
Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 264

 Advanced Computer Architecture

Lecture No. 26

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 8
Computer Systems Design and Architecture 8.2.2
Summary

• The Centronic Parallel Printer Interface(Cont.)
• Programmed Input/Output
• Examples of Programmed I/O for FALCON-A and SRC
• Comparisons of FALCON-A, SRC examples

The Centronic Parallel Printer Interface (Cont.)

Table 1: The Centronics Parallel Printer Interface
 (power and ground signals are not shown)

(The explanation of this table is provided in lecture 25 also)

Signal
Name

Direction

w.r.t.
Printer

Function
Summary

Pin#
(25-DB)

CPU
side

Pin#
 (36-DB)
Printer

side
D<7..0> Input 8-bit data bus 9,8,…,2 9,8,…,2

STROBE#

Input

1-bit control signal
High: default value.
Low: read-in of data is
performed.

1

1

ACKNLG#

Output

1-bit status signal
Low: data has been received
and the printer is ready to
accept new data.
High: default value.

10

10

BUSY

Output

1-bit status signal
Low: default value
High: see note#1

11

11

PE#

Output

1-bit status signal
High: the printer is out of
paper.
Low: default value.

12

12

INIT#

Input

1-bit control signal
Low: the printer controller is
reset to its initial state and

16

31

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 265

the print buffer is cleared.
High: default value.

SLCT

Output

1-bit status signal
High: the printer is in
selected state.

13

13

AUTO

FEED XT#

Input

1-bit control signal
Low: paper is automatically
fed after one line.

14

14

SLCT IN#

Input

1-bit control signal
Low: data entry to the
printer is possible.
High: data entry to printer is
not Possible.

17

36

ERROR#

Output

1-bit status signal
Low: see note#2.
High: default value.

15

32

Table 2: Centronics Bit Assignment For I/O Ports

Logical
Address

Description

7

6

5

4

3

2

1

0

0

8-bit output

port for
DATA

D<7>

D<6>

D<5>

D<4>

D<3>

D<2>

D<1>

D<0>

1

8-bit input

port for
STATUS

BUSY

ACKNLG#

PE#

SLCT

ERROR#

Unused

Unused

Unused

2

8-bit output

port for
CONTROL

Unused

Unused

DIR16

IRQEN

SLCT
IN#

INIT#

Auto
Feed
XT#

STROBE#

16 This bit, when set, enables the bidirectional mode.

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 266

Example # 1
Problem statement:
Assuming that a Centronics parallel printer
is interfaced to the FALCON-A processor,
as shown in example 3 of lecture 25, write
an assembly language program to send an
80 character line to the printer. Assume
that the line of characters is stored in the
memory starting at address 1024.
Solution:
The flowchart for the solution is shown in
given figure and the program listing is
shown in the textbox with filename:
Example_1.
The first thing that needs to be done is the
initialization of the printer. This means
that a “reset” command should be sent to
the printer. Using the information from
Table 1, this can be done by writing a 0 to
bit 2 (i.e., INIT#) of the control register
having logical address 2. In our example,
this maps onto address 60 of the
FALCON-A. (Remember to set this bit to
logic 1 for normal operation of the
printer). Then we make STROBE# high by
placing logic 1 in bit 0 of the control register. Bit 1 and bit 3 should be 0 because we
want to activate auto line feed and keep the printer in selected mode. Additionally, bit 4
and bit 5 should be 0 so that interrupts are disabled and the bi-directional mode is not
selected. The complete control word is 0000 0001 and this value has been assigned to the
variable reset in the program. The following instruction pair performs the reset
operation:
 movi r1, reset
 out r1, controlp
As it is given that the starting address of the printer buffer is 102417, so we place this
address in r5. The mask to test the BUSY flag is placed in r3. The value for the mask is
80h. This corresponds to a logic 1 in bit 7 and logic zeros elsewhere for the status register
having address 58 (logical address 1 in Table 1). Then the program enters a loop, called
the polling loop, to test the status of the printer. If the printer is busy, the loop repeats.
The following three instructions form the polling loop:

 in r1, statusp
 and r1, r1, r3
 jnz r1, [again]

17 The mul instruction is used for this purpose because the 8-bit immediate operand in the movi instruction
can only be within the range –128 and +127. Using the mul instruction in this way overcomes the
limitation of the FALCON-A. Similarly, the shiftl instruction is used to bring 80h in register r3.

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 267

The status of the printer is placed in register r1, and bit 7 is tested for logic 0. If not so,
the program repeats the status check operation.

When the printer is ready to accept a new character, it clears bit 7 (i.e., the BUSY bit) of
the status register. At this time, the program picks the next character from the memory
and sends it to the printer. The STROBE# line is activated and then it is deactivated to
generate the necessary pulse on this input of the printer. Finally, the buffer pointer is
advanced, the loop counter is decremented and the process repeats. When all the
characters have been printed, the program halts.
A number of equates have been used in the program to make it flexible as well as easily
readable. The program is shown on the next page.

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 268

; filename: Example_1.asmfa
;
; This program sends an 80 character line
; to a FALCON-A parallel printer
;
; Notes:
; 1. 8-bit printer data bus connected to
; D<7...0> of the FALCON-A (remember big-endian)
; Thus, the printer actually uses addresses 57, 59 & 61
;
; 2. one character per 16-bits of data xfered
;
;
 .org 400
;
NOB: .equ 80
;
 movi r5, 32
 mul r5, r5, r5 ; r5 holds 1024 temporarily
;
 movi r3, 1
 shiftl r3, r3, 7 ; to set mask to 0080h
;
datap: .equ 56
statusp: .equ 58
controlp: .equ 60
;
reset: .equ 1
; used to set unidirectional, no interrupts,
; auto line feed, and strobe high
;
strb_H: .equ 5
strb_L: .equ 4
;
 movi r1 reset ; use r1 for data xfer
 out r1, controlp
;
 movi r7, NOB ; use r7 as character counter
;

again: in r1, statusp
;
 and r1, r1, r3 ; test if BUSY = 1?
 jnz r1, [again] ; wait if BUSY = 1
;
 load r1, [r5]
 out r1, datap
 movi r1, strb_L
 out r1, controlp
 movi r1, strb_H
 out r1, controlp
 addi r5, r5, 2
 subi r7, r7, 1
 jnz r7, [again]
 halt

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 269

I/O techniques:

There are three main techniques using which a CPU can exchange data with a peripheral
device, namely

• Programmed I/O
• Interrupt driven I/O
• Direct Memory Access (DMA).

In this section, we present the first one.

Programmed Input/Output

Programmed I/O refers to the situation when all I/O operations are performed under the
direct control of a program running on the CPU. This program, which usually consists of
a “tight loop”, controls all I/O activity, including device status sensing, issuing read or
write commands, and transferring the data18. A subsequent I/O operation cannot begin
until the current I/O operation to a certain device is complete. This causes the CPU to
wait, and thus makes the scheme extremely inefficient. The solution to Example #
3(lec24), Example #2(lec25), and Example #1(lec26) are examples of programmed
input/output. We will analyze the program for Example #1(lec26) to explain a few things
related to the programmed I/O technique.

Timing analysis of the program in Example # 1(lec26)

The main loop of the program given in the solution to Example #1(lec26) executes 80
times. This is equal to the number of characters to be printed on one line. This portion of
the program is shown again with the execution time of each instruction listed in brackets
with it. The numbers shown are for a uni-bus
CPU implementation. A complete list of
execution times for all the FALCON-A’s
instructions is given in Appendix A. A
number of things can be noted now.

1. Assuming that the output at the
hardware pins changes at the end of
the (I/O write) bus cycle, the
STROBE# signal will go from logic1
to logic 0 at the end of the instruction
pair.

 movi r1, strb_L [2]
 out r1, controlp [3]

18 The I/O device has no direct access to the memory or the CPU, and transfer is generally done by using
the CPU registers.

 movi r7, NOB [2]
;
again: in r1, statusp [3]
 and r1 , r1, r3 [3]
 jnz r1, [again] [4]
;
 load r1, [r5] [5]
 out r1, datap [3]
 movi r1, strob_L [2]
 out r1, controlp [3]
 movi r1, s trob_H [2]
 out r1, controlp [3]
 addi r5, r5, 2 [3]
 subi r7, r7, 1 [3]
 jnz r7, [again] [4]
 halt

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 270

The execution time for these two instructions is 2+3 = 5 clock periods. Therefore,
STROBE# stays at logic1 for at least 5 clock periods i.e., during these two instructions.
For a 10MHz FALCON-A CPU, this will correspond to 5x100 = 500nsec = 0.5µsec.
Since the data to the printer is being sent by the CPU using the two instructions (load r1,
[r5] and out r1, datap) which are before the first movi instruction, the printer’s data
setup time requirement is satisfied as long as we do not increase the clock frequency
beyond 10MHz.

After these two instructions, the next two instructions in the program cause STROBE# to
go to logic 1 again.

 movi r1, strb_H [2]
 out r1, controlp [3]

These two instructions also take 5 clock periods, or 0.5µsec, to execute. Thus, the timing
requirement of the STROBE# pulse width will also be satisfied as long as we do not
increase the clock frequency beyond 10MHz. In case the frequency is greater than
10MHz, other instruction can be used in between these two pairs of instructions.

The printer’s data hold time requirement is easily satisfied because there are a number of
instructions after this out instruction which do not change the control port, and the
character value is already present in the data register within the interface since the end of
the out r1, datap instruction.

2. The three instructions given below:

 again: in r1, statusp [3]
 and r1, r1, r3 [3]
 jnz r1, [again] [4]

form what is called a “polling loop”. The process of periodically checking the status of a
device to see if it is ready for the next I/O operation is called “polling”. It is the simplest
way for an I/O device to communicate with the CPU. The device indicates its readiness
by setting certain bits in a status register, and the CPU can read these bits to get
information about the device. Thus, the CPU does all the work and controls all the I/O
activities. The polling loop given above takes 10 clock periods. For a 10MHz FALCON-
A CPU, this is 10x100=1µsec. One pass of the main loop takes a total of
3+3+4+5+3+2+3+2+3+3+3+4 = 38 clock periods which is 38x100 = 3.8µsec. This is the
time that the CPU takes to send one character to the printer. If we assume that a 1000
character per second (cps) printer is connected to the CPU, then this printer has the
capability to print one character in every 1msec or every 1000µsec. So, after sending a
character in 3.8µsec to the printer, the CPU will wait for about 996µsec before it can send
the next character to the printer. This implies that the polling loop will be executed about
996 times for each character. This is indeed a very inefficient way of sending characters
to the printer.

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 271

An improved way of doing this would be to include a memory of suitable size within the
printer. This memory is also called a buffer, as explained earlier. The CPU can fill this
buffer in a single “burst” at its own speed, and then do something else, while the printer
picks up one character at a time from this buffer and prints it at its own speed. This is
exactly the situation with today’s printers. The task of generating the STROBE# pulse
will also be done by the electronic circuits within the printer. In effect, a dedicated
processor within the printer will do this job. However, if the buffer within the printer fills
up, the CPU will still not be able to transfer additional data to it. A different handshaking
scheme will then be needed to make the CPU to communicate asynchronously with the
buffer in the printer, resulting in an inefficient operation again. This is explained below.

Assume that the printer has a FIFO type buffer of size 64 bytes that can be filled up
without any delay at the time when the printer is not printing anything. When one or
more character values are present in the buffer, the printer will pick up one value at a
time and print it. Remember we have a 1000 cps printer, so it takes 1msec to print a
character. The program for Example #1(lec26) is modified for this situation and is given
below. All the assumptions are the same, unless otherwise mentioned.

 again: in r1, statusp [3]
 and r1, r1, r3 [3]
 jnz r1, [again] [4]
 load r1, [r5] [5]
 out r1, datap [3]

 addi r5, r5, 2 [3]
 subi r7, r7, 1 [3]
 jnz r7, [again] [4]

Note that while the instructions for generating the STROBE# pulse have been eliminated,
the polling loop is still there. This is necessary because the BUSY signal will still be
present, although it will have a different meaning n now. In this case, BUSY =1 will
mean that the buffer within the printer is full and it can not accept additional bytes.

The main loop shown in the program has an execution time of 28 clock periods, which is
2.8µsec for a 10MHz FALCON-A CPU. The polling loop still takes 10 clock periods or
1µsec. Assuming that this program starts when the buffer in the printer is empty, the
outer loop will execute 64 times before the CPU encounters a BUSY=1 condition. After
that the situation will be the same as in the previous case. The polling loop will execute
for about 996 times before BUSY goes to logic 0. This situation will persist for the
remaining 16 characters (remember we are sending an 80 character line to the printer).

One can argue that the problem can be solved by increasing the buffer size to more than
80 bytes. Well, first of all, memory is not free. So, a large buffer will increase the cost of
the printer. Even if we are willing to pay more for an improved printer, the larger buffer
will still fill up whenever the number of characters is more than the buffer size. When
that happens, we will be back to square one again.

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 272

A careful analysis of the situation reveals that there is something wrong with the scheme
that is being used to send data to the printer. This problem of having a larger overhead of
polling was recognized long ago, and therefore, interrupts were invented as an alternate
to programmed I/O. Interrupt driven I/O will be the topic of the next lecture.

Programmed I/O in SRC
In this section, we will discuss some more examples of programmed I/O with our
example processor SRC which uses the memory mapped I/O technique.

Program for Character Output
To understand how programmed I/O works in SRC, we will discuss a program which
outputs the character to the printer. The first instruction loads the branch target and the
second instruction loads the character into lower 8 bits of register r2. The 2-instruction
loop reads the status register and tests the ready signal by checking its sign bit. It
executes until the ready signal becomes logic one. On exit from the loop, the character is
written to the device data register by the store instruction.

lar r3, wait
ldr r2, char

wait: ld r1, COSTAT
brpl r3, r1

 st r2, COUT
A 10 MIPS, SRC would execute 10,000 instructions waiting for a 1,000 character/sec
printer.

Program Fragment to Print 80-Character Line
The next example for the SRC is of a program which sends an 80-character line to a line
printer with a command register. There are two nested loops starting at label wait. The
two instruction inner loop, which waits for ready and the outer seven instruction loop
which performs the following tasks.

• Outputs a character
• Advance the buffer pointer
• Decrement the register containing the number of characters left to print
• Repeat if there are more characters left to send.

The last two instructions issue the command to print the line.
The next example discussed from the book is of a driver program for 32-character input
devices (Figure 8.10, Page 388).

Comparisons of the SRC and FALCON-A Examples
The FALCON-A and SRC programmed I/O examples discussed are similar with some
differences. In the first example discussed for the SRC (i.e. Character output), the control
signal responsible for data transfer by the CPU is the ready signal while for FALCON-A
Busy (active low)signal is checked. In the second example for the SRC, the instruction
set, address width and no. of lines on address is different.
Although different techniques have been used to increase the efficiency of the
programmed I/O, overheads due to polling can not be completely eliminated.

