shown in Example #1(lec24) assumes that the 
FALCON-A does not allow the use of some part of its data bus during an I/O (or 
memory) transfer. Another restriction that was imposed by the assembler was that all port 
addresses should be divisible by 2. This implies that address line A0 will always be zero. 
If the FALCON-A architect had allowed the use some of part of its data bus (eg, 8-bits) 
during a transfer, the situation would be different. 
The logic diagram shown in the next figure is a 16-bit parallel output port at the same 
address (DEh) for the FALCON-A assuming that part of its data bus (D15..D8) or 
(D7..D0) can be used independently during an I/O transfer. Note that the enable inputs of 
the two 8-bit registers are not connected together in this case.  Moreover, since the 16-bit 
port uses two addresses, address line A0 will be at a logic 0 for address DEh, and at a 
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logic 1 for address DFh. This means that it cannot be used at the input of the big AND 
gate.  So, A0 has been used in a different position with the two 2-input AND gates. The 
2-input AND gate where A0 is applied after inversion will generate a 1 at its output when 
A0 = 0.  Thus, this output will enable the 8-bit register mapped on the even address DEh.  
In case of the other AND gate, A0 is not inverted. So the corresponding 8-bit register will 
be mapped on the odd address DFh.  The input that became available after removing A0 
from its old position can be used for the IOW# control signal. The rest of the circuit is the 
same as it was in the previous figure. 

 
 
We can understand from the above discussion that the decisions made at the time of ISA 
design have a strong bearing on the implementation details and the working of the 
computer. Suppose we assume that the assembler developer had decided not to restrict 
the port addresses to even values, then what will be the implications? 
As an example, consider the execution of the instruction out r2, 223 assuming r2 
contains 1234h.  This is a 16-bit transfer at address 223 (DFh) and 224 (E0h).  
For the output port (shown in the first figure) where the CPU does not allow the use of 
some part of its data bus in a transfer, none of the registers will be enabled as a result of 
this instruction because the output of the 8-input AND gate will be a zero for both 
addresses DFh and E0h. Thus, that output port cannot be used. 
In the second figure, where the CPU has allowed to use a portion of its data bus in an I/O 
transfer, the register at the address DEh will not be enabled. The CPU will send the high 
data byte(12h) to the register at the address DFh (because it will be enabled at that time 
due to the address DFh) over data lines D7…D0. The fact that data lines D7…D0 should 
be used for the transfer of high byte, will be taken care of by the hardware, internal to the 
CPU. 
Now the question is where the low data byte (i.e. 34h) present at D15…D8 data lines 
would be placed? If there exists an output port at address E0h in the system, then 34h will 
be placed there (in the next bus cycle), otherwise it will be lost. Again, it is the CPU’s 
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responsibility to check whether the next address in the system exists or not and if exists 
then enable that port so that the low byte of data can be placed there. 
A possible option for the architect in this case would be to revisit the design steps and 
allow the use of part of the CPU registers (or at least for some of them) for I/O transfers. 
The logic diagram shown below shows an 8-bit parallel output port at address FEF2h of 
the Pentium’s I/O address space.  Since the Pentium allows the use of some part of its 
data bus during a transfer, we can use the BE2# signal in the address decoder to enable 
the 8-bit register. The following instructions will access this output port. 
 mov dx, 0FEF2h 
 mov al, 12h 
 out dx, al 
 

 
 
The Pentium does allow the use of some part of its 32-bit accumulator register EAX. In 
case only 8-bits are to be transferred, register AL can be used, as shown in the program 
fragment above. The data byte 12h will be sent to the 8-bit register over lines D23..D16. 
Since 12h corresponds to 0001 0010 in binary, this will cause the LEDs L4 and L1 to turn 
on.  
Example # 3 
Problem statement: 
Write an assembly language program to turn on the 16 LEDs one by one on the output 
port of Example #1(lec24). Each LED should stay on for a noticeable duration of time. 
Repeat from the first LED after the last LED is turned on. 
Solution: 
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The solution is shown in the text box with a filename:  Example_3.asmfa. The working of 
this program is explained below: 
The first two instructions turn all the LEDs off by sending a 0 to each bit of the output 
port at address 222. 

mov r1,0 
out r1,222 

 
Then a 1 is sent to L0 causing it to turn on, and the program enters a loop which executes 
15 times to cause the other LEDs 
(L1 through L15) to turn on, one by 
one in sequence. Register r5 is 
being used as loop counter. The 
following three instructions 
introduce a delay between 
successive bit patterns sent to the 
output port, so that each LED stays 
on for a noticeable duration of time. 
delay1: movi r2,0 
again1: subi r2,r2,1 
       jnz r2,[again1] 
Starting with a value of 0 in r2 14, 
this value is decremented to FFFFh 
when the again1 loop is entered. 
The jnz instruction will cause r2 to 
decrement again and again; thereby 
executing the loop 65,535 times. An 
estimate of the delay interval is 
presented at the end of this section. 
After this delay, all the LEDs are 
turned off, and a second delay loop 
executes. Finally, the next LED on 
the left, in sequence, is turned on by 
the following two instructions: 

shiftl r1,r1,1 
out r1, 222 

After the left most LED is turned 
on, the process starts all over again 
because of the last jump 
instruction. The outermost loop 
executes indefinitely. 
 
Estimating the Delay 

Interval 
                                                 
14 this is necessary because the immediate operand with the movi instruction of the FALCON-A has a 
range of 0h to FFh. This will not give us the large loop counter that we need here. So we use the above 
software trick. An alternate way would be to use nested loops, but that will tie up additional CPU registers. 

; filename: Example_3.asmfa 
; 
;ALL LEDS ARE turned Off initially 
; 
     movi r1,0 
     out r1,222 
; 
;First LED will be turned on each time 
; 
start:  movi r1,1 
 out r1,222 
; 
 movi r5,15      
;           
;DELAY LOOP 
; 
delay1: movi r2,0 
again1: subi r2,r2,1 
        jnz r2, [again1] 
; 
     movi r3,0 ; TURN OFF ALL LEDS 
     out r3,222 
; 
delay2: movi r2,0 
again2: subi r2,r2,1 
   jnz r2, [again2] 
; 
  shiftl r1,r1,1 ; next LED ON 
 out r1,222 
 subi r5,r5,1 
 jnz r5, [delay1] 
 jump [start] 
 halt 
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To make things simple, assume that the FALCON-A is operating at a clock frequency of 
1 MHz. Also, assume that the subi and the jnz instructions take 3 and 4 clock periods, 
respectively, to execute. Since these two instructions execute 65,535 times each, we can 
use the following formula to compute the execution time of this loop: 
 
   
 
 
        ET = CPI x IC x T = CPI x IC / f 
where 
  CPI = clocks per instruction 
  IC    = instruction count 
  T      = time period of the clock, 

and 
  f = frequency of the clock. 
Using the assumed values, we get 
 
 ET =   (3+4) x 65535 / (1x106 )  =  0. 

459 sec 
Since the movi r2, 0 instruction executes 
only once, the time it takes to execute is 
negligible and has been ignored in this 
calculation. 
 


