
288 Declarative Concurrency

Memory management There are two modifications to memory management:

• Extending the definition of reachability: A variable x is reachable if the
trigger store contains trig(x, y) and y is reachable.

• Reclaiming triggers: If a variable y becomes unreachable and the trigger
store contains trig(x, y), then remove the trigger.

Needing a variable

What does it mean for a variable to be needed? The definition of need is carefully
designed so that lazy execution is declarative, i.e., all executions lead to logically-
equivalent stores. A variable is needed by a suspended operation if the variable
must be determined for the operation to continue. Here is an example:

thread X={ByNeed fun {$} 3 end } end
thread Y={ByNeed fun {$} 4 end } end
thread Z=X+Y end

To keep the example simple, let us consider that each thread executes atomically.
This means there are six possible executions. For lazy execution to be declarative,
all of these executions must lead to equivalent stores. Is this true? Yes, it is true,
because the addition will wait until the other two triggers are created, and these
triggers will then be activated.

There is a second way a variable can be needed. A variable is needed if it
is determined. If this were not true, then the demand-driven concurrent model
would not be declarative. Here is an example:

thread X={ByNeed fun {$} 3 end } end
thread X=2 end
thread Z=X+4 end

The correct behavior is that all executions should fail. If X=2 executes last then
the trigger has already been activated, binding X to 3, so this is clear. But if X=2

is executed first then the trigger should also be activated.
Let us conclude by giving a more subtle example:

thread X={ByNeed fun {$} 3 end } end
thread X=Y end
thread if X==Y then Z=10 end end

Should the comparison X==Yactivate the trigger on X? According to our definition
the answer is no. If X is made determined then the comparison will still not
execute (since Y is unbound). It is only later on, if Y is made determined, that
the trigger on X should be activated.

Being needed is a monotonic property of a variable. Once a variable is needed,
it stays needed forever. Figure 4.25 shows the stages in a variable’s lifetime. Note
that a determined variable is always needed, just by the fact of being determined.
Monotonicity of the need property is essential to prove that the demand-driven
concurrent model is declarative.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 289

Unbound
needed

+
Determined

needed
+

Unbound

Figure 4.25: Stages in a variable’s lifetime

Using by-need triggers

By-need triggers can be used to implement other concepts that have some “lazy”
or “demand-driven” behavior. For example, they underlie lazy functions and
dynamic linking. Let us examine each in turn.

Implementing lazy functions with by-need A lazy function is evaluated
only when its result is needed. For example, the following function generates a
lazy list of integers:

fun lazy {Generate N} N|{Generate N+1} end

This is a linguistic abstraction that is defined in terms of ByNeed. It is called
like a regular function:

L={Generate 0}
{Browse L}

This will display nothing until L is needed. Let us ask for the third element of L:

{Browse L.2.2.1}

This will calculate the third element, 2, and then display it. The linguistic ab-
straction is translated into the following code that uses ByNeed:

fun {Generate N}
{ByNeed fun {$} N|{Generate N+1} end }

end

This uses procedural abstraction to delay the execution of the function body.
The body is packaged into a zero-argument function which is only called when
the value of {Generate N} is needed. It is easy to see that this works for all
lazy functions. Threads are cheap enough in Mozart that this definition of lazy
execution is practical.

Implementing dynamic linking with by-need We briefly explain what dy-
namic linking is all about and the role played by lazy execution. Dynamic link-
ing is used to implement a general approach to structuring applications called
component-based programming. This approach was introduced in Section 3.9

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

290 Declarative Concurrency

and is explained fully in Chapters 5 and 6. Briefly, an application’s source code
consists of a set of component specifications, called functors. A running applica-
tion consists of instantiated components, called modules. A module is represented
by a record that groups together the module’s operations. Each record field ref-
erences one operation. Components are linked when they are needed, i.e., their
functors are loaded into memory and instantiated. As long as the module is not
needed, then the component is not linked. When a program attempts to access
a module field, then the component is needed and by-need execution is used to
link the component.

4.5.2 Declarative computation models

At this point, we have defined a computation model with both laziness and con-
currency. It is important to realize that these are independent concepts. Concur-
rency can make batch computations incremental. Laziness can reduce the amount
of computation needed to get a result. A language can have neither, either, or
both of these concepts. For example, a language with laziness but no concurrency
does coroutining between a producer and a consumer.

Let us now give an overview of all the declarative computation models we
know. All together, we have added three concepts to strict functional program-
ming that preserve declarativeness while increasing expressiveness: dataflow vari-
ables, declarative concurrency, and laziness. Adding these concepts in various
combinations gives six different practical computation models, as summarized in
Figure 4.26.11 Dataflow variables are a prerequisite for declarative concurren-
cy, since they are the mechanism by which threads synchronize and communi-
cate. However, a sequential language, like the model of Chapter 2, can also have
dataflow variables and use them to good effect.

Since laziness and dataflow variables are independent concepts, this means
there are three special moments in a variable’s lifetime:

1. Creation of the variable as an entity in the language, such that it can be
placed inside data structures and passed to or from a function or proce-
dure. The variable is not yet bound to its value. We call such a variable a
“dataflow variable”.

2. Specification of the function or procedure call that will evaluate the value
of the variable (but the evaluation is not done yet).

3. Evaluation of the function. When the result is available, it is bound to the
variable. The evaluation might be done according to a trigger, which may
be implicit such as a “need” for the value. Lazy execution uses implicit
need.

11This diagram leaves out search, which leads to another kind of declarative programming
called relational programming. This is explained in Chapter 9.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 291

(1), (2), (3): Declaring, specifying, and evaluating are done separately

dataflow variables
with values and

(e.g., Scheme, ML)

(e.g., Haskell) dataflow variables
lazy FP with

sequential

dataflow variables
with values and

concurrent
sequential
with values

eager execution

(strictness)

lazy execution

(1)&(2)&(3)

(1)&(2), (3) (1), (2), (3)

(1), (2)&(3) (1), (2)&(3)

(1), (2), (3)

(2): Specify the function to calculate the variable’s value
(3): Evaluate the function and bind the variable

programming
strict functional

programming
lazy functional

data−driven
concurrent model
(e.g., Section 4.1)

demand−driven
concurrent model

(e.g., Section 4.5.1)

(1), (2)&(3): Declaring is done first; specifying and evaluating are done later and coincide

(1): Declare a variable in the store

(1)&(2), (3): Declaring and specifying coincide; evaluating is done later
(1)&(2)&(3): Declaring, specifying, and evaluating all coincide

declarative model
(e.g., Chapter 2,

Prolog)

Figure 4.26: Practical declarative computation models

These three moments can be done separately or at the same time. Different
languages enforce different possibilities. This gives four variant models in all.
Figure 4.26 lists these models, as well as the two additional models that result
when concurrency is added as well. For each of the variants, we show an example
with a variable X that will eventually be bound to the result of the computation
11*11 . Here are the models:

• In a strict functional language with values, such as Scheme or Standard
ML, moments (1) & (2) & (3) must always coincide. This is the model of
Section 2.7.1. For example:

declare X=11*11 % (1)+(2)+(3) together

• In a lazy functional language with values, such as Haskell, moments (1) &
(2) always coincide, but (3) may be separate. For example (defining first a
lazy function):

declare fun lazy {LazyMul A B} A*B end
declare X={LazyMul 11 11} % (1)+(2) together
{Wait X} % (3) separate

This can also be written as:

declare X={ fun lazy {$} 11*11 end } % (1)+(2) together
{Wait X} % (3) separate

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

292 Declarative Concurrency

• In a strict language with dataflow variables, moment (1) may be separate
and (2) & (3) always coincide. This is the declarative model, which is
defined in Chapter 2. This is also used in logic programming languages
such as Prolog. For example:

declare X % (1) separate
X=11*11 % (2)+(3) together

If concurrency is added, this gives the data-driven concurrent model de-
fined at the beginning of this chapter. This is used in concurrent logic
programming languages. For example:

declare X % (1) separate
thread X=11*11 end % (2)+(3) together
thread if X>100 then {Browse big} end end % Conditional

Because dataflow variables are single-assignment, the conditional always
gives the same result.

• In the demand-driven concurrent model of this chapter, moments (1), (2),
(3) may all be separate. For example:

declare X % (1) separate
X={ fun lazy {$} 11*11 end } % (2) separate
{Wait X} % (3) separate

When concurrency is used explicitly, this gives:

declare X % (1)
thread X={ fun lazy {$} 11*11 end } end % (2)
thread {Wait X} end % (3)

This is the most general variant model. The only connection between the
three moments is that they act on the same variable. The execution of (2)
and (3) is concurrent, with an implicit synchronization between (2) and (3):
(3) waits until (2) has defined the function.

In all these examples, X is eventually bound to 121 . Allowing the three moments
to be separate gives maximum expressiveness within a declarative framework. For
example, laziness allows to do declarative calculations with potentially infinite
lists. Laziness allows to implement many data structures as efficiently as with
explicit state, yet still declaratively (see, e.g., [138]). Dataflow variables allow to
write concurrent programs that are still declarative. Using both together allows to
write concurrent programs that consist of stream objects communicating through
potentially infinite streams.

One way to understand the added expressiveness is to realize that dataflow
variables and laziness each add a weak form of state to the model. In both cases,
restrictions on using the state ensure the model is still declarative.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 293

Why laziness with dataflow must be concurrent

In a functional language without dataflow variables, laziness can be sequential.
In other words, demand-driven arguments to a lazy function can be evaluated
sequentially (i.e., using coroutining). If dataflow variables are added, this is no
longer the case. A deadlock can occur if the arguments are evaluated sequentially.
To solve the problem, the arguments must be evaluated concurrently. Here is an
example:

local
Z
fun lazy {F1 X} X+Z end
fun lazy {F2 Y} Z=1 Y+Z end

in
{Browse {F1 1}+{F2 2}}

end

This defines F1 and F2 as lazy functions. Executing this fragment displays 5
(do you see why?). If {F1 1} and {F2 2} were executed sequentially instead
of concurrently, then this fragment would deadlock. This is because X+Z would
block and Z=1 would never be reached. A question for the astute reader: which
of the models in Figure 4.26 has this problem? The binding of Z done by F2 is
a kind of “declarative side effect”, since F2 changes its surroundings through a
means separate from its arguments. Declarative side effects are usually benign.

It is important to remember that a language with dataflow variables and
concurrent laziness is still declarative. There is no observable nondeterminism.
{F1 1}+{F2 2} always gives the same result.

4.5.3 Lazy streams

In the producer/consumer example of Section 4.3.1, it is the producer that decides
how many list elements to generate, i.e., execution is eager. This is a reasonable
technique if the total amount of work is finite and does not use many system
resources (e.g., memory or processor time). On the other hand, if the total work
potentially uses many resources, then it may be better to use lazy execution.
With lazy execution, the consumer decides how many list elements to generate.
If an extremely large or a potentially unbounded number of list elements are
needed, then lazy execution will use many fewer system resources at any given
point in time. Problems that are impractical with eager execution can become
practical with lazy execution. On the other hand, lazy execution may use many
more total resources, because of the cost of its implementation. The need for
laziness must take both of these factors into account.

Lazy execution can be implemented in two ways in the declarative concurrent
model: with programmed triggers or with internal triggers. Section 4.3.3 gives
an example with programmed triggers. Programmed triggers require explicit
communications from the consumer to the producer. A simpler way is to use

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

294 Declarative Concurrency

internal triggers, i.e., for the language to support laziness directly. In that case
the language semantics ensures that a function is evaluated only if its result is
needed. This makes the function definition simpler because it does not have to
do the “bookkeeping” of the trigger messages. In the demand-driven concurrent
model we give syntactic support to this technique: the function can be annotated
as “lazy ”. Here is how to do the previous example with a lazy function that
generates a potentially infinite list:

fun lazy {Generate N}
N|{Generate N+1}

end

fun {Sum Xs A Limit}
if Limit>0 then

case Xs of X|Xr then
{Sum Xr A+X Limit-1}

end
else A end

end

local Xs S in
Xs={Generate 0} % Producer
S={Sum Xs 0 150000} % Consumer
{Browse S}

end

As before, this displays 11249925000 . Note that the Generate call does not
need to be put in its own thread, in contrast to the eager version. This is because
Generate creates a by-need trigger and then completes.

In this example, it is the consumer that decides how many list elements should
be generated. With eager execution it was the producer that decided. In the con-
sumer, it is the case statement that needs a list pair, so it implicitly triggers the
generation of a new list element X. To see the difference in resource consumption
between this version and the preceding version, try both with 150000 and then
with 15000000 elements. With 150000 elements, there are no memory problems
(on a personal computer with 64MB memory) and the eager version is faster.
This is because of the overhead of the lazy version’s implicit triggering mecha-
nism. With 15000000 elements, the lazy version needs only a very small memory
space during execution, while the eager version needs a huge memory space. Lazy
execution is implemented with the ByNeed operation (see Section 4.5.1).

Declaring lazy functions

In lazy functional languages, all functions are lazy by default. In contrast to this,
the demand-driven concurrent model requires laziness to be declared explicitly,
with the lazy annotation. We find that this makes things simpler both for
the programmer and the compiler, in several ways. The first way has to do
with efficiency and compilation. Eager evaluation is several times more efficient

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 295

than lazy evaluation because there is no triggering mechanism. To get good
performance in a lazy functional language, this implies that the compiler has
to determine which functions can safely be implemented with eager evaluation.
This is called strictness analysis. The second way has to do with language design.
An eager language is much easier to extend with non-declarative concepts, e.g.,
exceptions and state, than a lazy language.

Multiple readers

The multiple reader example of Section 4.3.1 will also work with lazy execution.
For example, here are three lazy consumers using the Generate and Sumfunctions
defined in the previous section:

local Xs S1 S2 S3 in
Xs={Generate 0}
thread S1={Sum Xs 0 150000} end
thread S2={Sum Xs 0 100000} end
thread S3={Sum Xs 0 50000} end

end

Each consumer thread asks for stream elements independently of the others. If
one consumer is faster than the others, then the others may not have to ask for
the stream elements, if they have already been calculated.

4.5.4 Bounded buffer

In the previous section we built a bounded buffer for eager streams by explicitly
programming the laziness. Let us now build a bounded buffer using the laziness
of the computation model. Our bounded buffer will take a lazy input stream and
return a lazy output stream.

Defining a lazy bounded buffer is a good exercise in lazy programming be-
cause it shows how lazy execution and data-driven concurrency interact. Let us
do the design in stages. We first specify its behavior. When the buffer is first
called, it fills itself with n elements by asking the producer. Afterwards, when-
ever the consumer asks for an element, the buffer in its turn asks the producer
for another element. In this way, the buffer always contains up to n elements.
Figure 4.27 shows the resulting definition. The call {List.drop In N} skips
over N elements of the stream In , giving the stream End. This means that End

always “looks ahead” N elements with respect to In . The lazy function Loop is
iterated whenever a stream element is needed. It returns the next element I but
also asks the producer for one more element, by calling End.2 . In this way, the
buffer always contains up to N elements.

However, the buffer of Figure 4.27 is incorrect. The major problem is due to
the way lazy execution works: the calculation that needs the result will block
while the result is being calculated. This means that when the buffer is first

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

296 Declarative Concurrency

fun {Buffer1 In N}
End={List.drop In N}
fun lazy {Loop In End}

case In of I|In2 then
I|{Loop In2 End.2}

end
end

in
{Loop In End}

end

Figure 4.27: Bounded buffer (naive lazy version)

fun {Buffer2 In N}
End=thread {List.drop In N} end
fun lazy {Loop In End}

case In of I|In2 then
I|{Loop In2 thread End.2 end }

end
end

in
{Loop In End}

end

Figure 4.28: Bounded buffer (correct lazy version)

called, it cannot serve any consumer requests until the producer generates n el-
ements. Furthermore, whenever the buffer serves a consumer request, it cannot
give an answer until the producer has generated the next element. This is too
much synchronization: it links together the producer and consumer in lock step!
A usable buffer should on the contrary decouple the producer and consumer. Con-
sumer requests should be serviced whenever the buffer is nonempty, independent
of the producer.

It is not difficult to fix this problem. In the definition of Buffer1 , there are
two places where producer requests are generated: in the call to List.drop and
in the operation End.2 . Putting a thread ... end in both places solves the
problem. Figure 4.28 shows the fixed definition.

Example execution

Let us see how this buffer works. We define a producer that generates an infinite
list of successive integers, but only one integer per second:

fun lazy {Ints N}
{Delay 1000}
N|{Ints N+1}

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 297

Now let us create this list and add a buffer of 5 elements:

declare
In={Ints 1}
Out={Buffer2 In 5}
{Browse Out}
{Browse Out.1}

The call Out.1 requests one element. Calculating this element takes one second.
Therefore, the browser first displays Out<Future> and one second later adds
the first element, which updates the display to 1|_<Future> . The notation
“_<Future> ” denotes a read-only variable. In the case of lazy execution, this
variable has an internal trigger attached to it. Now wait at least 5 seconds, to let
the buffer fill up. Then enter:

{Browse Out.2.2.2.2.2.2.2.2.2.2}

This requests 10 elements. Because the buffer only has 5 elements, it is immedi-
ately emptied, displaying:

1|2|3|4|5|6|_<Future>

One more element is added each second for four seconds. The final result is:

1|2|3|4|5|6|7|8|9|10|_<Future>

At this point, all consumer requests are satisfied and the buffer will start filling
up again at the rate of one element per second.

4.5.5 Reading a file lazily

The simplest way to read a file is as a list of characters. However, if the file is
very large, this uses an enormous amount of memory. This is why files are usually
read incrementally, a block at a time (where a block is a contiguous piece of the
file). The program is careful to keep in memory only the blocks that are needed.
This is memory-efficient, but is cumbersome to program.

Can we have the best of both worlds: to read the file as a list of characters
(which keeps programs simple), yet to read in only the parts we need (which
saves memory)? With lazy execution the answer is yes. Here is the function
ReadListLazy that solves the problem:

fun {ReadListLazy FN}
{File.readOpen FN}
fun lazy {ReadNext}
L T I in

{File.readBlock I L T}
if I==0 then T=nil {File.readClose} else T={ReadNext} end
L

end
in

{ReadNext}
end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

298 Declarative Concurrency

Times 2

Times 3

Times 5

1

Merge

Figure 4.29: Lazy solution to the Hamming problem

It uses three operations in the File module (which is available on the book’s Web
site): {File.readOpen FN} , which opens file FN for reading, {File.readBlock

I L T} , which reads a block in the difference list L#T and returns its size in I ,
and {File.readClose} , which closes the file.

The ReadListLazy function reads a file lazily, a block at a time. Whenever
a block is exhausted then another block is read automatically. Reading blocks
is much more efficient than reading single characters since only one lazy call is
needed for a whole block. This means that ReadListLazy is practically speaking
just as efficient as the solution in which we read blocks explicitly. When the end
of file is reached then the tail of the list is bound to nil and the file is closed.

The ReadListLazy function is acceptable if the program reads all of the file,
but if it only reads part of the file, then it is not good enough. Do you see why
not? Think carefully before reading the answer in the footnote!12 Section 6.9.2
shows the right way to use laziness together with external resources such as files.

4.5.6 The Hamming problem

The Hamming problem, named after Richard Hamming, is a classic problem of
demand-driven concurrency. The problem is to generate the first n integers of
the form 2a3b5c with a, b, c ≥ 0. Hamming actually solved a more general version,
which considers products of the first k primes. We leave this one to an exercise!
The idea is to generate the integers in increasing order in a potentially infinite
stream. At all times, a finite part h of this stream is known. To generate the next
element of h, we take the least element x of h such that 2x is bigger than the last
element of h. We do the same for 3 and 5, giving y and z. Then the next element

12It is because the file stays open during the whole execution of the program–this consumes
valuable system resources including a file descriptor and a read buffer.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 299

of h is min(2x, 3y, 5z). We start the process by initializing h to have the single
element 1. Figure 4.29 gives a picture of the algorithm. The simplest way to
program this algorithm is with two lazy functions. The first function multiplies
all elements of a list by a constant:

fun lazy {Times N H}
case H of X|H2 then N*X|{Times N H2} end

end

The second function takes two lists of integers in increasing order and merges
them into a single list:

fun lazy {Merge Xs Ys}
case Xs#Ys of (X|Xr)#(Y|Yr) then

if X<Y then X|{Merge Xr Ys}
elseif X>Y then Y|{Merge Xs Yr}
else X|{Merge Xr Yr}
end

end
end

Each value should appear only once in the output. This means that when X==Y,
it is important to skip the value in both lists Xs and Ys. With these two functions,
it is easy to solve the Hamming problem:

H=1|{Merge {Times 2 H}
{Merge {Times 3 H}

{Times 5 H}}}
{Browse H}

This builds a three-argument merge function using two two-argument merge func-
tions. If we execute this as is, then it displays very little:

1|_<Future>

No elements are calculated. To get the first n elements of H, we need to ask that
they be calculated. For example, we can define the procedure Touch :

proc {Touch N H}
if N>0 then {Touch N-1 H.2} else skip end

end

This traverses N elements of H, which causes them to be calculated. Now we can
calculate 20 elements by calling Touch :

{Touch 20 H}

This displays:

1|2|3|4|5|6|8|9|10|12|15|16|18|20|24|25|27|30|32|36|_<Future>

4.5.7 Lazy list operations

All the list functions of Section 3.4 can be made lazy. It is insightful to see how
this changes their behavior.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

300 Declarative Concurrency

Lazy append

We start with a simple function: a lazy version of Append :

fun lazy {LAppend As Bs}
case As
of nil then Bs
[] A|Ar then A|{LAppend Ar Bs}
end

end

The only difference with the eager version is the “lazy ” annotation. The lazy
definition works because it is recursive: it calculates part of the answer and then
calls itself. Calling LAppend with two lists will append them lazily:

L={LAppend "foo" "bar"}
{Browse L}

We say this function is incremental: forcing its evaluation only does enough of the
calculation to generate one additional output element, and then creates another
suspension. If we “touch” successive elements of L this will successively show f ,
o, o, one character at a time. However, after we have exhausted "foo" , then
LAppend is finished, so it will show "bar" all at once. How do we make a list
append that returns a completely lazy list? One way is to give LAppend a lazy
list as second argument. First define a function that takes any list and returns a
lazy version:

fun lazy {MakeLazy Ls}
case Ls
of X|Lr then X|{MakeLazy Lr}
else nil end

end

MakeLazy works by iterating over its input list, i.e., like LAppend , it calculates
part of the answer and then calls itself. This only changes the control flow;
considered as a function between lists, MakeLazy is an identity. Now call LAppend

as follows:

L={LAppend "foo" {MakeLazy "bar"}}
{Browse L}

This will lazily enumerate both lists, i.e., it successively returns the characters f ,
o, o, b, a, and r .

Lazy mapping

We have seen Map in Section 3.6; it evaluates a function on all elements of a list.
It is easy to define a lazy version of this function:

fun lazy {LMap Xs F}
case Xs
of nil then nil

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 301

[] X|Xr then {F X}|{LMap Xr F}
end

end

This function takes any list or lazy list Xs and returns a lazy list. Is it incremental?

Lazy integer lists

We define the function {LFrom I J} that generates a lazy list of integers from
I to J :

fun {LFrom I J}
fun lazy {LFromLoop I}

if I>J then nil else I|{LFromLoop I+1} end
end
fun lazy {LFromInf I} I|{LFromInf I+1} end

in
if J==inf then {LFromInf I} else {LFromLoop I} end

end

Why is LFrom itself not annotated as lazy?13 This definition allows J=inf , in
which case an infinite lazy stream of integers is generated.

Lazy flatten

This definition shows that lazy difference lists are as easy to generate as lazy
lists. As with the other lazy functions, it suffices to annotate as lazy all recursive
functions that calculate part of the solution on each iteration.

fun {LFlatten Xs}
fun lazy {LFlattenD Xs E}

case Xs
of nil then E
[] X|Xr then

{LFlattenD X {LFlattenD Xr E}}
[] X then X|E
end

end
in

{LFlattenD Xs nil}
end

We remark that this definition has the same asymptotic efficiency as the eager
definition, i.e., it takes advantage of the constant-time append property of differ-
ence lists.

13Only recursive functions need to be controlled, since they would otherwise do a potentially
unbounded calculation.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

302 Declarative Concurrency

Lazy reverse

Up to now, all the lazy list functions we introduced are incremental, i.e., they are
able to produce one element at a time efficiently. Sometimes this is not possible.
For some list functions, the work required to produce one element is enough to
produce them all. We call these functions monolithic. A typical example is list
reversal. Here is a lazy definition:

fun {LReverse S}
fun lazy {Rev S R}

case S
of nil then R
[] X|S2 then {Rev S2 X|R} end

end
in {Rev S nil} end

Let us call this function:

L={LReverse [a b c]}
{Browse L}

What happens if we touch the first element of L? This will calculate and display
the whole reversed list! Why does this happen? Touching L activates the sus-
pension {Rev [a b c] nil} (remember that LReverse itself is not annotated
as lazy). This executes Rev and creates a new suspension for {Rev [b c] [a]}

(the recursive call), but no list pair. Therefore the new suspension is immedi-
ately activated. This does another iteration and creates a second suspension,
{Rev [c] [b a]} . Again, no list pair is available, so the second suspension is
immediately activated. This continues until Rev returns [c b a] . At this point,
there is a list pair so the evaluation completes. The need for one list pair has
caused the whole list reversal to be done. This is what we mean by a monolithic
function. For list reversal, another way to understand this behavior is to think
of what list reversal means: the first element of a reversed list is the last element
of the input list. We therefore have to traverse the whole input list, which lets
us construct the whole reversed list.

Lazy filter

To complete this section, we give another example of an incremental function,
namely filtering an input list according to a condition F:

fun lazy {LFilter L F}
case L
of nil then nil
[] X|L2 then

if {F X} then X|{LFilter L2 F} else {LFilter L2 F} end
end

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 303

We give this function because we will need it for list comprehensions in Sec-
tion 4.5.9.

4.5.8 Persistent queues and algorithm design

In Section 3.4.5 we saw how to build queues with constant-time insert and delete
operations. Those queues only work in the ephemeral case, i.e., only one version
exists at a time. It turns out we can use laziness to build persistent queues with
the same time bounds. A persistent queue is one that supports multiple versions.
We first show how to make an amortized persistent queue with constant-time
insert and delete operations. We then show how to achieve worst-case constant-
time.

Amortized persistent queue

We first tackle the amortized case. The reason why the amortized queue of
Section 3.4.5 is not persistent is that Delete sometimes does a list reversal,
which is not constant time. Each time a Delete is done on the same version,
another list reversal is done. This breaks the amortized complexity if there are
multiple versions.

We can regain the amortized complexity by doing the reverse as part of a lazy
function call. Invoking the lazy function creates a suspension instead of doing the
reverse right away. Sometime later, when the result of the reverse is needed, the
lazy function does the reverse. With some cleverness, this can solve our problem:

• Between the creation of the suspension and the actual execution of the
reverse, we arrange that there are enough operations to pay back the costs
incurred by the reverse.

• But the reverse can be paid for only once. What if several versions want
to do the reverse? This is not a problem. Laziness guarantees that the
reverse is only done once, even if more than one version triggers it. The first
version that needs it will activate the trigger and save the result. Subsequent
versions will use the result without doing any calculation.

This sounds nice, but it depends on being able to create the suspension far enough
in advance of the actual reverse. Can we do it? In the case of a queue, we can.
Let us represent the queue as a 4-tuple:

q(LenF F LenR R)

F and Rare the front and rear lists, like in the ephemeral case. We add the integers
LenF and LenR, which give the lengths of F and R. We need these integers to test
when it is time to create the suspension. At some magic instant, we move the
elements of R to F. The queue then becomes:

q(LenF+LenR {LAppend F {Reverse R}} 0 nil)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

304 Declarative Concurrency

In Section 3.4.5 we did this (eagerly) when F became empty, so the Append did
not take any time. But this is too late to keep the amortized complexity, since
the reverse is not paid for (e.g., maybe R is a very big list). We remark that the
reverse gets evaluated in any case when the LAppend has finished, i.e., after |F|
elements are removed from the queue. Can we arrange that the elements of F

pay for the reverse? We can, if we create the suspension when |R| ≈ |F|. Then
removing each element of F pays for part of the reverse. By the time we have to
evaluate the reverse, it is completely paid for. Using the lazy append makes the
payment incremental. This gives the following implementation:

fun {NewQueue} q(0 nil 0 nil) end

fun {Check Q}
case Q of q(LenF F LenR R) then

if LenF>=LenR then Q
else q(LenF+LenR {LAppend F {Reverse R}} 0 nil) end

end
end

fun {Insert Q X}
case Q of q(LenF F LenR R) then

{Check q(LenF F LenR+1 X|R)}
end

end

fun {Delete Q X}
case Q of q(LenF F LenR R) then F1 in

F=X|F1 {Check q(LenF-1 F1 LenR R)}
end

end

Both Insert and Delete call the function Check , which chooses the moment to
do the lazy call. Since Insert increases |R| and Delete decreases |F|, eventually
|R| becomes as large as |F|. When |R| = |F|+1, Check does the lazy call {LAppend

F {Reverse R}} . The function LAppend is defined in Section 4.5.7.
Let us summarize this technique. We replace the original eager function call

by a lazy function call. The lazy call is partly incremental and partly monolithic.
The trick is that the lazy call starts off being incremental. By the time the
monolithic part is reached, there have been enough incremental steps so that the
monolithic part is paid for. It follows that the result is amortized constant-time.

For a deeper discussion of this technique including its application to other
data structures and a proof of correctness, we recommend [138].

Worst-case persistent queue

The reason the above definition is not worst-case constant-time is because Reverse

is monolithic. If we could rewrite it to be incremental, then we would have a so-

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 305

lution with constant-time worst-case behavior. But list reversal cannot be made
incremental, so this does not work. Let us try another approach.

Let us look at the context of the call to Reverse . It is called together with a
lazy append:

{LAppend F {Reverse R}}

This first executes the append incrementally. When all elements of F have been
passed to the output, then the reverse is executed monolithically. The cost of the
reverse is amortized over the steps of the append.

Instead of amortizing the cost of the reverse, perhaps we can actually do the
reverse together with the steps of the append. When the append is finished, the
reverse will be finished as well. This is the heart of the solution. To implement it,
let us compare the definitions of reverse and append. Reverse uses the recursive
function Rev:

fun {Reverse R}
fun {Rev R A}

case R
of nil then A
[] X|R2 then {Rev R2 X|A} end

end
in {Rev R nil} end

Rev traverses R, accumulates a solution in A, and then returns the solution. Can
we do both Rev and LAppend in a single loop? Here is LAppend :

fun lazy {LAppend F B}
case F
of nil then B
[] X|F2 then X|{LAppend F2 B}
end

end

This traverses F and returns B. The recursive call is passed B unchanged. Let
us change this to use B to accumulate the result of the reverse! This gives the
following combined function:

fun lazy {LAppRev F R B}
case F#R
of nil#[Y] then Y|B
[] (X|F2)#(Y|R2) then X|{LAppRev F2 R2 Y|B}
end

end

LAppRev traverses both F and R. During each iteration, it calculates one element
of the append and accumulates one element of the reverse. This definition only
works if R has exactly one more element than F, which is true for our queue. The
original call:

{LAppend F {Reverse R}}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

306 Declarative Concurrency

is replaced by:

{LAppRev F R nil}

which gives exactly the same result except that LAppRev is completely incremen-
tal. The definition of Check then becomes:

fun {Check Q}
case Q of q(LenF F LenR R) then

if LenR=<LenF then Q
else q(LenF+LenR {LAppRev F R nil} 0 nil) end

end
end

Careful analysis shows that the worst-case bound of this queue is O(logn), and
not O(1) as our intuition might expect it to be. The bound is much better than
O(n), but it is not constant. See the Exercises for an explanation and a suggestion
on how to achieve a constant bound.

Taking a program with a worst-case bound and adding laziness naively will
give an amortized bound. This is because laziness changes where the function calls
are executed, but does not do more of them (the eager case is an upper bound).
The definition of this section is remarkable because it does just the opposite: it
starts with an amortized bound and uses laziness to give a worst-case bound.

Lessons for algorithm design

Laziness is able to shuffle calculations around, spreading them out or bunching
them together without changing the final result. This is a powerful tool for
designing declarative algorithms. It has to be used carefully, however. Used
naively, laziness can destroy perfectly good worst-case bounds, turning them into
amortized bounds. Used wisely, laziness can improve amortized algorithms: it
can sometimes make the algorithm persistent and it can sometimes transform the
amortized bound into a worst-case bound.

We can outline a general scheme. Start with an algorithm A that has an
amortized bound O(f(n)) when used ephemerally. For example, the first queue
of Section 3.4.5 has an amortized bound of O(1). We can use laziness to move
from ephemeral to persistent while keeping this time bound. There are two
possibilities:

• Often we can get a modified algorithm A’ that keeps the amortized bound
O(f(n)) when used persistently. This is possible when the expensive opera-
tions can be spread out to be mostly incremental but with a few remaining
monolithic operations.

• In a few cases, we can go farther and get a modified algorithm A” with
worst-case bound O(f(n)) when used persistently. This is possible when
the expensive operations can be spread out to be completely incremental.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 307

This section realizes both possibilities with the first queue of Section 3.4.5. The
persistent algorithms so obtained are often quite efficient, especially if used by
applications that really need the persistence. They compare favorably with algo-
rithms in stateful models.

4.5.9 List comprehensions

List comprehensions are a powerful tool for calculating with lazy streams. They
allow to specify lazy streams in a way that closely resembles the mathematical
notation of set comprehension. For example, the mathematical notation {x ∗
y | 1 ≤ x ≤ 10, 1 ≤ y ≤ x} specifies the set {1∗1, 2∗1, 2∗2, 3∗1, 3∗2, 3∗3, ...10∗10},
i.e. {1, 2, 3, 4, 5, ..., 100}. We turn this notation into a practical programming tool
by modifying it to specify not sets, but lazy streams. This makes the notation
very efficient to implement, while keeping it at a high level of abstraction. For
example, the list comprehension [x ∗ y | 1 ≤ x ≤ 10, 1 ≤ y ≤ x] (notice the
square list brackets!) specifies the list [1*1 2*1 2*2 3*1 3*2 3*3 · · · 10*10]

(in this order), i.e., the list [1 2 4 3 6 9 · · · 100] . The list is calculated lazily.
Because of laziness the list comprehension can generate a potentially unbounded
stream, not just a finite list.

List comprehensions have the following basic form:

[f(x) | x← generator(a1, ..., an), guard(x, a1, ..., an)]

The generator x← generator(a1, ..., an) calculates a lazy list whose elements are
successively assigned to x. The guard guard(x, a1, ..., an) is a boolean function.
The list comprehension specifies a lazy list containing the elements f(x), where
f is any function and x takes on values from the generator for which the guard is
true. In the general case, there can be any number of variables, generators, and
guards. A typical generator is from:

x← from(a, b)

Here x takes on the integer values a, a+1, ..., b, in that order. Calculation is done
from left to right. The generators, when taken from left to right, are considered
as nested loops: the rightmost generator is the innermost loop.

There is a close connection between list comprehensions and the relational
programming of Section 9. Both provide lazy interfaces to infinitely long se-
quences and make it easy to write “generate-and-test” programs. Both allow to
specify the sequences in a declarative way.

While list comprehensions are usually considered to be lazy, they can in fact
be programmed in both eager and lazy versions. For example, the list compre-
hension:

z = [x#x | x← from(1, 10)]

can be programmed in two ways. An eager version is:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

308 Declarative Concurrency

Z = {Map {From 1 10} fun {$ X} X#X end }

For the eager version, the declarative model of Chapter 2 is good enough. It uses
the Map function of Section 3.6.3 and the From function which generates a list of
integers. A lazy version is:

Z = {LMap {LFrom 1 10} fun {$ X} X#X end }

The lazy version uses the LMap and LFrom functions of the previous section. This
example and most examples of this section can be done with either a lazy or eager
version. Using the lazy version is always correct. Using the eager version is a
performance optimization. It is several times faster if the cost of calculating the
list elements is not counted. The optimization is only possible if the whole list
fits in memory. In the rest of this section, we always use the lazy version.

Here is a list comprehension with two variables:

z = [x#y | x← from(1, 10), y ← from(1, x)]

This can be programmed as:

Z = {LFlatten
{LMap {LFrom 1 10} fun {$ X}

{LMap {LFrom 1 X} fun {$ Y}
X#Y

end }
end }}

We have seen LFlatten in the previous section; it converts a list of lists to a
“flat” lazy list, i.e., a lazy list that contains all the elements, but no lists. We
need LFlatten because otherwise we have a list of lists. We can put LFlatten

inside LMap:

fun {FMap L F}
{LFlatten {LMap L F}}

end

This simplifies the program:

Z = {FMap {LFrom 1 10} fun {$ X}
{LMap {LFrom 1 X} fun {$ Y}

X#Y
end }

end }

Here is an example with two variables and a guard:

z = [x#y | x← from(1, 10), y ← from(1, 10), x + y ≤ 10]

This gives the list of all pairs x#y such that the sum x + y is at most 10. It can
be programmed as:

Z = {LFilter
{FMap {LFrom 1 10} fun {$ X}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.6 Soft real-time programming 309

{LMap {LFrom 1 10} fun {$ Y}
X#Y

end }
end }
fun {$ X#Y} X+Y=<10 end }

This uses the function LFilter defined in the previous section. We can refor-
mulate this example to be more efficient. The idea is to generate as few elements
as possible. In the above example, 100 (=10*10) elements are generated. From
2 ≤ x + y ≤ 10 and 1 ≤ y ≤ 10, we derive that 1 ≤ y ≤ 10 − x. This gives the
following solution:

z = [x#y | x← from(1, 10), y ← from(1, 10− x)]

The program then becomes:

Z = {FMap {LFrom 1 10} fun {$ X}
{LMap {LFrom 1 10-X} fun {$ Y}

X#Y
end }

end }

This gives the same list as before, but only generates about half as many elements.

4.6 Soft real-time programming

4.6.1 Basic operations

The Time module contains a number of useful soft real-time operations. A real-
time operation has a set of deadlines (particular times) at which certain calcu-
lations must be completed. A soft real-time operation requires only that the
real-time deadlines be respected most of the time. This is opposed to hard real-
time, which has hard deadlines, i.e., that must be respected all the time, without
any exception. Hard real-time is needed when lives are at stake, e.g., in medical
equipment and air traffic control. Soft real-time is used in other cases, e.g., for
telephony and consumer electronics. Hard real-time requires special techniques
for both hardware and software. Standard personal computers cannot do hard
real-time because they have unpredictable hardware delays (e.g., virtual memory,
caching, process scheduling). Soft real-time is much easier to implement and is
often sufficient. Three soft real-time operations provided by Time are:

• {Delay I} : suspends the executing thread for at least I milliseconds and
then continues.

• {Alarm I U} : creates a new thread that binds U to unit after at least I

milliseconds. Alarm can be implemented with Delay .

• {Time.time} : returns the integer number of seconds that have passed since
the current year started.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

310 Declarative Concurrency

local
proc {Ping N}

if N==0 then {Browse ´ ping terminated ´ }
else {Delay 500} {Browse ping} {Ping N-1} end

end
proc {Pong N}

{For 1 N 1
proc {$ I} {Delay 600} {Browse pong} end }

{Browse ´ pong terminated ´ }
end

in
{Browse ´ game started ´ }
thread {Ping 50} end
thread {Pong 50} end

end

Figure 4.30: A simple ‘Ping Pong’ program

The semantics of Delay is simple: it communicates to the scheduler that the
thread is to be considered suspended for a given time period. After this time
is up, the scheduler marks the thread as runnable again. The thread is not
necessarily run immediately. If there are lots of other runnable threads, it may
take some time before the thread actually runs.

We illustrate the use of Delay by means of a simple example that shows the
interleaving execution of two threads. The program is called ´ Ping Pong ´ and
is defined in Figure 4.30. It starts two threads. One displays ping periodically
each 500 milliseconds and the other displays pong each 600 milliseconds. Because
pongs come out slower than pings, it is possible for two pings to be displayed
without any pongs in between. Can the same thing happen with two pongs?
That is, can two pongs ever be displayed with no pings in between? Assume that
the Ping thread has not yet terminated, otherwise the question would be too
easy. Think carefully before reading the answer in the footnote.14

A simple standalone application

Section 3.9 in Chapter 2 shows how to make standalone applications in Oz. To
make the ´ Ping Pong ´ program standalone, the first step is to make a functor
of it, as shown in Figure 4.31. If the source code is stored in file PingPong.oz ,
then the program can be compiled with the following command:

ozc -x PingPong.oz

14The language does indeed allow two pongs to be displayed with no intervening pings because
the definition of Delay only gives the minimum suspension time. The thread suspending for
500 milliseconds can occasionally suspend for a longer time, for example for 700 milliseconds.
But this is a rare occurrence in practice because it depends on external events in the operating
system or in other threads.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.6 Soft real-time programming 311

functor
import

Browser(browse:Browse)
define

proc {Ping N}
if N==0 then {Browse ´ ping terminated ´ }
else {Delay 500} {Browse ping} {Ping N-1} end

end
proc {Pong N}

{For 1 N 1
proc {$ I} {Delay 600} {Browse pong} end }

{Browse ´ pong terminated ´ }
end

in
{Browse ´ game started ´ }
thread {Ping 50} end
thread {Pong 50} end

end

Figure 4.31: A standalone ‘Ping Pong’ program

Type PingPong in your shell to start the program. To terminate this program in
a Unix shell you have to type CTRL-C.

The program of Figure 4.31 does not terminate properly when the Ping and
the Pong threads terminate. It does not detect when the threads terminate. We
can fix this problem using the techniques of Section 4.4.3. Figure 4.32 adds a
termination detection that terminates the main thread only when both the Ping

and the Pong threads terminate. We could also use the Barrier abstraction
directly. After detecting termination, we use the call {Application.exit 0}

to cleanly exit the application.

4.6.2 Ticking

We would like to invoke an action (e.g., send a message to a stream object, call
a procedure, etc.) exactly once per second, giving it the local time as argument.
We have three operations at our disposal: {Delay D} , which delays for at least D

milliseconds, {Time.time} , which returns the number of seconds since January
1 of the current year, and {OS.localTime} , which returns a record giving local
time accurate to one second. How does the following function measure up:

fun {NewTicker}
fun {Loop}

X={OS.localTime}
in

{Delay 1000}
X|{Loop}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

312 Declarative Concurrency

functor
import

Browser(browse:Browse)
Application

define
...
X1 X2

in
{Browse ´ game started ´ }
thread {Ping 50} X1= unit end
thread {Pong 50} X2= unit end
{Wait X1} {Wait X2}
{Application.exit 0}

end

Figure 4.32: A standalone ‘Ping Pong’ program that exits cleanly

end
in

thread {Loop} end
end

This function creates a stream that grows by one element per second. To execute
an action once every second, create a thread that reads the stream and performs
the action:

thread for X in {NewTicker} do {Browse X} end end

Any number of threads can read the same stream. The problem is, this solution
is not quite right. The stream is extended almost exactly once per second. The
problem is the “almost”. Every once in a while, one second is lost, i.e., successive
elements on the stream show a difference of two seconds. However, there is
one good point: the same second cannot be sent twice, since {Delay 1000}

guarantees a delay of at least 1000 milliseconds, to which is added the execution of
the instructions in Loop . This gives a total delay of at least 1000+ε milliseconds,
where ε is a fraction of a microsecond.

How can we correct this problem? A simple way is to compare the current
result of OS.localTime with the previous result, and to add an element to the
stream only when the local time changes. This gives:

fun {NewTicker}
fun {Loop T}

T1={OS.localTime}
in

{Delay 900}
if T1\=T then T1|{Loop T1} else {Loop T1} end

end
in

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.6 Soft real-time programming 313

thread {Loop {OS.localTime}} end
end

This version guarantees that exactly one tick will be sent per second, if {Delay

900} always delays for less than one second. The latter condition holds if there
are not too many active threads and garbage collection does not take too long.
One way to guarantee the first condition is to give the Loop thread high priority
and all other threads medium or low priority. To guarantee the second condition,
the program must ensure that there is not too much active data, since garbage
collection time is proportional to the amount of active data.

This version has the minor problem that it “hesitates” every 9 seconds. That
is, it can happen that {OS.localTime} gives the same result twice in a row,
since the two calls are separated by just slightly more than 900 milliseconds.
This means that the stream will not be updated for 1800 milliseconds. Another
way to see this problem is that 10 intervals of 900 milliseconds are needed to
cover 9 seconds, which means that nothing happens during one of the intervals.
How can we avoid this hesitation? A simple way is to make the delay smaller.
With a delay of 100 milliseconds, the hesitation will never be greater than 100
milliseconds plus the garbage collection time.

A better way to avoid the hesitation is to use synchronized clocks. That is, we
create a free-running counter that runs at approximately one second per tick, and
we adjust its speed so that it remains synchronized with the operating system
time. Here is how it is done:

fun {NewTicker}
fun {Loop N}

T={Time.time}
in

if T>N then {Delay 900}
elseif T<N then {Delay 1100}
else {Delay 1000} end
N|{Loop N+1}

end
in

thread {Loop {Time.time}} end
end

The loop has a counter, N, that is always incremented by one. We compare the
counter value to the result of {Time.time} .15 If the counter is slower (T>N),
we speed it up. Likewise, if the counter is faster (T<N), we slow it down. The
speedup and slowdown factors are small (10% in the example), which makes the
hesitation unnoticeable.

15How would you fix NewTicker to work correctly when Time.time turns over, i.e., goes
back to 0?

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

314 Declarative Concurrency

4.7 Limitations and extensions of declarative pro-

gramming

Declarative programming has the major advantage that it considerably simplifies
system building. Declarative components can be built and debugged indepen-
dently of each other. The complexity of a system is the sum of the complexities
of its components. A natural question to ask is how far can declarative pro-
gramming go? Can everything be programmed in a declarative way, such that
programs are both natural and efficient? This would be a major boon for sys-
tem building. We say a program is efficient if its performance differs by just a
constant factor from the performance of an assembly language program to solve
the same problem. We say a program is natural if very little code is needed just
for technical reasons unrelated to the problem at hand. Let us consider efficiency
and naturalness issues separately. There are three naturalness issues: modularity,
nondeterminism, and interfacing with the real world.

We recommend to use the declarative model of this chapter or the sequential
version of Chapter 2 except when any of the above issues is critical. This makes
it easier to write correct and efficient components.

4.7.1 Efficiency

Is declarative programming efficient? There is a fundamental mismatch between
the declarative model and a standard computer, such as presented in [146]. The
computer is optimized for modifying data in-place, while the declarative model
never modifies data but always creates new data. This is not as severe a prob-
lem as it seems at first glance. The declarative model may have a large inherent
memory consumption, but its active memory size remains small. The task re-
mains, though, to implement the declarative model with in-place assignment.
This depends first on the sophistication of the compiler.

Can a compiler map declarative programs effectively to a standard computer?
Paraphrasing science fiction author and futurologist Arthur C. Clarke, we can say
that “any sufficiently advanced compiler is indistinguishable from magic” [37].16

That is, it is unrealistic to expect the compiler to rewrite your program. Even
after several decades of research, no such compiler exists for general-purpose pro-
gramming. The farthest we have come is compilers that can rewrite the program
in particular cases. Computer scientist Paul Hudak calls them “smart-aleck”
compilers. Because of their unpredictable optimizations, they are hard to use.
Therefore, for the rest of the discussion, we assume that the compiler does a
straightforward mapping from the source program to the target, in the sense that
time and space complexities of compiled code can be derived in a simple way
from language semantics.

16Clarke’s Third Law: “Any sufficiently advanced technology is indistinguishable from mag-
ic.”

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.7 Limitations and extensions of declarative programming 315

Now we can answer the question whether declarative programming is efficient.
Given a straightforward compiler, the pedantic answer to the question is no. But
in fact the practical answer is yes, with one caveat: declarative programming is
efficient if one is allowed to rewrite the program to be less natural. Here are three
typical examples:

1. A program that does incremental modifications of large data structures,
e.g., a simulation that modifies large graphs (see Section 6.8.4), cannot in
general be compiled efficiently. Even after decades of research, there is no
straightforward compiler that can take such a program and implement it
efficiently. However, if one is allowed to rewrite the program, then there is
a simple trick that is often sufficient in practice. If the state is threaded
(e.g., kept in an accumulator) and the program is careful never to access
an old state, then the accumulator can be implemented with destructive
assignment.

2. A function that does memoization cannot be programmed without changing
its interface. Assume we have a function that uses many computational
resources. To improve its performance, we would like to add memoization
to it, i.e., an internal cache of previously-calculated results, indexed by the
function arguments. At each function call, we first check the cache to see
if the result is already there. This internal cache cannot be added without
rewriting the program by threading an accumulator everywhere that the
function is called. Section 10.3.2 gives an example.

3. A function that implements a complex algorithm often needs intricate code.
That is, even though the program can be written declaratively with the same
efficiency as a stateful program, doing so makes it more complex. This
follows because the declarative model is less expressive than the stateful
model. Section 6.8.1 shows an example: a transitive closure algorithm
written in both the declarative and the stateful models. Both versions have
time efficiency O(n3). The stateful algorithm is simpler to write than the
declarative one.

We conclude that declarative programming cannot always be efficient and natural
simultaneously. Let us now look at the naturalness issues.

4.7.2 Modularity

We say a program is modular with respect to a change in a given part if the change
can be done without changing the rest of the program. Modularity is discussed
further in Section 6.7.2. Here are two examples where declarative programs are
not modular:

1. The first example is the memoization cache we saw before. Adding this
cache to a function is not modular, since an accumulator must be threaded
in many places outside the function.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

316 Declarative Concurrency

2. A second example is instrumenting a program. We would like to know how
many times some of its subcomponents are invoked. We would like to add
counters to these subcomponents, preferably without changing either the
subcomponent interfaces or the rest of the program. If program is declar-
ative, this is impossible, since the only way is to thread an accumulator
throughout the program.

Let us look closer at the second example. Assume that we are using the declarative
model to implement a large declarative component. The component definition
looks something like this:

fun {SC ...}
proc {P1 ...}

...
end
proc {P2 ...}

...
{P1 ...}
{P2 ...}

end
proc {P3 ...}

...
{P2 ...}
{P3 ...}

end
in

´ export ´ (p1:P1 p2:P2 p3:P3)
end

Calling SCinstantiates the component: it returns a module with three operations,
P1, P2, and P3. We would like to instrument the component by counting the
number of times procedure P1 is called. The successive values of the count are a
state. We can encode this state as an accumulator, i.e., by adding two arguments
to each procedure. With this added instrumentation, the component definition
looks something like this:

fun {SC ...}
proc {P1 ... S1 ?Sn}

Sn=S1+1
...

end
proc {P2 ... T1 ?Tn}

...
{P1 ... T1 T2}
{P2 ... T2 Tn}

end
proc {P3 ... U1 ?Un}

...

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.7 Limitations and extensions of declarative programming 317

Main
component

Main Main

P3

P1

P2
Subcomponent

Using an accumulator Using explicit state

SC

P3

P1

P2

SC

Figure 4.33: Changes needed for instrumenting procedure P1

{P2 ... U1 U2}
{P3 ... U2 Un}

end
in

´ export ´ (p1:P1 p2:P2 p3:P3)
end

Each procedure defined by SChas a changed interface: it has two extra arguments
that together form an accumulator. The procedure P1 is called as {P1 ...

Sin Sout} , where Sin is the input count and Sout is the output count. The
accumulator has to be threaded between the procedure calls. This technique
requires both SCand the calling module to do a fair amount of bookkeeping, but
it works.

Another solution is to write the component in a stateful model. One such
model is defined in Chapter 6; for now assume that we have a new language
entity, called “cell”, that we can assign and access (with the := and @operators),
similar to an assignable variable in imperative programming languages. Cells
were introduced in Chapter 1. Then the component definition looks something
like this:

fun {SC ...}
Ctr={NewCell 0}
proc {P1 ...}

Ctr:=@Ctr+1
...

end
proc {P2 ...}

...

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

