
Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 254

Advanced Computer Architecture

Lecture No. 25

Reading Material

 Handouts Slides

Summary

• Designing a Parallel Input Port
• Memory Mapped I/O Ports
• Partial Decoding and the “wrap around” Effect
• Data Bus Multiplexing
• A generic I/O Interface
• The Centronics Parallel Printer Interface

Designing a parallel input port

The following example illustrates a number of important concepts.
Example # 1
Problem statement:
Design an 16-bit parallel input port mapped on address 7Eh of the I/O space of the
FALCON-A CPU.
Solution:
The process of designing a parallel input port is very similar to the design of a parallel
output port except for the following differences:

1. The address in this case is 7Eh, which is different from the previous value.
Hence, the address decoder will have the inputs A7 and A0 inverted, while the
other address lines at its input will not be inverted.

2. Control bus signal IOR# will be used instead of the signal IOW#.
3. A set of sixteen tri-state buffers will be used for data isolation. Their common

enable line will be connected to the output of the big AND gate (in the figure, fD
is being inverted because Enable is active low). The input of these buffers can be
connected to the input device and the output is connected to the FALCON-A’s
data bus.

In this example, switches S15...S0 are used to simulate the input data. The complete logic
circuit is shown in the next two figures.

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 255

In the second figure, the CPU is assumed to allow the use of some part of its data bus
during a transfer, while in the first figure it is not allowed.

Example # 2
Problem statement:
Given a FALCON-A processor with a 16-bit parallel input port at address 7Eh and a 16-
bit parallel output port at address DEh. Sixteen LED branches are used to display the
data at the output port and sixteen switches are used to send data through the input port.
Write an assembly language program to continuously monitor the input port and blink the
LED or LED(s) corresponding to the switch (es) set to logic 1. For example, if S0 and S2
are set to 1, then only the LEDs L0 and L2 should blink. If S7 is also set to logic 1 later,
then L7 should also start blinking.

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 256

Solution:
The program is shown in the text box with
filename: Example_2. It works as explained
below:
The first two instructions read the input port at
address 7Eh and send this bit pattern to the
output port at address DEh. This will cause the
LEDs corresponding to the switches that are set
to a 1 to turn on. Next, the program waits for a
suitable amount of time, and then turns all
LEDs off and waits again.
After the second wait, the program reads the
input port again. The LEDs that will be turn on
at the output port will now be according to the
new switch settings at the input port. The
process repeats indefinitely. Please see the

flowchart also.

It is also possible to use a single
address for both the input and the
output port. The following diagram
shows an address decoder for a 16-
bit parallel input/output port at
address 2Ch of the FALCON-A’s

I/O space. Note that the control bus lines IOW# and IOR# will differentiate between the
register and the tri-state buffer.

;filename: Example_2.asmfa
;Notes:
; r1 is used as an I/O register
; r2 is used as a delay counter
;
start: in r1, 126 ; 126d = 7Eh
 out r1, 222 ; 222d = DEh
;
 movi r2, 0
delay1: subi r2, r2, 1
 jnz r2, [delay1]
;
 movi r1, 0 ; all LEDs off
 out r1, 222
;
 movi r2, 0
delay2: subi r2, r2, 1
 jnz r2, [delay2]
;
 jump [start]
;
 halt

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 257

Memory mapped I/O ports

If it is desired to map the 16-bit
output port of Example #1(lec24)
on the memory space of the
FALCON-A, the following
changes would be needed.

1. Replace the IOW# signal
with the MEMW# signal.

2. Use the entire CPU address
bus at the input of the
address decoder, as shown
in the next figure. This
address decoder uses the
addresses 00DEh and 00DFh of the
FALCON-A’s memory space.

3. Use the store instruction instead of the
out instruction for sending data to the
output port (for memory mapped input
ports, use the load instruction instead of
the in instruction).

The program for Example #2(lec25) is rewritten
for the case of a memory mapped output port,
and is shown in the attached text box. The
advantage will be that more than 256 ports are
available, but the disadvantage is that the
address decoder will become more complex,
resulting in increased hardware costs.
To avoid the increase in hardware complexity,
many architects use what is called “partial
decoding”. This is explained in the next section.

Partial decoding and the “wrap
around” effect

Partial decoding is a technique in which some
of the CPU’s address lines forming an input to
the address decoder are ignored. This reduces
the complexity of the address decoder, and also
lowers the cost. As an example, if the address
lines A8...A15 from the FALCON-A are not
used in the address decoder of the previous
figure, this will save eight inverters and two
AND gates. Partial decoding is an attractive
choice in small systems, where the size of the

;filename: Example_2MM.asmfa
;Notes:
; For MEMORY MAPPED
; output port at 00DEh
;
; r6 holds the output address
; r7 holds the input address
;
 movi r6, 111
 add r6, r6, r6
;
 movi r7, 126
;
; r1 is used as an I/O register
; r2 is used as a delay counter
;
start: load r1,[r7] ; 126d = 7Eh
 store r1, [r6] ; 222d = DEh
;
 movi r2, 0
delay1: subi r2, r2, 1
 jnz r2, [delay1]
;
 movi r1, 0 ; all LEDs off
 store r1, [r6]
;
 movi r2, 0
delay2: subi r2, r2, 1
 jnz r2, [delay2]
;
 jump [start]
;
 halt

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 258

address space is large but most of the memory is unimplemented. However, partial
decoding has its price as well. Consider the memory map for the

FALCON-A, shown again in the next figure. With 16 address lines, the total address
space is 216 = 64 Kbytes. When the
upper eight address lines are unused,
they become don’t cares. The port
shown in the previous figure will be
accessed for address 00DEh. But, it
will also be accessed for address
01DEh, 02DEh,......, FFDEh. In fact,
the 64 Kbyte address space has been
reduced to a 256 byte space. It
“wrapped around” itself 256 times. If
we only left 6 address lines, i.e., A15
... A10, unconnected, then we will still
have a “wrap around”, but of a
different type. Now a 1 Kbyte (= 210)
address area will wrap around itself 64 times (= 26).

Data bus multiplexing

Data bus multiplexing refers to the situation when one part of the data bus is connected to
the peripheral’s data bus at one time and the second part of the data bus is connected to
the peripheral’s data bus at a different time in such a way that at one time, only one 8-bit
portion of the data bus is connected to the peripheral.

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 259

Consider the situation where an 8-bit peripheral is to be interfaced with a CPU that has a
16-bit (or larger) data bus, but a byte-wide address space. Each byte transferred over the
data bus will have a separate address associated with it. For such CPUs, data bus
multiplexing can be used to attach 8-bit peripherals requiring a block of addresses. Tri-
state buffers can be used for this

purpose as shown in the attached figure. The logic circuit shown is for an 8-bit parallel
output port using addresses DCh and DDh of the FALCON’s I/O address space. It is
assumed that the CPU allows the use of a part of its data bus during a transfer, and that
each 16-bit general purpose register can be used as two separate 8-bit registers, e.g., r1
can be split as r1L and r1H such that
 r1L<7..0> := r1<7..0>, and
 r1H<7..0> := r1<15..8>
The LED branches and the 8-bit register shown in the diagram serve as a place holder,
and can be replaced by a peripheral device in actual practice. For an even address, A0=0,
and the upper group of the tri-state buffers is enabled, thereby connecting D<15..8> of
the CPU to the peripheral, while for an odd address from the CPU, A0=1, and the lower
group of the tri-state buffers is enabled. This causes D<7..0> of the CPU to be connected
with the peripheral device. In such systems the instruction out r1H,220 will access the
peripheral device using D<15..8>, while the instruction out r1L,221 will access it using
D<7..0>. The instruction out r1,220 will send r1H to the peripheral and the contents of
r1L will be lost. Why? This is left as an exercise for the student. The advantage of data
bus multiplexing is that all addresses are utilized and none of them is wasted, while the
disadvantage is the increased complexity and cost of the interface.

A generic I/O interface

Most parallel I/O ports used with
peripheral devices are mapped on a
range of contiguous addresses. The
following figure shows the block
diagram of part of an interface that can
be used with a typical parallel printer.
It used eight consecutives addresses:
address 56 to 63. A similar interface
can be used with the FALCON-A. The
registers shown within the interface are
associated with some parallel device, and have some pre-defined functions. For example,
the 16 bit register at addresses 56 and 57 can be used as a “data out” register for sending
data bytes to the parallel device. In the same way, the register at addresses 60 and 61 can
be used by the CPU to send control bits to the device. The double arrow shown at the top
corresponds to the data bus connection of the interface with the CPU. The address
decoder shown at the bottom receives address and control information from the CPU and
generates enable signals for these registers. These abstract concepts are further explained
in Example #3(lec25).

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 260

The Centronics Parallel Printer Interface

The Centronics Parallel Printer Interface is an example of a real, industry standard, set of
signal specifications used by most printer manufacturers. It was originally developed for
Centronics printers and can be used by devices having a uni-directional, byte-wide
parallel interface. Table 1 shows the important signals and their functions as defined by
the Centronics standard. Note that the direction of the signals is with respect to the printer
and not with respect to the CPU.

Typically, the printer (or any other similar device) is connected to the CPU via a cable
which has a 25-pin connector at the CPU side and a 36-pin connector at the printer side.
Every data bit in the 8-bit data bus D<7…0> uses a twisted pair for suppressing
transmission-line effects, like radiation and noise. The return path of these pins should
always be connected to signal ground. Additionally, the entire printer cable should be
shielded, and connected to chassis ground on each side. The three signals STROBE#,
BUSY and ACKNLG# form a set of handshaking signals. By using these signals, the
CPU can communicate asynchronously with the printer, as shown in the accompanying
timing waveforms. When the printer is ready for printing, the CPU starts data transfer to
the printer by placing the 8-bit data (corresponding to the ASCII value of the character to
be printed) on the printer’s data bus (pin 2 through 9 on the 36-pin connector, as shown in
Table 1). After this, a negative pulse of duration at least 0.5µs is applied to the STROBE#
input (pin1) of the printer. The minimum set-up and hold times of the latches within the
printer are specified as 0.5µs each, and these timing requirements must be observed by
the CPU (the interface designer should make sure that these specifications are met). As
soon as STROBE# goes low, the printer activates its BUSY line (pin 11) which is an
indication to the CPU that additional bytes cannot be accepted. The CPU can monitor this
status signal over an input port (a detailed assignment of these signals to I/O port bits is
given in Table 2).

Table 1: The Centronics Parallel Printer Interface

(power and ground signals are not shown)

Signal
Name

Direction

w.r.t.
Printer

Function
Summary

Pin#
(25-DB)

CPU
side

Pin#
 (36-DB)
Printer

side
D<7..0> Input 8-bit data bus 9,8,…,2 9,8,…,2

STROBE#

Input

1-bit control signal
High: default value.
Low: read-in of data is
performed.

1

1

ACKNLG#

Output

1-bit status signal
Low: data has been received
and the printer is ready to
accept new data.
High: default value.

10

10

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 261

BUSY

Output

1-bit status signal
Low: default value
High: see note#1

11

11

PE#

Output

1-bit status signal
High: the printer is out of
paper.
Low: default value.

12

12

INIT#

Input

1-bit control signal
Low: the printer controller is
reset to its initial state and
the print buffer is cleared.
High: default value.

16

31

SLCT

Output

1-bit status signal
High: the printer is in
selected state.

13

13

AUTO

FEED XT#

Input

1-bit control signal
Low: paper is automatically
fed after one line.

14

14

SLCT IN#

Input

1-bit control signal
Low: data entry to the
printer is possible.
High: data entry to printer is
not Possible.

17

36

ERROR#

Output

1-bit status signal
Low: see note#2.
High: default value.

15

32

Note#1
The printer can not read data due to one of the following reasons:

1) During data entry
2) During data printing
3) In offline state
4) During printer error status

Note#2
When the printer is in one of the following states:

1) Paper end state
2) Offline state
3) Error state

When this character is completely
received, the ACKNLG# signal (pin 10)
goes low, indicating that the transfer is
complete. Soon after this, the BUSY signal
returns to logic zero, indicating that a new
transfer can be initiated. The BUSY signal
is more suitable for level-triggered

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 262

systems, while the ACKNLG# signal is better for edge-triggered systems.
The interface will typically use two eight bit parallel output ports of the CPU, one for the
ASCII value of the character byte and the other for the control byte. It also specifies an 8-
bit parallel input port for the printer’s status information that can be checked by the CPU.

Table 2: Centronics Bit Assignment For I/O Ports

Logic
al
Addre
ss

Descript
ion

7

6

5

4

3

2

1

0

0

8-bit

output
port for
DATA

D<7>

D<6>

D<5

>

D<4>

D<3>

D<2>

D<1>

D<0>

1

8-bit
input

port for
STATUS

BUS

Y

ACKNL

G#

PE#

SLC

T

ERRO

R#

Unus

ed

Unus

ed

Unused

2

8-bit

output
port for
CONTR

OL

Unus

ed

Unused

DIR

15

IRQE

N

SLCT
IN#

INIT

Auto
Feed
XT#

STROB

E#

Example # 3:
Problem statement:
Design a Centronics parallel printer interface for the FALCON-A CPU. Map this
interface starting at address 38h (56 decimal) of the FALCON-A’s I/O address space.
Solution:
The Centronics interface requires at least three I/O addresses. However, since the
FALCON-A has a 16-bit data bus, and since we do not want to implement data bus
multiplexing (to keep things simple), we will use three contiguous even addresses, i.e.,
38h, 3Ah and 3Ch for the address
decoder design. This arrangement also
conforms to the requirements of our
assembler. Moreover, we will connect
data bus lines D7...D0 of the
FALCON-A to the 8-bit data bus of

15 This bit, when set, enables the bidirectional mode.

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 263

the printer (i.e. pins 9, 8, ... , 2 of the printer cable) and leave lines D15...D8 unconnected.
Since the FALCON-A uses the big-endian format, this will make sure that the low byte of
CPU registers will be transferred to the printer. (Recall that these bytes will actually be
mapped on addresses 39h, 3Bh and 3Dh). The logic diagram of the address decoder for
this interface is shown in the given figure.

