
Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 273

 Advanced Computer Architecture

Lecture No. 27

Reading Material
Vincent P. Heuring & Harry F. Jordan Chapter 8
Computer Systems Design and Architecture 8.2.2
Summary

• Programmed I/O Driver for SRC
• Interrupt Driven I/O

Programmed I/O Driver for SRC

Please refer to Figure 8.10 of the text and its associated explanation.

Interrupt Driven I/O:

Introduction:
An interrupt is a request to the CPU to suspend normal processing and temporarily divert
the flow of control through a new program. This new program to which control is
transferred is called an Interrupt Service Routine or ISR. Another name for an ISR is an
Interrupt Handler.

• Interrupts are used to demand attention from the CPU.
• Interrupts are asynchronous breaks in program flow that occur as a result of events

outside the running program.
• Interrupts are usually hardware related, stemming from events such as a key or button

press, timer expiration, or completion of a data transfer.

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 274

The basic purpose of interrupts
is to divert CPU processing only
when it is required. As an
example let us consider the
example of a user typing a
document on word-processing
software running on a multi
tasking operating system. It is
up to the software to display a
character when the user presses
a key on the keyboard. To fulfill
this responsibility the processor
can repeatedly poll the keyboard to check if the user has pressed a key. However, the
average user can type at most 50 to 60 words in a minute. The rate of input is much
slower than the speed of the processor. Hence, most of the polling messages that the
processor sends to the keyboard will be wasted. A significant fraction of the processor’s
cycles will be wasted checking for user input on the keyboard. It should also be kept in
mind that there are usually multiple peripheral devices such as mouse, camera, LAN card,
modem, etc. If the processor would poll each and every one of these devices for input, it
would be wasting a large amount of its time. To solve this problem, interrupts are
integrated into the system. Whenever a peripheral device has data to be exchanged with
the processor, it interrupts the processor; the processor saves its state and then executes
an interrupt handler routine (which basically exchanges data with the device). After this
exchange is completed, the processor resumes its task. Coming back to the keyboard
example, if it takes the average user approximately 500 ms to press consecutive keys a
modern processor like the Pentium can execute up to 300,000,000 instructions in these
500 Ms. Hence, interrupts are an efficient way to handle I/O compared to polling.

Advantages of interrupts:
• Useful for interfacing I/O devices with low data transfer rates.
• CPU is not tied up in a tight loop for polling the I/O device.

Program Flow for an interrupt driven interface:
The attached figure shows the program flow executing on a processor with interrupts
enabled. As we can see, the program is interrupted in several locations to service various
types of interrupts.

Types of Interrupts:
The general categories of interrupts are as follows:
• Internal Interrupts
• External Interrupts

• Hardware Interrupts
• Software Interrupts

Internal Interrupts:

• Internal interrupts are generated by the processor.

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 275

• These are used by processor to handle the exceptions generated during instruction
execution.

Internal interrupts are generated to handle conditions such as stack overflow or a divide-
by-zero exception. Internal interrupts are also referred to as traps. They are mostly used
for exception handling. These types of interrupts are also called exceptions and were
discussed previously.

External Interrupts:
External interrupts are generated by the devices other than the processor. They are of two
types.

• Hardware interrupts are generated by the external hardware.
• Software interrupts are generated by the software using some interrupt instruction.

As the name implies, external interrupts are generated by devices external to the CPU,
such as the click of a mouse or pressing a key on a keyboard. In most cases, input from
external sources requires immediate attention. These events require a quick service by the
software, e.g., a word processing software must quickly display on the monitor, the
character typed by the user on the keyboard. A mouse click should produce immediate
results. Data received from the LAN card or the modem must be copied from the buffer
immediately so that pending data is not lost because of buffer overflow, etc.

Hardware interrupts:
Hardware interrupts are generated by external events specific to peripheral devices. Most
processors have at least one line dedicated to interrupt requests. When a device signals on
this specific line, the processor halts its activity and executes an interrupt service routine.
Such interrupts are always asynchronous with respect to instruction execution, and are
not associated with any particular instruction. They do not prevent instruction completion
as exceptions like an arithmetic overflows does. Thus, the control unit only needs to
check for such interrupts at the start of every new instruction. Additionally, the CPU
needs to know the identification and priority of the device sending the interrupt request.

There are two types of hardware interrupt:

 Maskable Interrupts
 Non-maskable Interrupts

Maskable Interrupts:

• These interrupts are applied to the INTR pin of the processor.
• These can be blocked by resetting the flag bit for the interrupts.

Non-maskable Interrupts:

• These interrupts are detected using the NMI pin of the processor.
• These can not be blocked or masked.
• Reserved for catastrophic event in the system.

 Software interrupts:

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 276

Software interrupts are usually associated with the software. A simple output operation in
a multitasking system requires software interrupts to be generated so that the processor
may temporarily halt its activity and place the data on its data bus for the peripheral
device. Output is usually handled by interrupts so that it appears interactive and
asynchronous. Notification of other events, such as expiry of a software timer is also
handled by software interrupts. Software interrupts are also used with system calls. When
the operating system switches from user mode to supervisor mode it does so through
software interrupts. Let us consider an example where a user program must delete a file.
The user program will be executing in the user mode. When it makes the specific system
call to delete the file, a software interrupt will be generated, this will cause the processor
to halt its current activity (which would be the user program) and switch to supervisor
mode. Once in supervisor mode, the operating system will delete the file and then control
will return to the user program. While in supervisor mode the operating system would
need to decide if it could delete the specified file with out harmful consequences to the
systems integrity, hence it is important that the system switch to supervisor mode at each
system call.

I/O Software System Layers:

The above diagram shows the various software layers related to I/O. At the bottom lies
the actual hardware itself, i.e. the peripheral device. The peripheral device uses the
hardware interrupts to communicate with the processor. The processor responds by
executing the interrupt handler for that particular device. The device drivers form the
bridge between the hardware and the software. The operating system uses the device
drivers to communicate with the device in a hardware independent fashion, e.g., the
operating system need not cater for a specific brand of CRT monitors, or keyboards, the
specific device driver written for that monitor or keyboard will act as an intermediary
between the operating system and the device. It would be clear from the previous
statement that the operating system expects certain common functions from all brands of
devices in a category. Actually implementing these functions for each particular brand or
vendor is the responsibility of the device driver. The user programs run at top of the
operating system.

Interrupt Service Routine (ISR):

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 277

• It is a routine which is executed when an interrupt occurs.
• Also known as an Interrupt Handler.
• Deals with low-level events in the hardware of a computer system, like a tick of a

real-time clock.
As it was mentioned earlier, an interrupt once generated must be serviced through an
interrupt service routine. These routines are stored in the system memory ready for
execution. Once the interrupt is generated, the processor must branch to the location of
the appropriate service routine to execute it. The branch address of the ISR is discussed
next.

Branch Address of the ISR:
There are two ways used to choose the branch address of an Interrupt Service Routine.
 Non-vectored Interrupts
 Vectored Interrupts

Non-vectored Interrupts:
In non-vectored interrupts, the branch address of the interrupt service routine is fixed.
The code for the ISR is loaded at fixed memory location. Non-vectored interrupts are
very easy to implement and not flexible at all. In this case, the number of peripheral
devices is fixed and may not be increased. Once the interrupt is generated the processor
queries each peripheral device to find out which device generated the interrupt. This
approach is the least flexible for software interrupt handling.

Vectored Interrupts:
Interrupt vectors are used to specify the address of the interrupt service routine. The code
for ISR can be loaded anywhere in the memory. This approach is much more flexible as
the programmer may easily locate the interrupt vector and change its addresses to use
custom interrupt servicing routines. Using vectored interrupts, multiple devices may
share the same interrupt input line to the processor. A process called daisy chaining is
then used to locate the interrupting device.

Interrupt Vector:
Interrupt vector is a fixed size structure that stores the address of the first instruction of
the ISR.
Interrupt Vector Table:

• All of the interrupt vectors are stored in the memory in a special table called
Interrupt Vector Table.

• Interrupt Vector Table is loaded at the memory location 0 for the 8086/8088.

Interrupts in Intel 8086/8088:

• Interrupts in 8086/8088 are vector interrupts.
• Interrupt vector is of 4 bytes to store IP and CS.
• Interrupt vector table is loaded at address 0 of main memory.
• There is provision of 256 interrupts.

Branch Address Calculation:

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 278

• The number of interrupt is the number of interrupt vector in the interrupt vector
table.

• Since size of each vector is 4 bytes and interrupt vector starts from address 0,
therefore, the address of interrupt vector can be calculated by simply multiplying
the number by 4.

Interrupt Vector Example:
In 8086/8088 machines the size of interrupt vector is 4 bytes that holds IP and CS of ISR.

Returning from the ISR:
Every ISA should have an instruction, like the IRET instruction, which should be
executed when the ISR terminates. This means that the IRET instruction should be the
last instruction of every ISR. This is, in effect, a FAR RETURN in that it restores a
number of registers, and flags to their value before the ISR was called. Thus the previous
environment is restored after the servicing of the interrupt is completed.

Interrupt Handling:
The CPU responds to the interrupt request by completing the current instruction, and then
storing the return address from PC into a memory stack. Then the CPU branches to the
ISR that processes the requested operation of data transfer. In general, the following
sequence takes place.

Hardware Interrupt Handling:
 Hardware issues interrupt signal to the CPU.
 CPU completes the execution of current instruction.
 CPU acknowledges interrupt.
 Hardware places the interrupt number on the data bus.
 CPU determines the address of ISR from the interrupt number available on the data

bus.

Code Segment Register Value
(Most Significant Byte)

Code Segment Register Value
 (Least Significant Byte)

Instruction Pointer Value
(Most Significant Byte)

Instruction Pointer Value
(Least Significant Byte)

a+3

a+2

a+1

a

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 279

 CPU pushes the program status word (flags) on the stack along with the current value
of program counter.

 The CPU starts executing the ISR.
 After completion of the ISR, the environment is restored; control is transferred back

to the main program.

Interrupt Latency:
Interrupt Latency is the time needed by the CPU to recognize (not service) an interrupt
request. It consists of the time to perform the following:

• Finish executing the current instruction.
• Perform interrupt-acknowledge bus cycles.
• Temporarily save the current environment.
• Calculate the IVT address and transfer control to the ISR.

If wait states are inserted by either some memory module or the device supplying the
interrupt type number, the interrupt latency will increase accordingly.

Interrupt Latency for external interrupts depends on how many clock periods remain in
the execution of the current instruction.

On the average, the longest latency occurs when a multiplication, division or a variable-
bit shift or rotate instruction is executing when the interrupt request arrives.

Response Deadline:
It is the maximum time that an interrupt handler can take between the time when interrupt
was requested and when the device must be serviced.

Expanding Interrupt Structure:
When there is more than one device that can interrupt the CPU, an Interrupt Controller is
used to handle the priority of requests generated by the devices simultaneously.

Interrupt Precedence:
Interrupts occurring at the same time i.e. within the same instruction are serviced
according to a pre-defined priority.

• In general, all internal interrupts have priority over all external interrupts; the
single-step interrupt is an exception.

• NMI has priority over INTR if both occur simultaneously.
• The above mentioned priority structure is applicable as far as the recognition of

(simultaneous) interrupts is concerned. As far as servicing (execution of the
related ISR) is concerned, the single-step interrupt always gets the highest
priority, then the NMI, and finally those (hardware or software) interrupts that
occur last. If IF is not 1, then INTR is ignored in any case. Moreover, since any
ISR will clear IF, INTR has lower "service priority" compared to software
interrupts, unless the ISR itself sets IF=1.

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 280

Simultaneous Hardware Interrupt Requests:
The priority of the devices requesting service at the same time is resolved by using two
ways:

 Daisy-Chained Interrupt
 Parallel Priority Interrupt

Daisy-Chaining Priority:
• The daisy-chaining method to resolve the priority consists of a series connection of

the devices in order of their priority.
• Device with maximum priority is placed first and device with least priority is placed

at the end.

Daisy-Chain Priority Interrupt

• The devices interrupt the CPU.
• The CPU sends acknowledgement to the maximum priority device.
• If the interrupt was generated by the device, the interrupt for the device is

serviced.
• Otherwise the acknowledgement is passed to the next device.

If the higher priority devices are going to interrupt continuously then the device with the
lower priority is not serviced. So some additional circuitry is also needed to introduce
fairness.

Parallel Priority:

Advanced Computer Architecture-CS501
__

 Last Modified: 01-Nov-06 Page 281

• Parallel priority method for resolving the priority uses individual bits of a priority
encoder.

• The priority of the device is determined by position of the input of the encoder
used for the interrupt.

Parallel Priority Interrupt:

.

