
318 Declarative Concurrency

{P1 ...}
{P2 ...}

end
proc {P3 ...}

...
{P2 ...}
{P3 ...}

end
fun {Count} @Ctr end

in
´ export ´ (p1:P1 p2:P2 p3:P3 count:Count)

end

In this case, the component interface has one extra function, Count , and the
interfaces to P1, P2, and P3 are unchanged. The calling module has no book-
keeping to do whatsoever. The count is automatically initialized to zero when
the component is instantiated. The calling module can call Count at any time
to get the current value of the count. The calling module can also ignore Count

completely, if it likes, in which case the component has exactly the same behavior
as before (except for a very slight difference in performance).

Figure 4.33 compares the two approaches. The figure shows the call graph
of a program with a component Main that calls subcomponent SC. A call graph
is a directed graph where each node represents a procedure and there is an edge
from each procedure to the procedures it calls. In Figure 4.33, SC is called from
three places in the main component. Now let us instrument SC. In the declarative
approach (at left), an accumulator has to be added to each procedure on the path
from Main to P1. In the stateful approach (at right), the only changes are the
extra operation Count and the body of P1. In both cases, the changes are shown
with thick lines. Let us compare the two approaches:

• The declarative approach is not modular with respect to instrumenting
P1, because every procedure definition and call on the path from Main to
P1 needs two extra arguments. The interfaces to P1, P2, and P3 are all
changed. This means that other components calling SChave to be changed
too.

• The stateful approach is modular because the cell is mentioned only where it
is needed, in the initialization of SCand in P1. In particular, the interfaces
to P1, P2, and P3, remain the same in the stateful approach. Since the
extra operation Count can be ignored, other components calling SCdo not
have to be changed.

• The declarative approach is slower because it does much extra argument
passing. All procedures are slowed down for the sake of one. The stateful
approach is efficient; it only spends time when necessary.

Which approach is simpler: the first or the second? The first has a simpler model
but a more complex program. The second has a more complex model but a

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.7 Limitations and extensions of declarative programming 319

Cli ent 1

Client 2

Server?

OutS2

OutS1

InS

Figure 4.34: How can two clients send to the same server? They cannot!

simpler program. In our view, the declarative approach is not natural. Because
it is modular, the stateful approach is clearly the simplest overall.

The fallacy of the preprocessor

Maybe there is a way we can have our cake and eat it too. Let us define a
preprocessor to add the arguments so we do not have to write them everywhere.
A preprocessor is a program that takes another program’s source code as input,
transforms it according to some simple rules, and returns the result. We define a
preprocessor that takes the syntax of the stateful approach as input and translates
it into a program that looks like the declarative approach. Voilà! It seems that
we can now program with state in the declarative model. We have overcome a
limitation of the declarative model. But have we? In fact, we have done nothing
of the sort. All we have succeeded in doing is build an inefficient implementation
of a stateful model. Let us see why:

• When using the preprocessor, we see only programs that look like the state-
ful version, i.e., stateful programs. This obliges us to reason in the stateful
model. We have therefore de facto extended the declarative model with
explicit state.

• The preprocessor transforms these stateful programs into programs with
threaded state, which are inefficient because of all the argument passing.

4.7.3 Nondeterminism

The declarative concurrent model seems to be quite powerful for building concur-
rent programs. For example, we can easily build a simulator for digital electronic
circuits. However, despite this apparent power, the model has a limitation that
cripples it for many concurrent applications: it always behaves deterministically.
If a program has observable nondeterminism, then it is not declarative. This lim-
itation is closely related to modularity: components that are truly independent

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

320 Declarative Concurrency

behave nondeterministically with respect to each other. To show that this is not
a purely theoretical limitation, we give two realistic examples: a client/server
application and a video display application.

The limitation can be removed by adding a nondeterministic operation to
the model. The extended model is no longer declarative. There are many pos-
sible nondeterministic operations we could add. Chapters 5 and 8 explain the
possibilities in detail. Let us briefly go over them here:

• A first solution is to add a nondeterministic wait operation, such as WaitTwo

which waits for one of two variables to become bound, and indicates one of
the bound ones. Its definition is given in the supplements file on the book’s
Web site. WaitTwo is nice for the client/server application.

• A second solution is to add IsDet , a boolean function that tests imme-
diately whether a dataflow variable is bound or not. This allows to use
dataflow variables as a weak form of state. IsDet is nice for the video
display application.

• A third solution is to add explicit state to the model, for example in the
form of ports (communication channels) or cells (mutable variables).

How do these three solutions compare in expressiveness? WaitTwo can be pro-
grammed in the declarative concurrent model with explicit state. Therefore, it
seems that the most expressive model needs just explicit state and IsDet .

A client/server application

Let us investigate a simple client/server application. Assume that there are two
independent clients. Being independent implies that they are concurrent. What
happens if they communicate with the same server? Because they are indepen-
dent, the server can receive information in any order from the two clients. This
is observable nondeterministic behavior.

Let us examine this closer and see why it cannot be expressed in the declarative
concurrent model. The server has an input stream from which it reads commands.
Let us start with one client, which sends commands to the server. This works
perfectly. How can a second client connect to the server? The second client has to
obtain a reference to a stream that it can bind and that is read by the server. The
problem is that such a stream does not exist! There is only one stream, between
the first client and the server. The second client cannot bind that stream, since
this would conflict with the first client’s bindings.

How can we solve this problem? Let us approach it naively and see if we can
find a solution. One approach might be to let the server have two input streams,
like this:

fun {Server InS1 InS2}
...

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.7 Limitations and extensions of declarative programming 321

But how does the server read the streams? Does it first read one element from
InS1 and then one element from InS2 ? Does it simultaneously read one element
from both streams? Neither of these solutions is correct. In fact, it is not possible
to write a solution in the declarative concurrent model. The only thing we can
do is have two independent servers, one for each client. But these servers cannot
communicate with each other, since otherwise we would have the same problem
all over again.

Figure 4.34 illustrates the problem: InS is the server’s input stream and OutS1

and OutS2 are the two client’s output streams. How can the messages appearing
on both client streams be given to the server? The simple answer is that in the
declarative concurrent model they cannot! In the declarative concurrent model,
an active object always has to know from which stream it will read next.

How can we solve this problem? If the clients execute in coordinated fashion,
so that the server always knows which client will send the next command, then the
program is declarative. But this is unrealistic. To write a true solution, we have
to add a nondeterministic operation to the model, like the WaitTwo operation
we mentioned above. With WaitTwo , the server can wait for a command from
either client. Chapter 5 gives a solution using WaitTwo , in the nondeterministic
concurrent model (see Advanced Topics).

A video display application

Let us look at a simple video display application. It consists of a displayer
that receives a stream of video frames and displays them. The frames arrive
at a particular rate, that is, some number of frames arrive per second. For
various reasons, this rate can fluctuate: the frames have different resolutions,
some processing might be done on them, or the transmission network has varying
bandwidth and latency.

Because of the varying arrival rate, the displayer cannot always display all
frames. Sometimes it has to skip over frames. For example, it might want to
skip quickly to the latest frame that was sent. This kind of stream management
cannot be done in the declarative concurrent model, because there is no way to
detect the end of the stream. It can be done by extending the model with one new
operation, IsDet . The boolean test {IsDet Xs} checks immediately whether Xs

is already bound or not (returning true or false), and does not wait if it is not
bound. Using IsDet , we can define the function Skip that takes a stream and
returns its unbound tail:

fun {Skip Xs}
if {IsDet Xs} then

case Xs of _|Xr then {Skip Xr} [] nil then nil end
else Xs end

end

This iterates down the stream until it finds an unbound tail. Here is a slightly
different version that always waits until there is at least one element:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

322 Declarative Concurrency

fun {Skip1 Xs}
case Xs of X|Xr then

if {IsDet Xr} then {Skip1 Xr} else Xs end
[] nil then nil end

end

With Skip1 , we can write a video displayer that, after it has displayed a frame,
immediately skips to the latest transmitted frame:

proc {Display Xs}
case {Skip1 Xs}
of X|Xr then

{DisplayFrame X}
{Display Xr}

[] nil then skip
end

end

This will work well even if there are variations in the frame arrival rate and the
time to display a frame.

4.7.4 The real world

The real world is not declarative. It has both state (entities have an internal
memory) and concurrency (entities evolve independently).17 Since declarative
programs interact with the real world, either directly or indirectly, they are part
of an environment that contains these concepts. This has two consequences:

1. Interfacing problems. Declarative components lack the expressivity to in-
terface with non-declarative components. The latter are omnipresent, e.g.,
hardware peripherals and user interfaces are both inherently concurrent and
stateful (see Section 3.8). Operating systems also use concurrency and state
for their own purposes, because of the reasons mentioned previously. One
might think that these non-declarative properties could be either masked
or encoded somehow, but somehow this never works. Reality always peeks
through.

2. Specification problems. Program specifications often mention state and con-
currency, because they are targeted for the real world. If the program is
declarative, then it has to encode this in some way. For example, a specifi-
cation for a collaborative tool may require that each user lock what they are
working on to prevent conflicts during concurrent access. In the implemen-
tation, the locks have to be encoded in some way. Using locks directly in a
stateful model gives an implementation that is closer to the specification.

17In fact, the real world is parallel, but this is modeled inside a program with concurrency.
Concurrency is a language concept that expresses logically independent computations. Paral-
lelism is an implementation concept that expresses activities that happen simultaneously. In a
computer, parallelism is used only to increase performance.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.7 Limitations and extensions of declarative programming 323

4.7.5 Picking the right model

There exist many computation models that differ in how expressive they are and
how hard it is to reason about programs written in them. The declarative model is
one of the simplest of all. However, as we have explained, it has serious limitations
for some applications. There are more expressive models that overcome these
limitations, at the price of sometimes making reasoning more complicated. For
example, concurrency is often needed when interacting with the external world.
When such interactions are important then a concurrent model should be used
instead of trying to get by with just the declarative model.

The more expressive models are not “better” than the others, since they do
not always give simpler programs and reasoning in them is usually harder.18 In
our experience, all models have their place and can be used together to good
effect in the same program. For example, in a program with concurrent state,
many components can be declarative. Conversely, in a declarative program, some
components (e.g., graph algorithms) need state to be implemented well. We
summarize this experience in the following rule:

Rule of least expressiveness

When programming a component, the right computation
model for the component is the least expressive model
that results in a natural program.

The idea is that each component should be programmed in its “natural” model.
Using a less expressive model would give a more complex program and using
a more expressive model would not give a simpler program but would make
reasoning about it harder.

The problem with this rule is that we have not really defined “natural”. This
is because to some degree, naturalness is a subjective property. Different people
may find different models easier to use, because of their differing knowledge and
background. The issue is not the precise definition of “natural”, but the fact
that such a definition exists for each person, even though it might be different for
different people.

4.7.6 Extended models

Now we have some idea of the limitations of the declarative model and a few
intuitions on how extended models with state and concurrency can overcome
these limitations. Let us therefore give a brief overview of the declarative model
and its extensions:

• Declarative sequential model (see Chapters 2–3). This model encom-
passes strict functional programming and deterministic logic programming.

18Another reason why they are not better has to do with distributed programming and
network-awareness, which is explained in Chapter 11.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

324 Declarative Concurrency

It extends the former with partial values (using dataflow variables, which
are also called “logic variables”) and the latter with higher-order proce-
dures. Reasoning with this model is based on algebraic calculations with
values. Equals can be substituted for equals and algebraic identities can be
applied. A component’s behavior is independent of when it is executed or
of what happens in the rest of the computation.

• Declarative concurrent model (in this chapter; defined in Sections 4.1
and 4.5). This is the declarative model extended with explicit threads
and by-need computation. This model keeps most of the nice properties
of the declarative model, e.g., reasoning is almost as simple, while being
truly concurrent. This model can do both data-driven and demand-driven
concurrency. It subsumes lazy functional programming and deterministic
concurrent logic programming. Components interact by binding and using
sharing dataflow variables.

• Declarative model with exceptions (defined in Sections 2.6.2 and 4.9.1).
The concurrent declarative model with exceptions is no longer declarative,
since programs can be written that expose nondeterminism.

• Message-passing concurrent model (see Chapter 5). This is the declar-
ative model extended with communication channels (ports). This removes
the limitation of the declarative concurrent model that it cannot implement
programs with some nondeterminism, e.g., a client/server where several
clients talk to a server. This is a useful generalization of the declarative
concurrent model that is easy to program in and allows to restrict the non-
determinism to small parts of the program.

• Stateful model (see Chapters 6–7; defined in Section 6.3). This is the
declarative model extended with explicit state. This model can express
sequential object-oriented programming. A state is a sequence of values
that is extended as the computation proceeds. Having explicit state means
that a component does not always give the same result when called with
the same arguments. The component can “remember” information from
one call to the next. This allows the component to have a “history”, which
lets it interact more meaningfully with its environment by adapting and
learning from its past. Reasoning with this model requires reasoning on the
history.

• Shared-state concurrent model (see Chapter 8; defined in Section 8.1).
This is the declarative model extended with both explicit state and threads.
This model contains concurrent object-oriented programming. The concur-
rency is more expressive than the declarative concurrent model since it can
use explicit state to wait simultaneously on one of several events occurring
(this is called nondeterministic choice). Reasoning with this model is the

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.7 Limitations and extensions of declarative programming 325

most complex since there can be multiple histories interacting in unpre-
dictable ways.

• Relational model (in Chapter 9; defined in Section 9.1). This is the
declarative model extended with search (which is sometimes called “don’t
know” nondeterminism, although the search algorithm is almost always de-
terministic). In the program, the search is expressed as sequence of choices.
The search space is explored by making different choices until the result is
satisfactory. This model allows to program with relations. It encompasses
nondeterministic logic programming in the Prolog style. This model is a
precursor to constraint programming, which is introduced in Chapter 12.

Later on, we will devote whole chapters to each of these models to explain what
they are good for, how to program in them, and how to reason with them.

4.7.7 Using different models together

Typically, any well-written program of reasonable size has different parts writ-
ten in different models. There are many ways to use different models together.
This section gives an example of a particularly useful technique, which we call
impedance matching, that naturally leads to using different models together in
the same program.

Impedance matching is one of the most powerful and practical ways to imple-
ment the general principle of separation of concerns. Consider two computation
models Big and Small, such that model Big is more expressive than Small, but
harder to reason in. For example, model Big could be stateful and model Small
declarative. With impedance matching, we can write a program in model Small
that can live in the computational environment of model Big.

Impedance matching works by building an abstraction in model Big that is
parameterized with a program in model Small. The heart of impedance matching
is finding and implementing the right abstraction. This hard work only needs to
be done once; afterwards there is only the easy work of using the abstraction.
Perhaps surprisingly, it turns out that it is almost always possible to find and
implement an appropriate abstraction. Here are some typical cases of impedance
matching:

• Using a sequential component in a concurrent model. For example, the ab-
straction can be a serializer that accepts concurrent requests, passes them
sequentially, and returns the replies correctly. Figure 4.35 gives an illustra-
tion. Plugging a sequential component into the serializer gives a concurrent
component.

• Using a declarative component in a stateful model. For example, the ab-
straction can be a storage manager that passes its content to the declarative
program and stores the result as its new content.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

326 Declarative Concurrency

Serializer

requests and replies

Sequential component

Concurrent component
Plug in the

Sequential

component

Concurrent
requests and replies

Figure 4.35: Impedance matching: example of a serializer

• Using a centralized component in a distributed model. A distributed model
executes over more than one operating system process. For example, the
abstraction can be a collector that accepts requests from any site and passes
them to a single site.

• Using a component that is intended for a secure model in an insecure mod-
el. A insecure model is one that assumes the existence of malicious entities
that can disturb programs in well-defined ways. A secure model assumes
that no such entities exist. The abstraction can be a protector that insu-
lates a computation by verifying all requests from other computations. The
abstraction handles all the details of coping with the presence of malicious
adversaries. A firewall is a kind of protector.

• Using a component that is intended for a closed model in an open model.
An open model is one that lets independent computations find each other
and interact. A closed model assumes that all computations are initially
known. The abstraction can be a connector that accepts requests from one
computation to connect to another, using an open addressing scheme.

• Using a component that assumes a reliable model in a model with par-
tial failure. Partial failure occurs in a distributed system when part of the
system fails. For example, the abstraction can be a replicator that imple-
ments fault tolerance by doing active replication between several sites and
managing recovery when one fails.

These cases are orthogonal. As the examples show, it is often a good idea to
implement several cases in one abstraction. This book has abstractions that
illustrate all these cases and more. Usually, the abstraction puts a minor condition

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.8 The Haskell language 327

on the program written in model Small. For example, a replicator often assumes
that the function it is replicating is deterministic.

Impedance matching is extensively used in the Erlang project at Ericsson [9].
A typical Erlang abstraction takes a declarative program written in a functional
language and makes it stateful, concurrent, and fault tolerant.

4.8 The Haskell language

We give a brief introduction to Haskell, a popular functional programming lan-
guage supported by a number of interpreters and compilers [85, 148].19 It is
perhaps the most successful attempt to define a practical, completely declara-
tive language. Haskell is a non-strict, strongly-typed functional language that
supports currying and the monadic programming style. Strongly typed means
that the types of all expressions are computed at compile time and all function
applications must be type correct. The monadic style is a set of higher-order
programming techniques that can be used to replace explicit state in many cases.
The monadic style can do much more than just simulate state; we do not explain
it in this brief introduction but we refer to any of the many papers and tutorials
written about it [86, 209, 135].

Before giving the computation model, let us start with a simple example. We
can write a factorial function in Haskell as follows:

factorial :: Integer -> Integer

factorial 0 = 1

factorial n | n > 0 = n * factorial (n-1)

The first line is the type signature. It specifies that factorial is a function
that expects an argument of type Integer and returns a result of type Integer.
Haskell does type inferencing, i.e., the compiler is able to automatically infer the
type signatures, for almost all functions.20 This happens even when the type
signature is provided: the compiler then checks that the signature is accurate.
Type signatures provide useful documentation.

The next two lines are the code for factorial. In Haskell a function definition
can consist of many equations. To apply a function to an argument we do pattern
matching; we examine the equations one by one from top to bottom until we find
the first one whose pattern matches the argument. The first line of factorial

only matches an argument of 0; in this case the answer is immediate, namely 1.
If the argument is nonzero we try to match the second equation. This equation
has a Boolean guard which must be true for the match to succeed. The second
equation matches all arguments that are greater than 0; in that case we evaluate
n * factorial (n-1). What happens if we apply factorial to a negative

19The author of this section is Kevin Glynn.
20Except in a very few special cases which are beyond the scope of this section, such as

polymorphic recursion.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

328 Declarative Concurrency

argument? None of the equations match and the program will give a run-time
error.

4.8.1 Computation model

A Haskell program consists of a single expression. This expression may contain
many reducible subexpressions. In which order should they be evaluated? Haskell
is a non-strict language, so no expression should be evaluated unless its result is
definitely needed. Intuitively then, we should first reduce the leftmost expression
until it is a function, substitute arguments in the function body (without evalu-
ating them!) and then reduce the resulting expression. This evaluation order is
called normal order. For example, consider the following expression:

(if n >= 0 then factorial else error) (factorial (factorial n))

This uses n to choose which function, factorial or error, to apply to the ar-
gument (factorial (factorial n)). It is pointless evaluating the argument
until we have evaluated the if then else statement. Once this is evaluated we
can substitute factorial (factorial n) in the body of factorial or error

as appropriate and continue evaluation.
Let us explain in a more precise way how expressions reduce in Haskell. Imag-

ine the expression as a tree.21 Haskell first evaluates the leftmost subexpression
until it evaluates to a data constructor or function:

• If it evaluates to a data constructor then evaluation is finished. Any re-
maining subexpressions remain unevaluated.

• If it evaluates to a function and it is not applied to any arguments then
evaluation is finished.

• Otherwise, it evaluates to a function and is applied to arguments. Apply
the function to the first argument (without evaluating it) by substituting it
in the body of the function and re-evaluate.

Built-in functions such as addition and pattern matching cause their arguments to
be evaluated before they can evaluate. For declarative programs this evaluation
order has the nice property that it always terminates if any evaluation order
could.

4.8.2 Lazy evaluation

Since arguments to functions are not automatically evaluated before function
calls, we say that function calls in Haskell are non-strict. Although not mandated
by the Haskell language, most Haskell implementations are in fact lazy, that is,

21For efficiency reasons, most Haskell implementations represent expressions as graphs, i.e.,
shared expressions are only evaluated once.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.8 The Haskell language 329

they ensure that expressions are evaluated at most once. The differences between
lazy and non-strict evaluation are explained in Section 4.9.2.

Optimising Haskell compilers perform an analysis called strictness analysis to
determine when the laziness is not necessary for termination or resource control.
Functions that do not need laziness are compiled as eager (“strict”) functions,
which is much more efficient.

As an example of laziness we reconsider the calculation of a square root by
Newton’s method given in Section 3.2. The idea is that we first create an “infinite”
list containing better and better approximations to the square root. We then
traverse the list until we find the first approximation which is accurate enough
and return it. Because of laziness we will only create as much of the list of
approximations as we need.

sqrt x = head (dropWhile (not . goodEnough) sqrtGuesses)

where

goodEnough guess = (abs (x - guess*guess))/x < 0.00001

improve guess = (guess + x/guess)/2.0

sqrtGuesses = 1:(map improve sqrtGuesses)

The definitions following the where keyword are local definitions, i.e., they are
only visible within sqrt. goodEnough returns true if the current guess is close
enough. improve takes a guess and returns a better guess. sqrtGuesses produces
the infinite list of approximations. The colon : is the list constructor, equivalent
to | in Oz. The first approximation is 1. The following approximations are
calculated by applying the improve function to the list of approximations. map is
a function that applies a function to all elements of a list, similar to Map in Oz.22

So the second element of sqrtGuesses will be improve 1, the third element will
be improve (improve 1). To calculate the nth element of the list we evaluate
improve on the (n− 1)th element.

The expression dropWhile (not . goodEnough) sqrtGuesses drops the
approximations from the front of the list that are not close enough. (not .

goodEnough) is a function composition. It applies goodEnough to the approx-
imation and then applies the boolean function not to the result. So (not .

goodEnough) is a function that returns true if goodEnough returns false.
Finally, head returns the first element of the resulting list, which is the first

approximation that was close enough. Notice how we have separated the calcu-
lation of the approximations from the calculation that chooses the appropriate
answer.

4.8.3 Currying

From the reduction rules we see that a function that expects multiple arguments is
actually applied to its arguments one at a time. In fact, applying an n-argument

22Note that the function and list arguments appear in a different order in the Haskell and Oz
versions.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

330 Declarative Concurrency

function to a single argument evaluates to an (n−1) argument function specialized
to the value of the first argument. This process is called currying (see also
Section 3.6.6). We can write a function which doubles all the elements in a list
by calling map with just one argument:

doubleList = map (\x -> 2*x)

The notation \x -> 2*x is Haskell’s notation for an anonymous function (a λ
expression). In Oz the same expression would be written fun {$ X} 2*X end .
Let us see how doubleList evaluates:

doubleList [1,2,3,4]

=> map (\x -> 2*x) [1,2,3,4]

=> [2,4,6,8]

Note that list elements are separated by commas in Haskell.

4.8.4 Polymorphic types

All Haskell expressions have a statically-determined type. However, we are not
limited to Haskell’s predefined types. A program can introduce new types. For
example, we can introduce a new type BinTree for binary trees:

data BinTree a = Empty | Node a (BinTree a) (BinTree a)

A BinTree is either Empty or a Node consisting of an element and two sub-
trees. Empty and Node are data constructors: they build data structures of type
BinTree. In the definition a is a type variable and stands for an arbitrary type,
the type of elements contained in the tree. BinTree Integer is then the type of
binary trees of integers. Notice how in a Node the element and the elements in
subtrees are restricted to have the same type. We can write a size function that
returns the number of elements in a binary tree as follows:

size :: BinTree a -> Integer

size Empty = 0

size (Node val lt rt) = 1 + (size lt) + (size rt)

The first line is the type signature. It can be read as “For all types a, size takes
an argument of type BinTree a and returns an Integer”. Since size works on
trees containing any type of element it is called a polymorphic function. The code
for the function consists of two lines. The first line matches trees that are empty,
their size is 0. The second line matches trees that are non-empty, their size is 1
plus the size of the left subtree plus the size of the right subtree.

Let us write a lookup function for an ordered binary tree. The tree con-
tains tuples consisting of an integer key and a string value. It has type BinTree

(Integer,String). The lookup function returns a value with type Maybe String.
This value will be Nothing if the key does not exist in the tree and Just val if
(k,val) is in the tree:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.8 The Haskell language 331

lookup :: Integer -> BinTree (Integer,String) -> Maybe String

lookup k Empty = Nothing

lookup k (Node (nk,nv) lt rt) | k == nk = Just nv

lookup k (Node (nk,nv) lt rt) | k < nk = lookup k lt

lookup k (Node (nk,nv) lt rt) | k > nk = lookup k rt

At first sight, the type signature of lookup may look strange. Why is there a
-> between the Integer and tree arguments? This is due to currying. When we
apply lookup to an integer key we get back a new function which when applied
to a binary tree always looks up the same key.

4.8.5 Type classes

A disadvantage of the above definition of lookup is that the given type is very
restrictive. We would like to make it polymorphic as we did with size. Then
the same code could be used to search trees containing tuples of almost any type.
However, we must restrict the first element of the tuple to be a type that supports
the comparison operations ==, <, and > (e.g., there is not a computable ordering
for functions, so we do not want to allow functions as keys).

To support this Haskell has type classes. A type class gives a name to a group
of functions. If a type supports those functions we say the type is a member of
that type class. In Haskell there is a built in type class called Ord which supports
==, <, and >. The following type signature specifies that the type of the tree’s
keys must be in type class Ord:

lookup :: (Ord a) => a -> BinTree (a,b) -> Maybe b

and indeed this is the type Haskell will infer for lookup. Type classes allow
function names to be overloaded. The < operator for Integers is not the same
as the < operator for Strings. Since a Haskell compiler knows the types of all
expressions, it can substitute the appropriate type specific operation at each use.
Type classes are supported by functional languages such as Clean and Mercury.
(Mercury is a logic language with functional programming support.) Other lan-
guages, including Standard ML and Oz, can achieve a similar overloading effect
by using functors.

Programmers can add their own types to type classes. For example, we could
add the BinTree type to Ord by providing appropriate definitions for the com-
parison operators. If we created a type for complex numbers we could make
it a member of the numeric type class Num by providing appropriate numerical
operators. The most general type signature for factorial is

factorial :: (Num a, Ord a) => a -> a

So factorial can be applied to an argument of any type supporting numerical
and comparison operations, returning a value of the same type.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

332 Declarative Concurrency

〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| thread 〈s〉 end Thread creation
| {ByNeed 〈x〉 〈y〉} Trigger creation
| try 〈s〉1 catch 〈x〉 then 〈s〉2 end Exception context
| raise 〈x〉 end Raise exception
| {FailedValue 〈x〉 〈y〉} Failed value

Table 4.3: The declarative concurrent kernel language with exceptions

4.9 Advanced topics

4.9.1 The declarative concurrent model with exceptions

In Section 2.6 we added exceptions to sequential declarative programming. Let
us now see what happens when we add exceptions to concurrent declarative pro-
gramming. We first explain how exceptions interact with concurrency. Then we
explain how exceptions interact with by-need computation.

Exceptions and concurrency

So far, we have ignored exceptions in concurrent declarative programming. There
is a very simple reason for this: if a component raises an exception in the declar-
ative concurrent model then the model is no longer declarative! Let us add
exceptions to the declarative concurrent model and see what happens. For the
data-driven model, the resulting kernel language is given in Table 4.3. This table
contains the thread and ByNeed instructions, the try and raise statements,
and also one new operation, FailedValue , which handles the interaction between
exceptions and by-need computation. We first explain the interaction between
concurrency and exceptions; we leave FailedValue to the next section.

Let us investigate how exceptions can make the model nondeclarative. There
are two basic ways. First, to be declarative, a component has to be deterministic.
If the statements X=1 and X=2 are executed concurrently, then execution is no
longer deterministic: one of them will succeed and the other will raise an excep-
tion. In the store, X will be bound either to 1 or to 2; both cases are possible.
This is a clear case of observable nondeterminism. The exception is a witness to

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.9 Advanced topics 333

this; it is raised on unification failure, which means that there is potentially an
observable nondeterminism. The exception is not a guarantee of this; for example
executing X=1 and X=2 in order in the same thread will raise an exception, yet
X is always bound to 1. But if there are no exceptions, then execution is surely
deterministic and hence declarative.

A second way that an exception can be raised is when an operation cannot
complete normally. This can be due to internal reasons, e.g., the arguments are
outside the operation’s domain (such as dividing by zero), or external reasons,
e.g., the external environment has a problem (such as trying to open a file that
does not exist). In both cases, the exception indicates that an operation was
attempted outside of its specification. When this happens, all bets are off, so to
speak. From the viewpoint of semantics, there is no guarantee on what the oper-
ation has done; it could have done anything. Again, the operation has potentially
become nondeterministic.

To summarize, when an exception is raised, this is an indication either of non-
deterministic execution or of an execution outside specification. In either case,
the component is no longer declarative. We say that the declarative concurrent
model is declarative modulo exceptions. It turns out that the declarative con-
current model with exceptions is similar to the shared-state concurrent model of
Chapter 8. This is explained in Section 8.1.

So what do we do when an exception occurs? Are we completely powerless to
write a declarative program? Not at all. In some cases, the component can “fix
things” so that it is still declarative when viewed from the outside. The basic
problem is to make the component deterministic. All sources of nondeterminism
have to be hidden from the outside. For example, if a component executes X=1

and X=2 concurrently, then the minimum it has to do is (1) catch the exception
by putting a try around each binding, and (2) encapsulate X so its value is not
observable from the outside. See the failure confinement example in Section 4.1.4.

Exceptions and by-need computation

In Section 2.6, we added exceptions to the declarative model as a way to handle
abnormal conditions without encumbering the code with error checks. If a binding
fails, it raises a failure exception, which can be caught and handled by another
part of the application.

Let us see how to extend this idea to by-need computation. What happens
if the execution of a by-need trigger cannot complete normally? In that case it
does not calculate a value. For example:

X={ByNeed fun {$} A=foo(1) B=foo(2) in A=B A end }

What should happen if a thread needs X? Triggering the calculation causes a
failure when attempting the binding A=B. It is clear that X cannot be bound to
a value, since the by-need computation is not able to complete. On the other
hand, we cannot simply leave X unbound since the thread that needs X expects a
value. The right solution is for that thread to raise an exception. To ensure this,

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

334 Declarative Concurrency

we can bind X to a special value called a failed value. Any thread that needs a
failed value will raise an exception.

We extend the kernel language with the operation FailedValue , which cre-
ates a failed value:

X={FailedValue cannotCalculate}

Its definition is given in the supplements file on the book’s Web site. It creates
a failed value that encapsulates the exception cannotCalculate . Any thread
that attempts to use X will raise the exception cannotCalculate . Any partial
value can be encapsulated inside the failed value.

With FailedValue we can define a “robust” version of ByNeed that auto-
matically creates a failed value when a by-need computation raises an exception:

proc {ByNeed2 P X}
{ByNeed

proc {$ X}
try Y in {P Y} X=Y
catch E then X={FailedValue E} end

end X}
end

ByNeed2 is called in the same way as ByNeed. If there is any chance that the
by-need computation will raise an exception, then ByNeed2 will encapsulate the
exception in a failed value.

Table 4.3 gives the kernel language for the complete declarative concurrent
model including both by-need computation and exceptions. The kernel language
contains the operations ByNeed and FailedValue as well as the try and raise

statements. The operation {FailedValue 〈x〉 〈y〉} encapsulates the exception
〈x〉 in the failed value 〈y〉. Whenever a thread needs 〈y〉, the statement raise

〈x〉 end is executed in the thread.
One important use of failed values is in the implementation of dynamic linking.

Recall that by-need computation is used to load and link modules on need. If
the module could not be found, then the module reference is bound to a failed
value. Then, whenever a thread tries to use the nonexistent module, an exception
is raised.

4.9.2 More on lazy execution

There is a rich literature on lazy execution. In Section 4.5 we have just touched
the tip of the iceberg. Let us now continue the discussion of lazy execution. We
bring up two topics:

• Language design issues. When designing a new language, what is the
role of laziness? We briefly summarize the issues involved.

• Reduction order and parallelism. Modern functional programming
languages, as exemplified by Haskell, often use a variant of laziness called

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.9 Advanced topics 335

non-strict evaluation. We give a brief overview of this concept and why it
is useful.

Language design issues

Should a declarative language be lazy or eager or both? This is part of a larger
question: should a declarative language be a subset of an extended, nondeclarative
language? Limiting a language to one computation model allows to optimize its
syntax and semantics for that model. For programs that “fit” the model, this can
give amazingly concise and readable code. Haskell and Prolog are particularly
striking examples of this approach to language design [17, 182]. Haskell uses
lazy evaluation throughout and Prolog uses Horn clause resolution throughout.
See Section 4.8 and Section 9.7, respectively, for more information on these two
languages. FP, an early and influential functional language, carried this to an
extreme with a special character set, which paradoxically reduces readability [12].
However, as we shall see in Section 4.7, many programs require more than one
computation model. This is true also for lazy versus eager execution. Let us see
why:

• For programming in the small, e.g., designing algorithms, eagerness is im-
portant when execution complexity is an issue. Eagerness makes it easy to
design and reason about algorithms with desired worst-case complexities.
Laziness makes this much harder; even experts get confused. On the oth-
er hand, laziness is important when designing algorithms with persistence,
i.e., that can have multiple coexisting versions. Section 4.5.8 explains why
this is so and gives an example. We find that a good approach is to use
eagerness by default and to put in laziness explicitly, exactly where it is
needed. Okasaki does this with a version of the eager functional language
Standard ML extended with explicit laziness [138].

• For programming in the large, eagerness and laziness both have important
roles when interfacing components. For example, consider a pipeline com-
munication between a producer and consumer component. There are two
basic ways to control this execution: either the producer decides when to
calculate new elements (“push” style) or the consumer asks for elements as
it needs them (“pull” style). A push style implies an eager execution and a
pull style implies a lazy execution. Both styles can be useful. For example,
a bounded buffer enforces a push style when it is not full and a pull style
when it is full.

We conclude that a declarative language intended for general-purpose program-
ming should support both eager and lazy execution, with eager being the default
and lazy available through a declaration. If one is left out, it can always be
encoded, but this makes programs unnecessarily complex.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

336 Declarative Concurrency

Reduction order and parallelism

We saw that lazy evaluation will evaluate a function’s arguments only when they
are needed. Technically speaking, this is called normal order reduction. When
executing a declarative program, normal order reduction will always choose to
reduce first the leftmost expression. After doing one reduction step, then again
the leftmost expression is chosen. Let us look at an example to see how this
works. Consider the function F1 defined as follows:

fun {F1 A B}
if B then A else 0 end

end

Let us evaluate the expression {F1 {F2 X} {F3 Y}} . The first reduction step
applies F1 to its arguments. This substitutes the arguments into the body of F1.
This gives if {F3 Y} then {F2 X} else 0 end . The second step starts the
evaluation of F3. If this returns false , then F2 is not evaluated at all. We can
see intuitively that normal order reduction only evaluates expressions when they
are needed.

There are many possible reduction orders. This is because every execution
step gives a choice which function to reduce next. With declarative concurrency,
many of these orders can appear during execution. This makes no difference in
the result of the calculation: we say that there is no observable nondeterminism.

Besides normal order reduction, there is another interesting order called ap-
plicative order reduction. It always evaluates a function’s arguments before eval-
uating the function. This is the same as eager evaluation. In the expression {F1

{F2 X} {F3 Y}} , this evaluates both {F2 X} and {F3 Y} before evaluating F1.
With applicative order reduction, if either {F2 X} or {F3 Y} goes into an infinite
loop, then the whole computation will go into an infinite loop. This is true even
though the results of {F2 X} or {F3 Y} might not be needed by the rest of the
computation. We say that applicative order reduction is strict.

For all declarative programs, we can prove that all reduction orders that
terminate give the same result. This result is a consequence of the Church-
Rosser Theorem, which shows that reduction in the λ calculus is confluent, i.e.,
reductions that start from the same expression and follow different paths can
always be brought back together again. We can say this another way: changing
the reduction order only affects whether or not the program terminates but does
not change its result. We can also prove that normal order reduction gives the
smallest number of reduction steps when compared to any other reduction order.

Non-strict evaluation A functional programming language whose computa-
tion model terminates when normal order reduction terminates is called a non-
strict language. We mention non-strict evaluation because it is used in Haskell, a
popular functional language. The difference between non-strict and lazy evalua-
tion is subtle. A lazy language does the absolute minimum number of reduction
steps. A non-strict language might do more steps, but it is still guaranteed to

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.9 Advanced topics 337

Asynchronous Synchronous
Send bind a variable wait until variable needed

Receive use variable immediately wait until variable bound

Table 4.4: Dataflow variable as communication channel

terminate in those cases when the lazy language terminates. To better see the
difference between lazy and non-strict, consider the following example:

local X={F 4} in X+X end

In a non-strict language {F 4} may be computed twice. In a lazy language {F

4} will be computed exactly once when X is first needed and the result reused for
each subsequent occurrence of X. A lazy language is always non-strict, but not
the other way around.

The difference between non-strict and lazy evaluation becomes important in a
parallel processor. For example, during the execution of {F1 {F2 X} {F3 Y}}

we might start executing {F2 X} on an available processor, even before we know
whether it is really needed or not. This is called speculative execution. If later on
we find out that {F2 X} is needed, then we have a head start in its execution. If
{F2 X} is not needed, then we abort it as soon as we know this. This might waste
some work, but since it is on another processor it will not cause a slowdown. A
non-strict language can be implemented with speculative execution.

Non-strictness is problematic when we want to extend a language with explicit
state (as we will do in Chapter 6). A non-strict language is hard to extend with
explicit state because non-strictness introduces a fundamental unpredictability
in a language’s execution. We can never be sure how many times a function is
evaluated. In a declarative model this is not serious since it does not change
computations’ results. It becomes serious when we add explicit state. Functions
with explicit state can have unpredictable results. Lazy evaluation has the same
problem but to a lesser degree: evaluation order is data-dependent but at least
we know that a function is evaluated at most once. The solution used in the
declarative concurrent model is to make eager evaluation the default and lazy
evaluation require an explicit declaration. The solution used in Haskell is more
complicated: to avoid explicit state and instead use a kind of accumulator called
a monad. The monadic approach uses higher-order programming to make the
state threading implicit. The extra arguments are part of function inputs and
outputs. They are threaded by defining a new function composition operator.

4.9.3 Dataflow variables as communication channels

In the declarative concurrent model, threads communicate through shared dataflow
variables. There is a close correspondence between operations on dataflow vari-
ables and operations on a communication channel. We consider a dataflow vari-
able as a kind of communication channel and a thread as a kind of object. Then

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

338 Declarative Concurrency

binding a variable is a kind of send and waiting until a variable is bound is a kind
of receive. The channel has the property that only one message can be sent but
the message can be received many times. Let us investigate this analogy further.

On a communication channel, send and receive operations can be asynchronous
or synchronous. This gives four possibilities in all. Can we express these possi-
bilities with dataflow variables? Two of the possibilities are straightforward since
they correspond to a standard use of dataflow execution:

• Binding a variable corresponds to an asynchronous send. The binding can
be done independent of whether any threads have received the message.

• Waiting until a variable is bound corresponds to a synchronous receive. The
binding must exist for the thread to continue execution.

What about asynchronous receive and synchronous send? In fact, they are both
possible:

• Asynchronous receive means simply to use a variable before it is bound.
For example, the variable can be inserted in a data structure before it is
bound. Of course, any operation that needs the variable’s value will wait
until the value arrives.

• Synchronous send means to wait with binding until the variable’s value is
received. Let us consider that a value is received if it is needed by some
operation. Then the synchronous send can be implemented with by-need
triggers:

proc {SyncSend X M}
Sync in

{ByNeed proc {$ _} X=M Sync= unit end X}
{Wait Sync}

end

Doing {SyncSend X M} sends Mon channel X and waits until it has been
received.

Table 4.4 summarizes these four possibilities.
Communication channels sometimes have nonblocking send and receive oper-

ations. These are not the same as asynchronous operations. The defining charac-
teristic of a nonblocking operation is that it returns immediately with a boolean
result telling whether the operation was successful or not. With dataflow vari-
ables, a nonblocking send is trivial since a send is always successful. A nonblocking
receive is more interesting. It consists in checking whether the variable is bound
or not, and returning true or false accordingly. This can be implemented with
the IsDet function. {IsDet X} returns immediately with true if X is bound
and with false otherwise. To be precise, IsDet returns true if X is determined,
i.e., bound to a number, record, or procedure. Needless to say, IsDet is not a
declarative operation.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.9 Advanced topics 339

4.9.4 More on synchronization

We have seen that threads can communicate through shared dataflow variables.
When a thread needs the result of a calculation done by another thread then it
waits until this result is available. We say that it synchronizes on the availability
of the result. Synchronization is one of the fundamental concepts in concurrent
programming. Let us now investigate this concept more closely.

We first define precisely the basic concept, called a synchronization point.
Consider threads T1 and T2, each doing a sequence of computation steps. T1
does α0 → α1 → α2 → ... and T2 does β0 → β1 → β2 → The threads
actually execute together in one global computation. This means that there is
one global sequence of computation steps that contains the steps of each thread,
interleaved: α0 → β0 → β1 → α1 → α2 → There are many ways that the
two computations can be interleaved. But not all interleavings can occur in real
computations:

• Because of fairness, it is not possible to have an infinite sequence of α steps
without some β steps. Fairness is a global property that is enforced by the
system.

• If the threads depend on each other’s results in some way, then there are ad-
ditional constraints called synchronization points. A synchronization point
links two computation steps βi and αj . We say that βi synchronizes on
αj if in every interleaving that can occur in a real computation, βi occurs
after αj . Synchronization is a local property that is enforced by operations
happening in the threads.

How does the program specify when to synchronize? There are two broad ap-
proaches:

• Implicit synchronization. In this approach, the synchronization opera-
tions are not visible in the program text; they are part of the operational
semantics of the language. For example, using a dataflow variable will syn-
chronize on the variable being bound to a value.

• Explicit synchronization. In this approach, the synchronization oper-
ations are visible in the program text; they consist of explicit operations
put there by the programmer. For example, Section 4.3.3 shows a demand-
driven producer/consumer that uses a programmed trigger. Later on in the
book we will see other ways to do explicit synchronization, for example by
using locks or monitors (see Chapter 8).

There are two directions of synchronization:

• Supply-driven synchronization (eager execution). Attempting to ex-
ecute an operation causes the operation to wait until its arguments are
available. In other words, the operation synchronizes on the availability of

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

340 Declarative Concurrency

Supply-driven Demand-driven
Implicit dataflow execution lazy execution
Explicit locks, monitors, etc. programmed trigger

Table 4.5: Classifying synchronization

its arguments. This waiting has no effect on whether or not the arguments
will be calculated; if some other thread does not calculate them then the
operation will wait indefinitely.

• Demand-driven synchronization (lazy execution). Attempting to
execute an operation causes the calculation of its arguments. In other words,
the calculation of the arguments synchronizes on the operation needing
them.

Table 4.5 shows the four possibilities that result. All four are practical and exist
in real systems. Explicit synchronization is the primary mechanism in most lan-
guages that are based on a stateful model, e.g., Java, Smalltalk, and C++. This
mechanism is explained in Chapter 8. Implicit synchronization is the primary
mechanism in most languages that are based on a declarative model, e.g., func-
tional languages such as Haskell use lazy evaluation and logic languages such as
Prolog and concurrent logic languages use dataflow execution. This mechanism
is presented in this chapter.

All four possibilities can be used efficiently in the computation models of
this book. This lets us compare their expressiveness and ease of use. We find
that concurrent programming is simpler with implicit synchronization than with
explicit synchronization. In particular, we find that programming with dataflow
execution makes concurrent programs simpler. Even in a stateful model, like the
one in Chapter 8, dataflow execution is advantageous. After comparing languages
with explicit and implicit synchronization, Bal et al come to the same conclusion:
that dataflow variables are “spectacularly expressive” in concurrent programming
as compared to explicit synchronization, even without explicit state [14]. This
expressiveness is one of the reasons why we emphasize implicit synchronization in
the book. Let us now examine more closely the usefulness of dataflow execution.

4.9.5 Usefulness of dataflow variables

Section 4.2.3 shows how dataflow execution is used for synchronization in the
declarative concurrent model. There are many other uses for dataflow execution.
This section summarizes these uses. We give pointers to examples throughout
the book to illustrate them. Dataflow execution is useful because:

• It is a powerful primitive for concurrent programming (see this chapter and
Chapter 8). It can be used for synchronizing and communicating between

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.9 Advanced topics 341

concurrent computations. Many concurrent programming techniques be-
come simplified and new techniques become possible when using dataflow
variables.

• It removes order dependencies between parts of a program (see this chapter
and Chapter 8). To be precise, it replaces static dependencies (decided by
the programmer) by dynamic dependencies (decided by the data). This is
the basic reason why dataflow computation is useful for parallel program-
ming. The output of one part can be passed directly as input to the next
part, independent of the order in which the two parts are executed. When
the parts execute, the second one will block only if necessary, i.e., only if it
needs the result of the first and it is not yet available.

• It is a powerful primitive for distributed programming (see Chapter 11). It
improves latency tolerance and third-party independence. A dataflow vari-
able can be passed among sites arbitrarily. At all times, it “remembers its
origins,” i.e., when the value becomes known then the variable will receive
it. The communication needed to bind the variable is part of the variable
and not part of the program manipulating the variable.

• It makes it possible to do declarative calculations with partial information.
This was exploited in Chapter 3 with difference lists. One way to look at
partial values is as complete values that are only partially known. This is
a powerful idea that is further exploited in constraint programming (see
Chapter 12).

• It allows the declarative model to support logic programming (see Sec-
tion 9.3). That is, it is possible to give a logical semantics to many declar-
ative programs. This allows reasoning about these programs at a very high
level of abstraction. From a historical viewpoint, dataflow variables were
originally discovered in the context of concurrent logic programming, where
they are called logic variables.

An insightful way to understand dataflow variables is to see them as a middle
ground between having no state and having state:

• A dataflow variable is stateful, because it can change state (i.e., be bound to
a value), but it can be bound to just one value in its lifetime. The stateful
aspect can be used to get some of the advantages of programming with
state (as explained in Chapter 6) while staying within a declarative model.
For example, difference lists can be appended in constant time, which is not
possible for lists in a pure functional model.

• A dataflow variable is stateless, because binding is monotonic. By mono-
tonic we mean that more information can be added to the binding, but no
information can be changed or removed. Assume the variable is bound to a

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

342 Declarative Concurrency

partial value. Later on, more and more of the partial value can be bound,
which amounts to binding the unbound variables inside the partial value.
But these bindings cannot be changed or undone.

The stateless aspect can be used to get some of the advantages of declarative
programming within a non-declarative model. For example, it is possible
to add concurrency to the declarative model, giving the declarative concur-
rent model of this chapter, precisely because threads communicate through
shared dataflow variables.

Futures and I-structures

The dataflow variables used in this book are but one technique to implement
dataflow execution. Another, quite popular technique is based on a slightly dif-
ferent concept, the single-assignment variable. This is a mutable variable that
can be assigned only once. This differs from a dataflow variable in that the latter
can be assigned (perhaps multiple times) to many partial values, as long as the
partial values are compatible with each other.

Two of the best-known instances of the single-assignment variable are futures
and I-structures. The purpose of futures and I-structures is to increase the po-
tential parallelism of a program by removing inessential dependencies between
calculations. They allow concurrency between a computation that calculates a
value and one that uses the value. This concurrency can be exploited on a paral-
lel machine. We define futures and I-structures and compare them with dataflow
variables.

Futures were first introduced in Multilisp, a language intended for writing
parallel programs [68]. Multilisp introduces the function call (future E) (in
Lisp syntax), where E is any expression. This does two things: it immediately
returns a placeholder for the result of E and it initiates a concurrent evaluation
of E. When the value of E is needed, i.e., a computation tries to access the
placeholder, then the computation blocks until the value is available. We model
this as follows in the declarative concurrent model (where E is a zero-argument
function):

fun {Future E}
X in

thread X={E} end
!!X

end

A future can only be bound by the concurrent computation that is created along
with it. This is enforced by returning a read-only variable. Multilisp also has a
delay construct that does not initiate any evaluation but uses by-need execution.
It causes evaluation of its argument only when the result is needed.

An I-structure (for incomplete structure) is an array of single-assignment vari-
ables. Individual elements can be accessed before all the elements are computed.
I-structures were introduced as a language construct for writing parallel programs

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.10 Historical notes 343

on dataflow machines, for example in the dataflow language Id [11, 202, 88, 131].
I-structures are also used in pH (“parallel Haskell”), a recent language design
that extends Haskell for implicit parallelism [132, 133]. An I-structure permits
concurrency between a computation that calculates the array elements and a
computation that uses their values. When the value of an element is needed,
then the computation blocks until it is available. Like a future and a read-only
variable, an element of an I-structure can only be bound by the computation that
calculates it.

There is a fundamental difference between dataflow variables on one side and
futures and I-structures on the other side. The latter can be bound only once,
whereas dataflow variables can be bound more than once, as long as the bindings
are consistent with each other. Two partial values are consistent if they are
unifiable. A dataflow variable can be bound many times to different partial
values, as long as the partial values are unifiable. Section 4.3.1 gives an example
when doing stream communication with multiple readers. Multiple readers are
each allowed to bind the list’s tail, since they bind it in a consistent way.

4.10 Historical notes

Declarative concurrency has a long and respectable history. We give some of
the highlights. In 1974, Gilles Kahn defined a simple Algol-like language with
threads that communicate by channels that behave like FIFO queues with block-
ing wait and nonblocking send [97]. He called this model determinate parallel
programming.23 In Kahn’s model, a thread can wait on only one channel at a
time, i.e., each thread always knows from what channel the next input will come.
Furthermore, only one thread can send on each channel. This last restriction is
actually a bit too strong. Kahn’s model could be extended to be like the declar-
ative concurrent model. More than one thread could send on a channel, as long
as the sends are ordered deterministically. For example, two threads could take
turns sending on the same channel.

In 1977, Kahn and David MacQueen extended Kahn’s original model in sig-
nificant ways [98]. The extended model is demand-driven, supports dynamic
reconfiguration of the communication structure, and allows multiple readers on
the same channel.

In 1990, Vijay Saraswat et al generalized Kahn’s original model to concurrent
constraints [164]. This adds partial values to the model and reifies communica-
tion channels as streams. Saraswat et al define first a determinate concurrent
constraint language, which is essentially the same as the data-driven model of
this chapter. It generalizes Kahn’s original model to make possible programming
techniques such as dynamic reconfiguration, channels with multiple readers, in-
complete messages, difference structures, and tail-recursive append.

23By “parallelism” he means concurrency. In those days the term parallelism was used to
cover both concepts.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

344 Declarative Concurrency

Saraswat et al define the concept of resting point, which is closely related to
partial termination as defined in Section 13.2. A resting point of a program is a
store σ that satisfies the following property. When the program executes with this
store, no information is ever added (the store is unchanged). The store existing
when a program is partially terminated is a resting point.

The declarative concurrent models of this book have strong relationships to the
papers cited above. The basic concept of determinate concurrency was defined by
Kahn. The existence of the data-driven model is implicit in the work of Saraswat
et al. The demand-driven model is related to the model of Kahn and MacQueen.
The contribution of this book is to place these models in a uniform framework
that subsumes all of them. Section 4.5 defines a demand-driven model by adding
by-need synchronization to the data-driven model. By-need synchronization is
based on the concept of needing a variable. Because need is defined as a monotonic
property, this gives a quite general declarative model that has both concurrency
and laziness.

4.11 Exercises

1. Thread semantics. Consider the following variation of the statement used
in Section 4.1.3 to illustrate thread semantics:

local B in
thread B=true end
thread B=false end
if B then {Browse yes} end

end

For this exercise, do the following:

(a) Enumerate all possible executions of this statement.

(b) Some of these executions cause the program to terminate abnormally.
Make a small change to the program to avoid these abnormal termi-
nations.

2. Threads and garbage collection. This exercise examines how garbage
collection behaves with threads and dataflow variables. Consider the fol-
lowing program:

proc {B _}
{Wait _}

end

proc {A}
Collectible={NewDictionary}

in
{B Collectible}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.11 Exercises 345

end

After the call {A} is done, will Collectible become garbage? That is,
will the memory occupied by Collectible be recovered? Give an answer
by thinking about the semantics. Verify that the Mozart system behaves
in this way.

3. Concurrent Fibonacci. Consider the following sequential definition of
the Fibonacci function:

fun {Fib X}
if X=<2 then 1
else

{Fib X-1}+{Fib X-2}
end

end

and compare it with the concurrent definition given in Section 4.2.3. Run
both on the Mozart system and compare their performance. How much
faster is the sequential definition? How many threads are created by the
concurrent call {Fib N} as a function of N?

4. Order-determining concurrency. Explain what happens when execut-
ing the following:

declare A B C D in
thread D=C+1 end
thread C=B+1 end
thread A=1 end
thread B=A+1 end
{Browse D}

In what order are the threads created? In what order are the additions
done? What is the final result? Compare with the following:

declare A B C D in
A=1
B=A+1
C=B+1
D=C+1
{Browse D}

Here there is only one thread. In what order are the additions done? What
is the final result? What do you conclude?

5. The Wait operation. Explain why the {Wait X} operation could be
defined as:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

346 Declarative Concurrency

proc {Wait X}
if X==unit then skip else skip end

end

Use your understanding of the dataflow behavior of the if statement and
== operation.

6. Thread scheduling. Section 4.7.3 shows how to skip over already-calculated
elements of a stream. If we use this technique to sum the elements of the in-
teger stream in Section 4.3.1, the result is much smaller than 11249925000,
which is the sum of the integers in the stream. Why is it so much smaller?
Explain this result in terms of thread scheduling.

7. Programmed triggers using higher-order programming. Programmed
triggers can be implemented by using higher-order programming instead of
concurrency and dataflow variables. The producer passes a zero-argument
function F to the consumer. Whenever the consumer needs an element, it
calls the function. This returns a pair X#F2 where X is the next stream
element and F2 is a function that has the same behavior as F. Modify the
example of Section 4.3.3 to use this technique.

8. Dataflow behavior in a concurrent setting. Consider the function
{Filter In F} , which returns the elements of In for which the boolean
function F returns true . Here is a possible definition of Filter :

fun {Filter In F}
case In
of X|In2 then

if {F X} then X|{Filter In2 F}
else {Filter In2 F} end

else
nil

end
end

Executing the following:

{Show {Filter [5 1 2 4 0] fun {$ X} X>2 end }}

displays:

[5 4]

So Filter works as expected in the case of a sequential execution when all
the input values are available. Let us now explore the dataflow behavior of
Filter .

(a) What happens when we execute the following:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.11 Exercises 347

declare A
{Show {Filter [5 1 A 4 0] fun {$ X} X>2 end }}

One of the list elements is a variable A that is not yet bound to a value.
Remember that the case and if statements will suspend the thread
in which they execute, until they can decide which alternative path to
take.

(b) What happens when we execute the following:

declare Out A
thread Out={Filter [5 1 A 4 0] fun {$ X} X>2 end } end
{Show Out}

Remember that calling Show displays its argument as it exists at the
instant of the call. Several possible results can be displayed; which
and why? Is the Filter function deterministic? Why or why not?

(c) What happens when we execute the following:

declare Out A
thread Out={Filter [5 1 A 4 0] fun {$ X} X>2 end } end
{Delay 1000}
{Show Out}

Remember that the call {Delay N} suspends its thread for at least N

milliseconds. During this time, other ready threads can be executed.

(d) What happens when we execute the following:

declare Out A
thread Out={Filter [5 1 A 4 0] fun {$ X} X>2 end } end
thread A=6 end
{Delay 1000}
{Show Out}

What is displayed and why?

9. Digital logic simulation. In this exercise we will design a circuit to add n-
bit numbers and simulate it using the technique of Section 4.3.5. Given two
n-bit binary numbers, (xn−1...x0)2 and (yn−1...y0)2. We will build a circuit
to add these numbers by using a chain of full adders, similar to doing long
addition by hand. The idea is to add each pair of bits separately, passing
the carry to the next pair. We start with the low-order bits x0 and y0.
Feed them to a full adder with the third input z = 0. This gives a sum
bit s0 and a carry c0. Now feed x1, y1, and c0 to a second full adder. This
gives a new sum s1 and carry c1. Continue this for all n bits. The final
sum is (sn−1...s0)2. For this exercise, program the addition circuit using full
adders. Verify that it works correctly by feeding it several additions.

10. Basics of laziness. Consider the following program fragment:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

