Advanced Computer Architecture

Lecture No. 38

Reading Material

Vincent P. Heuring & Harry F. Jordan Computer Systems Design and Architecture Chapter 7 7.2.6, 7.3

Summary

- Memory Modules
- Read Only Memory (ROM)
- Cache

Memory Module

Static RAM chips can be assembled into systems without changing the timing characteristics of a memory access. Dynamic RAM chips, however, have enough timing complexity that a memory module built from dynamic RAM chips will have complex control. The cause of timing complexity is the time-multiplexed row and column addresses, and the refresh operation.

Word Assembly from Narrow Chips

Chips can be combined to expand the memory word size while keeping the same number of words. Address, chip select, and R/W signals are connected in parallel to all the chips. Only the data signals are kept separate, with those from each chip supplying different bits of the wider word. For high capacity memory chips, narrow words are used. This is because adding a data pin to a chip with 2^m words of s bits increases the number of bits it can store by only a factor of (s+1)/s, while adding an address pin always doubles the capacity.

Dynamic RAM Module with Refresh Control

For Dynamic RAM chips the total address is divided into row and column address. Row address strobe signal RAS and a column strobe signal CAS are used to differentiate between these two signals.

Read Only Memory (ROM)

ROM is the read-only memory which contains permanent pattern of data that cannot be changed. ROM is nonvolatile i.e. it retains the information in it when power is removed from it. Different types of ROMs are discussed below.

PROM

The PROM stands for Programmable Read only Memory. It is also nonvolatile and may be written into only once. For PROM, the writing process is performed electrically in the field. PROMs provide flexibility and convenience.

EPROM

Erasable Programmable Read-only Memory or EPROM chips have quartz windows and by applying ultraviolet light erase the data can be erased from the EPROM. Data can be restored in an EPROM after erasure. EPROMs are more expensive than PROMs and are generally used for prototyping or small-quantity, special purpose work.

EEPROM

EEPROM stands for Electrically Erasable Programmable Read-only Memory. This is a read-mostly memory that can be written into at any time without erasing prior contents; only the byte or bytes addressed are updated. The write operation takes considerably longer than the read operation. It is more expensive than EPROM.

Flash Memory

An entire flash memory can be erased in one or a few seconds, which is much faster than EPROM. In addition, it is possible to erase just blocks of memory rather than an entire chip.

Cache

Cache by definition is a place for safe storage and provides the fastest possible storage after the registers. The cache contains a copy of portions of the main memory. When the CPU attempts to read a word from memory, a check is made to determine if the word is in the cache. If so, the word is delivered to the CPU. If not, a block of the main memory, consisting of some fixed number of words, is read into the cache and then the word is delivered to the CPU.

Spatial Locality

This would mean that in a part of a program, if we have a particular address being accessed then it is highly probable that the data available at the next address would be highly accessed.

Temporal Correlation

In this case, we say that at a particular time, if we have utilized a particular part of the memory then we might access the adjacent parts very soon.

Cache Hit and Miss

When the CPU needs some data, it communicates with the cache, and if the data is available in the cache, we say that a cache hit has occured. If the data is not available in the cache then it interacts with the main memory and fetches an appropriate block of data. This is a cache miss.