
Advanced Computer Architecture-CS501                                            
________________________________________________________ 

     Last Modified: 01-Nov-06   Page 327 
                                                                                                    

Advanced Computer Architecture 
 
Lecture No. 34 
 
Reading Material 
 
Vincent P. Heuring & Harry F. Jordan                                                              Chapter 6                             
Computer Systems Design and Architecture                                                      6.1, 6.2 
 
Summary 

 
• Introduction to ALSU 
• Radix Conversion 
• Fixed Point Numbers 
• Representation of Numbers  
• Multiplication and Division using Shift Operation 
• Unsigned Addition Operation 

 
Introduction to ALSU 29 
ALSU is a combinational circuit so inside an ALSU, we have AND, OR, NOT and other 
different gates combined together in different ways to perform addition, subtraction, and, 
or, not, etc. Up till now, we consider ALSU as a “black box” which takes two operands, a 
and b, at the input and has c at the output. Control signals whose values depend upon the 
opcode of an instruction were associated with this black box. 
 
In order to understand the operation of the ALSU, we need to understand the basis of the 
representation of the numbers. For example, a designer needs to specify how many bits 
are required for the source operands and how many will be needed for the destination 
operand after an operation to avoid overflow and truncation.  
 
Radix Conversion 
Now we will consider the conversion of numbers from a representation in one base to 
another. As human works with base 10 and computers with base 2, this radix conversion 
operation is important to discuss here. We will use base c notion for decimal 
representation and base b for any other base. The following figure shows the algorithm of 
converting from base b to base c: 
 

                                                 
29 In our discussion we have used ALU and ALSU for the same thing. We use ALSU when the shift aspect 
also needs to be emphasized. 



Advanced Computer Architecture-CS501                                            
________________________________________________________ 

     Last Modified: 01-Nov-06   Page 328 
                                                                                                    

 
 
Example 1 
 
Convert the hexadecimal number B316 to base 10. 
 
Solution 
 
According to the above algorithm, 
X=0 
X= x+B (=11) =11 
X=16*11+3= 179 
Hence B316=17910 
 
The following figure shows the algorithm of converting from base c to base b: 

 
 

 
 
 



Advanced Computer Architecture-CS501                                            
________________________________________________________ 

     Last Modified: 01-Nov-06   Page 329 
                                                                                                    

Example 2 
 
Convert 39010 to base 16. 
Solution 
 
According to the above algorithm 
390/16 =24( rem=6), x0=6 
24/16= 1(rem=8), x1=8, x2=1 
Thus 39010=18616 
 
Fixed Point Numbers 
Suppose we have a number with a radix point. For example, in 16.12, there are two digits 
on the left side and two digits on the right of the decimal point. In this case, the radix 
point is a decimal point because we suppose that given number is a decimal number.  
If we have an integer, then this decimal point will be on the right most position i.e. 
1612.0 and if it is in fraction then decimal will be at the left most position i.e. 0.1612 
There are situations when we shift the position of the radix point. Shifting of the radix 
point towards left or right is called scaling and we could have multiplication with a base 
or division by a base respectively. 
The following figure shows the algorithm of converting a base b fraction to base c: 
 

 
 

 
 
Example 3 
 
Convert (.4cd) 16 to Base 10. 
  
Solution  
 
F=0 
F=(0+13)/16=0.8125 



Advanced Computer Architecture-CS501                                            
________________________________________________________ 

     Last Modified: 01-Nov-06   Page 330 
                                                                                                    

F=(0.8125+12)/16=0.80078125 
F=(0.80078125+4)/16=(0.3000488) 10 
 
 
The following figure shows the algorithm of converting fraction from base c to base b: 
 

 
 
Example 4 
 
Convert 0.2410 to base 2. 
 
Solution  
 
0.24*2=0.48, f-1=0 
0.48*2=0.96, f-2=0 
0.96*2=1.92, f-3=1 
0.92*2=1.84, f-4=1 
0.84*2=1.68, f-5=1,… 
Thus 0.2410 =(0.00111) 2 
 
 
Representation of Numbers  
There are four possibilities to represent integers. 
 

1. Sign magnitude form 
2. Radix complement form 
3. Diminished radix complement form 
4. Biased representation 
 

Sign magnitude form 
• This is the simplest form for representing a signed number 
• A symbol representing the sign of the number is appended to the left of the 

number 



Advanced Computer Architecture-CS501                                            
________________________________________________________ 

     Last Modified: 01-Nov-06   Page 331 
                                                                                                    

• This representation complicates the arithmetic operations 
 
Radix complement form 

• This is the most common representation. 
• Given an m-digit base b number x, the radix complement of x is 

  xc = ( bm– x) mod bm 
• This representation makes the arithmetic operations much easier.  

 
Diminished radix complement form 

• The diminished radix complement of an m-digit number x is 
            xc’=bm -1- x 

• This complement is easier to compute than the radix complement. 
• The two complement operations are interconvertible, as 

   xc= ( xc’+1)mod bm 
    
 
Table 6.1 of the text book shows the complement representation of negative numbers for 
radix complement and diminished radix complement form: 
Table 6.2 of the text book shows the base 2 complement representation for 8-bit 2’s and 
1’s complement numbers. 
 
Example 5 
The following table shows the decimal values in 2’s complement, 1’s complement, sign 
magnitude, 16’s complement and in unsigned form: 
 

 
 
 
 
 
 
 
Multiplication and Division using Shift Operation 



Advanced Computer Architecture-CS501                                            
________________________________________________________ 

     Last Modified: 01-Nov-06   Page 332 
                                                                                                    

Shift left and shift right are two important operations used for various purposes. One 
typical example could be multiplication or division by base b. The following examples 
explain multiplication and division by using shift operation. 
 
Example 6 

• 6x4 
 001102 x 410 =110002=2410 
Overflow would occur if we will use 4 bits instead of 5 bits here. 

• 60/16 
 01111002/1610=00000112=310 
The fractional portion of the result is lost. 
 
Example 7 

• -6x4 
 -6 = (11010) 2 
 -6x4 = (01000) 2=8 which is wrong! 
 using less no. of bits might change sign 
So, -6 = (111010) 2 
    -6x4 = (101000) 2 = -24 
 
Example 8 
 
Multiplication and division of negative numbers 
 
Solution 
 
-24x2 
-24= (101000) 2 
-24x2= (010100)2 =   20 
-24x2= (110100)2 = -12 
Changing the size of the number, 
24= 011000 (n=6) to 00011000 (n=8) 
-24= 101000 (n=6) to 11101000 (n=8) 
 
Unsigned Addition Operation 
The following diagram shows the digit 
wise procedure for adding m-digit base 
b numbers, x and y: 
 
Example 9 
 
Unsigned addition in base 2 and 
base16. 
 
 
Solution  



Advanced Computer Architecture-CS501                                            
________________________________________________________ 

     Last Modified: 01-Nov-06   Page 333 
                                                                                                    

 
 
Base 16 addition 

 
Base 2 addition 

                       A B 4 2 16 
                    + 3 1 C 1 16 
           carry    0  1 0  0 
           sum     D D 0 3 16 

                        100011 2 
                     + 011011 2 
             carry   000110 
             sum     111110 2 

 
 
 
The following diagram shows the logic 
circuit for 1-bit half adder. It takes two 
1-bit inputs x and y and as a result, we 
get a 1-bit sum and a 1-bit carry. This 
circuit is called a half adder because it 
does not take care of input carry. In 
order to take into account the effect of 
the input carry, a 1-bit full adder is 
used which is also shown in the figure. 
We can add two m-bit numbers by 
using a circuit which is made by 
cascading m 1-bit full adders.  
 
The situation, when addition of unsigned m-bit numbers results in an m+1 bit number, is 
called overflow. Overflow is treated as exception in some processors and the overflow 
flag is used to record the status of the result. 
 
 
 
 


