
Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 245

Advanced Computer Architecture

Lecture No. 24

Reading Material

 Handouts Slides

Summary

• Designing Parallel I/O Ports
• Practical Implementation of the SAD
• NUXI Problem
• Variation in the Implementation of the Address Decoder
• Estimating the Delay Interval

Designing Parallel I/O Ports

This section is about designing parallel input and output ports. As you already know
from the previous discussion, an interface that is used to connect the computer bus with
I/O devices is called an I/O port. This I/O port can be connected directly to the computer
bus (also called the system bus) or through an intermediate bus called the I/O bus. This
intermediate bus is also called the expansion bus or the peripheral bus. In any case, the
following general information about I/O bus cycles on a typical CPU should be kept in
mind: At the start of a particular bus cycle (which will be an I/O bus cycle in this case),
the CPU places an address on its address bus. This address will identify the I/O device to
be involved in the transfer. After some time the CPU will activate certain control signals,
which will indicate whether the particular I/O bus cycle, is an I/O read or an I/O write
cycle. Based on these control signals, in case of I/O read cycle, the CPU will be
expecting data from the selected input device over the data bus, and for an I/O write cycle
the CPU will provide data to the selected device over the data bus. At the end of this I/O
bus cycle, the address (and data) information will be removed from the buses and the
control signals will be reset. It can be easily understood from this discussion that we
must match the timing requirements of the I/O ports to be designed with the timing
parameters of the given CPU. Additionally, the voltage and current requirements of the
I/O ports must be matched with the voltage and current specifications of the CPU. For
simplicity, we ignore the voltage and current matching details in this discussion and only
focus on the logic levels and timing aspects of the design. Voltage and current related
discussions are the topic of an electronics course.
Thus, there are two important functions which should be built into I/O ports.
 1. Address decoding

2. Data isolation for input ports or data capturing for output ports.

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 246

1. Address decoding: Since every I/O port has a unique identifier associated with it,
(which is called its address, and no other port in the system should have the same
address), by monitoring the system address bus, the I/O port knows when it is its turn to
participate in a transfer. At this time, the address decoder within the I/O port generates
an asserted output which can be applied to the enable input of tri-state buffers in input
ports or the latch enable input of latches in output ports.
Our definition of an address decoder:
An "Address Decoder" is a combinational (logic)
circuit with n + r inputs and a single output,
where

n = the number of address lines into the
decoder, and

r = the number of control lines into the
decoder.
The output fD is active only when the
corresponding address is present on the n address
lines and the corresponding r control lines hold
the "proper" (active or inactive) value. fD is
inactive for all other situations.
Suggestions for address decoder design:
1.1 Start by thinking of the address decoder as a
“big AND gate”. We will call this a “skeleton
address decoder” or SAD. The output of the SAD will be active only when the correct
address is present on the system address bus and the relevant control bus signals hold the
proper values. At all other times, the output of the SAD should be deactivated.
1.2 Always write the port address of the port to be designed in binary. Associate the
CPU’s address lines with each bit. Those lines which are zero will be inverted before
being fed into the “big AND gate”; other address lines will not be inverted.
1.3 List the relevant control signals for the system to which the port is to be attached. If
the “proper” value of the signal is 0, it should be inverted before applying to the SAD,
otherwise it is fed directly into the SAD.
1.4 Determine whether the decoder output should be active high or low. This will depend
on the type of latch or buffer used in the design. If an active low decoder output is
needed, invert the output from the “big AND gate”.
1.5 Once the logic for the address decoder is established, the SAD can be implemented
using any of the available methods of logic design. For example, HDL code in Verilog or
VHDL can be generated and the address decoder can be implemented using PLDs.
Alternately, the SAD can be implemented using SSI building blocks.
2. Data isolation or capturing: For input ports, the in coming data should be placed on
the data bus only during the I/O read bus cycle. At all other times, this data should be
isolated from the data bus otherwise it will cause “bus contention”. Tri-state buffers are
used for this purpose. Their input lines are connected to the peripheral device supplying
data and their output lines are connected to the data bus. The common enable line of such

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 247

buffers is driven with the output of the SAD. If this enable is active low, the output of the
big AND gate in the SAD should be inverted, as described earlier.

For output ports, data is made available for the peripheral device at the data bus during
the I/O write bus cycle. During other bus cycles, this data will be removed from the data
bus by the processor. Latches (or registers) are used for this purpose. Their input lines are
connected to the system data bus and their output lines are connected to the peripheral
device receiving data. The common clock (or latch enable) line of such latches is driven
with the output of the SAD. If this clock is active low, the output of the big AND gate in
the SAD should be inverted.
Example # 1
Problem Statement:
Design a 16-bit parallel output port mapped on address DEh of the I/O space of the
FALCON-A CPU.
Solution:
Using the guidelines mentioned above, we start with a
“big AND gate” (SAD) and write the address to be
decoded (DEh) in binary.
Thus, DEh → 1101 1110 b. Associating one CPU address
line with each bit, we get A0 = 0, A1=1, etc as shown in
the table below.
Because the I/O space on the FALCON-A is only 256
bytes, address lines A15 .. A8 are don’t cares, and will not be
used in this design.

1 1 0 1 1 1 1 0
A7 A6 A5 A4 A3 A2 A1 A0

Thus, A0 and A5 will be applied to the “big AND gate” after inversion. The remaining
address lines will be connected directly to the inputs of the SAD.
Next, we look at the relevant control signals. The only signal which should be used in this
case is IOW#. A logic 0 (zero) on this line indicates that
it is active. Thus, it should be inverted before being
applied to the input of the SAD.
We can easily see that our SAD intuitively conforms to
the way we defined an address decoder. Its output is a 1
only when the address (xxxx xxxx 1101 1110 b) is
present on the FALCON-A’s address bus during an I/O
write cycle (By the way, this will take place when the
instruction out reg, addr with addr=DEh or 222d is
executing on the FALCON-A). At all other times, its output will
be inactive.
To make things simple, we use a circle (or a bubble) to indicate
an inverter, as shown .Since this is a 16-bit output port, we will
use two 8-bit registers to capture data from the FALCON-A’s
data bus. The output of the SAD will be connected to the enable

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 248

inputs of the two registers. The D-inputs of the registers will be connected to the data bus
and the Q outputs of the registers will be connected to the peripheral device.

Practical implementation of the SAD

Our SAD in this design is an AND gate with 9 inputs. Using SSI chips, we can
implement this SAD using an 8-input AND gate and a 2-input AND gate as shown in the
figure shown below.
Displaying output data using LED branches:
An “LED branch” is a combination of a resistor and a light emitting diode (LED) in
series. Sixteen LED branches can be used to display the output data captured by the
registers as shown in the figure below.

Example # 2
Problem statement:
Given a 16-bit parallel output port attached with the FALCON-A CPU as shown in the
figure. The port is mapped onto address DEh of the FALCON-A’s I/O space. Sixteen
LED branches are used to display the data being received from the FALCON-A’s data
bus. Every LED branch is wired in such a way that when a 1 appears on the particular
data bus bit, it turns the LED on; a 0 turns it off.
Which LEDs will be ON when the instruction
 out r2, 222 13
executes on the CPU? Assume r2 contains 1234h.
Solution:

13 Depending on the way the assembler is written, the syntax of the out instruction may allow only the
decimal form of the port address, or only the hexadecimal form, or both. Our version of the assembler for
the FALCON-A allows the decimal form only. It also requires that the port address be aligned on 16-bit
“word boundaries”, which means that every port address should be divisible by 2.

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 249

Since r2 contains 1234h, the bit pattern corresponding to this value will be sent out to the
output port at address 222 (or DEh). This is the address of the output port in this
example. Writing the bit pattern in binary will help us determine the LEDs which will be
ON.

Now 1234h gives us the following bit associations with the data bus

0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

MSB at address DEh LSB at address DFh

Note that the 8-bit register which uses lines D15 .. D8 of the FALCON-A’s data bus is
actually mapped onto address DEh of the I/O space. This is because the architect of the
FALCON-A had chosen a “byte-wide” (i.e., x8) organization of the address space, a 16-
bit data bus width, and the “big-endian” data format at the ISA design stage.
Additionally, data bus lines D15...D8 will transfer the data byte of higher significance
(MSB) using address DEh, and D7...D0 will transfer the data byte of lower significance
(LSB) using address DFh. Thus the LEDs at L12, L9, L5, L4 and L2 will turn on.

The NUXI Problem

It can be easily understood from the previous example that the big-endian format results
in the least significant byte being transferred over the most significant side of the data
bus, and vice versa. The situation will be exactly opposite when the little-endian format
is used. In this case, the least significant byte will be transferred over the least side of the
data bus. Now imagine a computer using the little-endian format exchanging data with a
computer using the big-endian format over a 16-bit parallel port. (this may be the case
when we have a network of different types of computer, for example). The data
transmitted by one will be received in a “swapped” form by the other, eg., the string
“UN” will be received as “NU” and the string “IX” will be received as “XI”. So UNIX
changes to NUXI --- hence the name NUXI problem. Special software is used to resolve
this problem.

Variation in the Implementation of the Address Decoder

The implementation of the address decoder shown in Example #1(lec24) assumes that the
FALCON-A does not allow the use of some part of its data bus during an I/O (or
memory) transfer. Another restriction that was imposed by the assembler was that all port
addresses should be divisible by 2. This implies that address line A0 will always be zero.
If the FALCON-A architect had allowed the use some of part of its data bus (eg, 8-bits)
during a transfer, the situation would be different.
The logic diagram shown in the next figure is a 16-bit parallel output port at the same
address (DEh) for the FALCON-A assuming that part of its data bus (D15..D8) or
(D7..D0) can be used independently during an I/O transfer. Note that the enable inputs of
the two 8-bit registers are not connected together in this case. Moreover, since the 16-bit
port uses two addresses, address line A0 will be at a logic 0 for address DEh, and at a

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 250

logic 1 for address DFh. This means that it cannot be used at the input of the big AND
gate. So, A0 has been used in a different position with the two 2-input AND gates. The
2-input AND gate where A0 is applied after inversion will generate a 1 at its output when
A0 = 0. Thus, this output will enable the 8-bit register mapped on the even address DEh.
In case of the other AND gate, A0 is not inverted. So the corresponding 8-bit register will
be mapped on the odd address DFh. The input that became available after removing A0
from its old position can be used for the IOW# control signal. The rest of the circuit is the
same as it was in the previous figure.

We can understand from the above discussion that the decisions made at the time of ISA
design have a strong bearing on the implementation details and the working of the
computer. Suppose we assume that the assembler developer had decided not to restrict
the port addresses to even values, then what will be the implications?
As an example, consider the execution of the instruction out r2, 223 assuming r2
contains 1234h. This is a 16-bit transfer at address 223 (DFh) and 224 (E0h).
For the output port (shown in the first figure) where the CPU does not allow the use of
some part of its data bus in a transfer, none of the registers will be enabled as a result of
this instruction because the output of the 8-input AND gate will be a zero for both
addresses DFh and E0h. Thus, that output port cannot be used.
In the second figure, where the CPU has allowed to use a portion of its data bus in an I/O
transfer, the register at the address DEh will not be enabled. The CPU will send the high
data byte(12h) to the register at the address DFh (because it will be enabled at that time
due to the address DFh) over data lines D7…D0. The fact that data lines D7…D0 should
be used for the transfer of high byte, will be taken care of by the hardware, internal to the
CPU.
Now the question is where the low data byte (i.e. 34h) present at D15…D8 data lines
would be placed? If there exists an output port at address E0h in the system, then 34h will
be placed there (in the next bus cycle), otherwise it will be lost. Again, it is the CPU’s

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 251

responsibility to check whether the next address in the system exists or not and if exists
then enable that port so that the low byte of data can be placed there.
A possible option for the architect in this case would be to revisit the design steps and
allow the use of part of the CPU registers (or at least for some of them) for I/O transfers.
The logic diagram shown below shows an 8-bit parallel output port at address FEF2h of
the Pentium’s I/O address space. Since the Pentium allows the use of some part of its
data bus during a transfer, we can use the BE2# signal in the address decoder to enable
the 8-bit register. The following instructions will access this output port.
 mov dx, 0FEF2h
 mov al, 12h
 out dx, al

The Pentium does allow the use of some part of its 32-bit accumulator register EAX. In
case only 8-bits are to be transferred, register AL can be used, as shown in the program
fragment above. The data byte 12h will be sent to the 8-bit register over lines D23..D16.
Since 12h corresponds to 0001 0010 in binary, this will cause the LEDs L4 and L1 to turn
on.
Example # 3
Problem statement:
Write an assembly language program to turn on the 16 LEDs one by one on the output
port of Example #1(lec24). Each LED should stay on for a noticeable duration of time.
Repeat from the first LED after the last LED is turned on.
Solution:

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 252

The solution is shown in the text box with a filename: Example_3.asmfa. The working of
this program is explained below:
The first two instructions turn all the LEDs off by sending a 0 to each bit of the output
port at address 222.

mov r1,0
out r1,222

Then a 1 is sent to L0 causing it to turn on, and the program enters a loop which executes
15 times to cause the other LEDs
(L1 through L15) to turn on, one by
one in sequence. Register r5 is
being used as loop counter. The
following three instructions
introduce a delay between
successive bit patterns sent to the
output port, so that each LED stays
on for a noticeable duration of time.
delay1: movi r2,0
again1: subi r2,r2,1
 jnz r2,[again1]
Starting with a value of 0 in r2 14,
this value is decremented to FFFFh
when the again1 loop is entered.
The jnz instruction will cause r2 to
decrement again and again; thereby
executing the loop 65,535 times. An
estimate of the delay interval is
presented at the end of this section.
After this delay, all the LEDs are
turned off, and a second delay loop
executes. Finally, the next LED on
the left, in sequence, is turned on by
the following two instructions:

shiftl r1,r1,1
out r1, 222

After the left most LED is turned
on, the process starts all over again
because of the last jump
instruction. The outermost loop
executes indefinitely.

Estimating the Delay

Interval

14 this is necessary because the immediate operand with the movi instruction of the FALCON-A has a
range of 0h to FFh. This will not give us the large loop counter that we need here. So we use the above
software trick. An alternate way would be to use nested loops, but that will tie up additional CPU registers.

; filename: Example_3.asmfa
;
;ALL LEDS ARE turned Off initially
;
 movi r1,0
 out r1,222
;
;First LED will be turned on each time
;
start: movi r1,1
 out r1,222
;
 movi r5,15
;
;DELAY LOOP
;
delay1: movi r2,0
again1: subi r2,r2,1
 jnz r2, [again1]
;
 movi r3,0 ; TURN OFF ALL LEDS
 out r3,222
;
delay2: movi r2,0
again2: subi r2,r2,1
 jnz r2, [again2]
;
 shiftl r1,r1,1 ; next LED ON
 out r1,222
 subi r5,r5,1
 jnz r5, [delay1]
 jump [start]
 halt

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 253

To make things simple, assume that the FALCON-A is operating at a clock frequency of
1 MHz. Also, assume that the subi and the jnz instructions take 3 and 4 clock periods,
respectively, to execute. Since these two instructions execute 65,535 times each, we can
use the following formula to compute the execution time of this loop:

 ET = CPI x IC x T = CPI x IC / f
where
 CPI = clocks per instruction
 IC = instruction count
 T = time period of the clock,

and
 f = frequency of the clock.
Using the assumed values, we get

 ET = (3+4) x 65535 / (1x106) = 0.

459 sec
Since the movi r2, 0 instruction executes
only once, the time it takes to execute is
negligible and has been ignored in this
calculation.

