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fun lazy {Three} {Delay 1000} 3 end

Calculating {Three}+0 returns 3 after a 1000 millisecond delay. This is as
expected, since the addition needs the result of {Three} . Now calculate
{Three}+0 three times in succession. Each calculation waits 1000 millisec-
onds. How can this be, since Three is supposed to be lazy. Shouldn’t its
result be calculated only once?

11. Laziness and concurrency I. This exercise looks closer at the concurrent
behavior of lazy execution. Execute the following:

fun lazy {MakeX} {Browse x} {Delay 3000} 1 end
fun lazy {MakeY} {Browse y} {Delay 6000} 2 end
fun lazy {MakeZ} {Browse z} {Delay 9000} 3 end

X={MakeX}
Y={MakeY}
Z={MakeZ}

{Browse (X+Y)+Z}

This displays x and y immediately, z after 6 seconds, and the result 6 after
15 seconds. Explain this behavior. What happens if (X+Y)+Z is replaced by
X+(Y+Z) or by thread X+Y end + Z? Which form gives the final result
the quickest? How would you program the addition of n integers i1, ...,
in, given that integer ij only appears after tj milliseconds, so that the final
result appears the quickest?

12. Laziness and concurrency II. Let us compare the kind of incremental-
ity we get from laziness and from concurrency. Section 4.3.1 gives a pro-
ducer/consumer example using concurrency. Section 4.5.3 gives the same
producer/consumer example using laziness. In both cases, it is possible for
the output stream to appear incrementally. What is the difference? What
happens if you use both concurrency and laziness in the producer/consumer
example?

13. Laziness and monolithic functions. Consider the following two defini-
tions of lazy list reversal:

fun lazy {Reverse1 S}
fun {Rev S R}

case S of nil then R
[] X|S2 then {Rev S2 X|R} end

end
in {Rev S nil} end

fun lazy {Reverse2 S}
fun lazy {Rev S R}
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case S of nil then R
[] X|S2 then {Rev S2 X|R} end

end
in {Rev S nil} end

What is the difference in behavior between {Reverse1 [a b c]} and
{Reverse2 [a b c]} ? Do the two definitions calculate the same result?
Do they have the same lazy behavior? Explain your answer in each case.
Finally, compare the execution efficiency of the two definitions. Which
definition would you use in a lazy program?

14. Laziness and iterative computation. In the declarative model, one
advantage of dataflow variables is that the straightforward definition of
Append is iterative. For this exercise, consider the straightforward lazy
version of Append without dataflow variables, as defined in Section 4.5.7.
Is it iterative? Why or why not?

15. Performance of laziness. For this exercise, take some declarative pro-
grams you have written and make them lazy by declaring all routines as
lazy. Use lazy versions of all built-in operations, for example addition be-
comes Add, which is defined as fun lazy {Add X Y} X+Y end . Compare
the behavior of the original eager programs with the new lazy ones. What is
the difference in efficiency? Some functional languages, such as Haskell and
Miranda, implicitly consider all functions as lazy. To achieve reasonable
performance, these languages do strictness analysis, which tries to find as
many functions as possible that can safely be compiled as eager functions.

16. By-need execution. Define an operation that requests the calculation of
X but that does not wait.

17. Hamming problem. The Hamming problem of Section 4.5.6 is actually
a special case of the original problem, which asks for the first n integers of
the form pa1

1 pa2
2 ...pak

k with a1, a2, ..., ak ≥ 0 using the first k primes p1, ...,
pk. For this exercise, write a program that solves this problem for any n
when given k.

18. Concurrency and exceptions. Consider the following control abstraction
that implements try –finally :

proc {TryFinally S1 S2}
B Y in

try {S1} B= false catch X then B=true Y=X end
{S2}
if B then raise Y end end

end

Using the abstract machine semantics as a guide, determine the different
possible results of the following program:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



350 Declarative Concurrency

local U=1 V=2 in
{TryFinally

proc {$}
thread

{TryFinally proc {$} U=V end
proc {$} {Browse bing} end }

end
end
proc {$} {Browse bong} end }

end

How many different results are possible? How many different executions
are possible?

19. Limitations of declarative concurrency. Section 4.7 states that declar-
ative concurrency cannot model client/server applications, because the serv-
er cannot read commands from more than one client. Yet, the declarative
Merge function of Section 4.5.6 reads from three input streams to generate
one output stream. How can this be?

20. (advanced exercise) Worst-case bounds with laziness. Section 4.5.8
explains how to design a queue with worst-case time bound of O(log n). The
logarithm appears because the variable F can have logarithmically many
suspensions attached to it. Let us see how this happens. Consider an
empty queue to which we repeatedly add new elements. The tuple (|F|, |R|)
starts out as (0, 0). It then becomes (0, 1), which immediately initiates a
lazy computation that will eventually make it become (1, 0). (Note that
F remains unbound and has one suspension attached.) When two more
elements are added, the tuple becomes (1, 2), and a second lazy computation
is initiated that will eventually make it become (3, 0). Each time that R is
reversed and appended to F, one new suspension is created on F. The size
of R that triggers the lazy computation doubles with each iteration. The
doubling is what causes the logarithmic bound. For this exercise, let us
investigate how to write a queue with a constant worst-case time bound.
One approach that works is to use the idea of schedule, as defined in [138].

21. (advanced exercise) List comprehensions. Define a linguistic abstraction
for list comprehensions (both lazy and eager) and add it to the Mozart
system. Use the gump parser-generator tool documented in [104].

22. (research project) Controlling concurrency. The declarative concurrent
model gives three primitive operations that affect execution order without
changing the results of a computation: sequential composition (total order,
supply-driven), lazy execution (total order, demand-driven), and concur-
rency (partial order, determined by data dependencies). These operations
can be used to “tune” the order in which a program accepts input and
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gives results, for example to be more or less incremental. This is a good
example of separation of concerns. For this exercise, investigate this topic
further and answer the following questions. Are these three operations com-
plete? That is, can all possible partial execution orders be specified with
them? What is the relationship with reduction strategies in the λ calculus
(e.g., applicative order reduction, normal order reduction)? Are dataflow
or single-assignment variables essential?

23. (research project) Parallel implementation of functional languages.
Section 4.9.2 explains that non-strict evaluation allows to take advantage
of speculative execution when implementing a parallel functional language.
However, using non-strict evaluation makes it difficult to use explicit state.
For this exercise, study this trade-off. Can a parallel functional language
take advantage of both speculative execution and explicit state? Design,
implement, and evaluate a language to verify your ideas.
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Chapter 5

Message-Passing Concurrency

“Only then did Atreyu notice that the monster was not a single,
solid body, but was made up of innumerable small steel-blue insects
which buzzed like angry hornets. It was their compact swarm that
kept taking different shapes.”
– The Neverending Story, Michael Ende (1929–1995)

In the last chapter we saw how to program with stream objects, which is
both declarative and concurrent. But it has the limitation that it cannot handle
observable nondeterminism. For example, we wrote a digital logic simulator in
which each stream object knows exactly which object will send it the next mes-
sage. We cannot program a client/server where the server does not know which
client will send it the next message.

We can remove this limitation by extending the model with an asynchronous
communication channel. Then any client can send messages to the channel and
the server can read them from the channel. We use a simple kind of channel
called a port that has an associated stream. Sending a message to the port causes
the message to appear on the port’s stream.

The extended model is called the message-passing concurrent model. Since this
model is nondeterministic, it is no longer declarative. A client/server program
can give different results on different executions because the order of client sends
is not determined.

A useful programming style for this model is to associate a port to each stream
object. The object reads all its messages from the port, and sends messages to
other stream objects through their ports. This style keeps most of the advantages
of the declarative model. Each stream object is defined by a recursive procedure
that is declarative.

Another programming style is to use the model directly, programming with
ports, dataflow variables, threads, and procedures. This style can be useful for
building concurrency abstractions, but it is not recommended for large programs
because it is harder to reason about.
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Structure of the chapter

The chapter consists of the following parts:

• Section 5.1 defines the message-passing concurrent model. It defines the
port concept and the kernel language. It also defines port objects, which
combine ports with a thread.

• Section 5.2 introduces the concept of port objects, which we get by com-
bining ports with stream objects.

• Section 5.3 shows how to do simple kinds of message protocols with port
objects.

• Section 5.4 shows how to design programs with concurrent components. It
uses port objects to build a lift control system.

• Section 5.5 shows how to use the message-passing model directly, without
using the port object abstraction. This can be more complex than using
port objects, but it is sometimes useful.

• Section 5.6 gives an introduction to Erlang, a programming language based
on port objects. Erlang is designed for and used in telecommunications
applications, where fine-grained concurrency and robustness are important.

• Section 5.7 explains one advanced topic: the nondeterministic concurrent
model, which is intermediate in expressiveness between the declarative con-
current model and the message-passing model of this chapter.

5.1 The message-passing concurrent model

The message-passing concurrent model extends the declarative concurrent model
by adding ports. Table 5.1 shows the kernel language. Ports are a kind of com-
munication channel. Ports are no longer declarative since they allow observable
nondeterminism: many threads can send a message on a port and their order is
not determined. However, the part of the computation that does not use ports
can still be declarative. This means that with care we can still use many of the
reasoning techniques of the declarative concurrent model.

5.1.1 Ports

A port is an ADT that has two operations, namely creating a channel and sending
to it:

• {NewPort S P} : create a new port with entry point P and stream S.
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〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| thread 〈s〉 end Thread creation
| {NewPort 〈y〉 〈x〉} Port creation
| {Send 〈x〉 〈y〉} Port send

Table 5.1: The kernel language with message-passing concurrency

• {Send P X} : append X to the stream corresponding to the entry point P.
Successive sends from the same thread appear on the stream in the same
order in which they were executed. This property implies that a port is an
asynchronous FIFO communication channel.

For example:

declare S P in
{NewPort S P}
{Browse S}
{Send P a}
{Send P b}

This displays the stream a|b|_ . Doing more sends will extend the stream. Say
the current end of the stream is S. Doing the send {Send P a} will bind S to
a|S1 , and S1 becomes the new end of the stream. Internally, the port always
remembers the current end of the stream. The end of the stream is a read-only
variable. This means that a port is a secure ADT.

By asynchronous we mean that a thread that sends a message does not wait
for any reply. As soon as the message is in the communication channel, the object
can continue with other activities. This means that the communication channel
can contain many pending messages, which are waiting to be handled. By FIFO
we mean that messages sent from any one object arrive in the same order that
they are sent. This is important for coordination among the threads.

5.1.2 Semantics of ports

The semantics of ports is quite straightforward. To define it, we first extend the
execution state of the declarative model by adding a mutable store. Figure 5.1
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Immutable store Mutable store
(single−assignment)

{Send Q f} ... case Z of a|Z2 then ... Semantic stacks (threads)

(ports)

...

Z

V=B|X

B=2A=1

X p1:X
p2:Z

Q=p2P=p1

W=A|V

Figure 5.1: The message-passing concurrent model

shows the mutable store. Then we define the operations NewPort and Send in
terms of the mutable store.

Extension of execution state

Next to the single-assignment store σ (and the trigger store τ , if laziness is im-
portant) we add a new store µ called the mutable store. This store contains
ports, which are pairs of the form x : y, where x and y are variables of the single-
assignment store. The mutable store is initially empty. The semantics guarantees
that x is always bound to a name value that represents a port and that y is un-
bound. We use name values to identify ports because name values are unique
unforgeable constants. The execution state becomes a triple (MST, σ, µ) (or a
quadruple (MST, σ, µ, τ) if the trigger store is considered).

The NewPort operation

The semantic statement ({NewPort 〈x〉 〈y〉} , E) does the following:

• Create a fresh port name n.

• Bind E(〈y〉) and n in the store.

• If the binding is successful, then add the pair E(〈y〉) : E(〈x〉) to the mutable
store µ.

• If the binding fails, then raise an error condition.

The Send operation

The semantic statement ({Send 〈x〉 〈y〉} , E) does the following:
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• If the activation condition is true (E(〈x〉) is determined), then do the fol-
lowing actions:

– If E(〈x〉) is not bound to the name of a port, then raise an error
condition.

– If the mutable store contains E(〈x〉) : z then do the following actions:

∗ Create a new variable z′ in the store.

∗ Update the mutable store to be E(〈x〉) : z′.

∗ Create a new list pair E(〈y〉)| z′ and bind z with it in the store.

• If the activation condition is false, then suspend execution.

This semantics is slightly simplified with respect to the complete port semantics.
In a correct port, the end of the stream should always be a read-only view. This
requires a straightforward extension to the NewPort and Send semantics. We
leave this as an exercise for the reader.

Memory management

Two modifications to memory management are needed because of the mutable
store:

• Extending the definition of reachability: A variable y is reachable if the
mutable store contains x : y and x is reachable.

• Reclaiming ports: If a variable x becomes unreachable, and the mutable
store contains the pair x : y, then remove this pair.

5.2 Port objects

A port object is a combination of one or more ports and a stream object. This
extends stream objects in two ways. First, many-to-one communication is possi-
ble: many threads can reference a given port object and send to it independently.
This is not possible with a stream object because it has to know from where
its next message will come from. Second, port objects can be embedded inside
data structures (including messages). This is not possible with a stream object
because it is referenced by a stream that can be extended by just one thread.

The concept of port object has many popular variations. Sometimes the word
“agent” is used to cover a similar idea: an active entity with which one can
exchange messages. The Erlang system has the “process” concept, which is like a
port object except that it adds an attached mailbox that allows to filter incoming
messages by pattern matching. Another often-used term is “active object”. It is
similar to a port object except that it is defined in an object-oriented way, by a
class (as we shall see in Chapter 7). In this chapter we use only port objects.
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In the message-passing model, a program consists of a set of port objects
sending and receiving messages. Port objects can create new port objects. Port
objects can send messages containing references to other port objects. This means
that the set of port objects forms a graph that can evolve during execution.

Port objects can be used to model distributed systems, where a distributed
system is a set of computers that can communicate with each other through a
network. Each computer is modeled as one or more port objects. A distributed
algorithm is simply an algorithm between port objects.

A port object has the following structure:

declare P1 P2 ... Pn in
local S1 S2 ... Sn in

{NewPort S1 P1}
{NewPort S2 P2}
...
{NewPort Sn Pn}
thread {RP S1 S2 ... Sn} end

end

The thread contains a recursive procedure RP that reads the port streams and
performs some action for each message received. Sending a message to the port
object is just sending a message to one of the ports. Here is an example port
object with one port that displays all the messages it receives:

declare P in
local S in

{NewPort S P}
thread {ForAll S proc {$ M} {Browse M} end } end

end

With the for loop syntax, this can be written more concisely as:

declare P in
local S in

{NewPort S P}
thread for M in S do {Browse M} end end

end

Doing {Send P hi} will eventually display hi . We can compare this with the
stream objects of Chapter 4. The difference is that port objects allow many-to-
one communication, i.e., any thread that references the port can send a message
to the port object at any time. The object does not know from which thread the
next message will come. This is in contrast to stream objects, where the object
always knows from which thread the next message will come.

5.2.1 The NewPortObject abstraction

We can define an abstraction to make it easier to program with port objects. Let
us define an abstraction in the case that the port object has just one port. To
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ball
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Player 3
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Figure 5.2: Three port objects playing ball

define the port object, we only have to give the initial state Init and the state
transition function Fun. This function is of type 〈fun {$ Ts Tm}: Ts〉 where Ts

is the state type and Tm is the message type.

fun {NewPortObject Init Fun}
proc {MsgLoop S1 State}

case S1 of Msg|S2 then
{MsgLoop S2 {Fun Msg State}}

[] nil then skip end
end
Sin

in
thread {MsgLoop Sin Init} end
{NewPort Sin}

end

Some port objects are purely reactive, i.e., they have no internal state. The
abstraction becomes simpler for them:

fun {NewPortObject2 Proc}
Sin in

thread for Msg in Sin do {Proc Msg} end end
{NewPort Sin}

end

There is no state transition function, but simply a procedure that is invoked for
each message.

5.2.2 An example

There are three players standing in a circle, tossing a ball amongst themselves.
When a player catches the ball, he picks one of the other two randomly to throw
the ball to. We can model this situation with port objects. Consider three port
objects, where each object has a reference to the others. There is a ball that is sent
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between the objects. When a port object receives the ball, it immediately sends
it to another, picked at random. Figure 5.2 shows the three objects and what
messages each object can send and where. Such a diagram is called a component
diagram. To program this, we first define a component that creates a new player:

fun {Player Others}
{NewPortObject2

proc {$ Msg}
case Msg of ball then

Ran={OS.rand} mod {Width Others} + 1
in

{Send Others.Ran ball}
end

end }
end

Others is a tuple that contains the other players. Now we can set up the game:

P1={Player others(P2 P3)}
P2={Player others(P1 P3)}
P3={Player others(P1 P2)}

In this program, Player is a component and P1, P2, P3 are its instances. To
start the game, we toss a ball to one of the players:

{Send P1 ball}

This starts a furiously fast game of tossing the ball. To slow it down, we can add
a {Delay 1000} in each player.

5.2.3 Reasoning with port objects

Consider a program that consists of port objects which send each other messages.
Proving that the program is correct consists of two parts: proving that each port
object is correct (when considered by itself) and proving that the port objects
work together correctly. The first step is to show that each port object is correct.
Each port object defines an ADT. The ADT should have an invariant assertion,
i.e., an assertion that is true whenever an ADT operation has completed and
before the next operation has started. To show that the ADT is correct, it is
enough to show that the assertion is an invariant. We showed how to do this for
the declarative model in Chapter 3. Since the inside of a port object is declarative
(it is a recursive function reading a stream), we can use the techniques we showed
there.

Because the port object has just one thread, the ADT’s operations are exe-
cuted sequentially within it. This means we can use mathematical induction to
show that the assertion is an invariant. We have to prove two things:

• When the port object is first created, the assertion is satisfied.
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• If the assertion is satisfied before a message is handled, then the assertion
is satisfied after the message is handled.

The existence of the invariant shows that the port object itself is correct. The
next step is to show that the program using the port objects is correct. This
requires a whole different set of techniques.

A program in the message-passing model is a set of port objects that send
each other messages. To show that this is correct, we have to determine what the
possible sequences of messages are that each port object can receive. To determine
this, we start by classifying all the events in the system (there are three kinds:
message sends, message receives, and internal events of a port object). We can
then define causality between events (whether an event happens before another).
Considering the system of port objects as a state transition system, we can then
reason about the whole program. Explaining this in detail is beyond the scope
of this chapter. We refer interested readers to books on distributed algorithms,
such as Lynch [115] or Tel [189].

5.3 Simple message protocols

Port objects work together by exchanging messages in coordinated ways. It is
interesting to study what kinds of coordination are important. This leads us to
define a protocol as a sequence of messages between two or more parties that can
be understood at a higher level of abstraction than just its individual messages.
Let us take a closer look at message protocols and see how to realize them with
port objects.

Most well-known protocols are rather complicated ones such as the Internet
protocols (TCP/IP, HTTP, FTP, etc.) or LAN (Local Area Network) protocols
such as Ethernet, DHCP (Dynamic Host Connection Protocol), and so forth [107].
In this section we show some of simpler protocols and how to implement them
using port objects. All the examples use NewPortObject2 to create port objects.

Figure 5.3 shows the message diagrams of many of the simple protocols (we
leave the other diagrams up to the reader!). These diagrams show the messages
passed between a client (denoted C) and a server (denoted S). Time flows down-
wards. The figure is careful to distinguish idle threads (which are available to
service requests) from suspended threads (which are not available).

5.3.1 RMI (Remote Method Invocation)

Perhaps the most popular of the simple protocols is the RMI. It allows an object
to call another object in a different operating system process, either on the same
machine or on another machine connected by a network [119]. Historically, the
RMI is a descendant of the RPC (Remote Procedure Call), which was invented in
the early 1980’s, before object-oriented programming became popular [18]. The
terminology RMI became popular once objects started replacing procedures as
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1. RMI
(2 calls)

5. Asynchronous RMI

3. RMI with callback
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2. Asynchronous RMI
(2 calls)

(using threads)
(2 calls)
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Figure 5.3: Message diagrams of simple protocols

the remote entities to be called. We apply the term RMI somewhat loosely to port
objects, even though they do not have methods in the sense of object-oriented
programming (see Chapter 7 for more on methods). For now, we assume that a
“method” is simply what a port object does when it receives a particular message.

From the programmer’s viewpoint, the RMI and RPC protocols are quite
simple: a client sends a request to a server and then waits for the server to send
back a reply. (This viewpoint abstracts from implementation details such as how
data structures are passed from one address space to another.) Let us give an
example. We first define the server as a port object:

proc {ServerProc Msg}
case Msg
of calc(X Y) then

Y=X*X+2.0*X+2.0
end

end
Server={NewPortObject2 ServerProc}
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This particular server has no internal state. The second argument Y of calc is
bound by the server. We assume the server does a complex calculation, which we
model by the polynomial X*X+2.0*X+2.0 . We define the client:

proc {ClientProc Msg}
case Msg
of work(Y) then
Y1 Y2 in

{Send Server calc(10.0 Y1)}
{Wait Y1}
{Send Server calc(20.0 Y2)}
{Wait Y2}
Y=Y1+Y2

end
end
Client={NewPortObject2 ClientProc}
{Browse {Send Client work($)}}

Note that we are using a nesting marker “$”. We recall that the last line is
equivalent to:

local X in {Send Client work(X)} {Browse X} end

Nesting markers are a convenient way to turn statements into expressions. There
is an interesting difference between the client and server definitions. The client
definition references the server directly but the server definition does not know
its clients. The server gets a client reference indirectly, through the argument Y.
This is a dataflow variable that is bound to the answer by the server. The client
waits until receiving the reply before continuing.

In this example, all messages are executed sequentially by the server. In our
experience, this is the best way to implement RMI. It is simple to program with
and reason about. Some RMI implementations do things somewhat differently.
They allow multiple calls from different clients to be processed concurrently. This
is done by allowing multiple threads at the server-side to accept requests for the
same object. The server no longer serves requests sequentially. This is much
harder to program with: it requires the server to protect its internal state data.
We will examine this case later, in Chapter 8. When programming in a language
that provides RMI or RPC, such as C or Java, it is important to know whether
or not messages are executed sequentially by the server.

In this example, the client and server are both written in the same language
and both execute in the same operating system process. This is true for all
programs of this chapter. When the processes are not the same, we speak of a
distributed system. This is explained in Chapter 11. This is possible, e.g., in
Java RMI, where both processes run Java. The programming techniques of this
chapter still hold for this case, with some modifications due to the nature of
distributed systems.

It can happen that the client and server are written in different languages,
but that we still want them to communicate. There exist standards for this, e.g.,
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the CORBA architecture. This is useful for letting programs communicate even
if their original design did not plan for it.

5.3.2 Asynchronous RMI

Another useful protocol is the asynchronous RMI. This is similar to RMI, except
that the client continues execution immediately after sending the request. The
client is informed when the reply arrives. With this protocol, two requests can be
done in rapid succession. If communications between client and server are slow,
then this will give a large performance advantage over RMI. In RMI, we can only
send the second request after the first is completed, i.e., after one round trip from
client to server.

proc {ClientProc Msg}
case Msg
of work(?Y) then
Y1 Y2 in

{Send Server calc(10.0 Y1)}
{Send Server calc(20.0 Y2)}
Y=Y1+Y2

end
end
Client={NewPortObject2 ClientProc}
{Browse {Send Client work($)}}

The message sends overlap. The client waits for both results Y1 and Y2 before
doing the addition Y1+Y2.

Note that the server sees no difference with standard RMI. It still receives
messages one by one and executes them sequentially. Requests are handled by
the server in the same order as they are sent and the replies arrive in that order as
well. We say that the requests and replies are sent in First-In-First-Out (FIFO)
order.

5.3.3 RMI with callback (using thread)

The RMI with callback is like an RMI except that the server needs to call the
client in order to fulfill the request. Let us see an example. Here is a server that
does a callback to find the value of a special parameter called delta , which is
known only by the client:

proc {ServerProc Msg}
case Msg
of calc(X ?Y Client) then
X1 D in

{Send Client delta(D)}
X1=X+D
Y=X1*X1+2.0*X1+2.0
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end
end
Server={NewPortObject2 ServerProc}

The server knows the client reference because it is an argument of the calc

message. We leave out the {Wait D} since it is implicit in the addition X+D.
Here is a client that calls the server in the same way as for RMI:

proc {ClientProc Msg}
case Msg
of work(?Z) then
Y in

{Send Server calc(10.0 Y Client)}
Z=Y+100.0

[] delta(?D) then
D=1.0

end
end
Client={NewPortObject2 ClientProc}
{Browse {Send Client work($)}}

(As before, the Wait is implicit.) Unfortunately, this solution does not work. It
deadlocks during the call {Send Client work(Z)} . Do you see why? Draw a
message diagram to see why.1 This shows that a simple RMI is not the right
concept for doing callbacks.

The solution to this problem is for the client call not to wait for the reply.
The client must continue immediately after making its call, so that it is ready to
accept the callback. When the reply comes eventually, the client must handle it
correctly. Here is one way to write a correct client:

proc {ClientProc Msg}
case Msg
of work(?Z) then
Y in

{Send Server calc(10.0 Y Client)}
thread Z=Y+100.0 end

[] delta(?D) then
D=1.0

end
end
Client={NewPortObject2 ClientProc}
{Browse {Send Client work($)}}

Instead of waiting for the server to bind Y, the client creates a new thread to do
the waiting. The new thread’s body is the work to do when Y is bound. When
the reply comes eventually, the new thread does the work and binds Z.

1It is because the client suspends when it calls the server, so that the server cannot call the
client.
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It is interesting to see what happens when we call this client from outside. For
example, let us do the call {Send Client work(Z)} . When this call returns, Z

will usually not be bound yet. Usually this is not a problem, since the operation
that uses Z will block until Z is bound. If this is undesirable, then the client call
can itself be treated like an RMI:

{Send Client work(Z)}
{Wait Z}

This lifts the synchronization from the client to the application that uses the
client. This is the right way to handle the problem. The problem with the
original, buggy solution is that the synchronization is done in the wrong place.

5.3.4 RMI with callback (using record continuation)

The solution of the previous example creates a new thread for each client call.
This assumes that threads are inexpensive. How do we solve the problem if we
are not allowed to create a new thread? The solution is for the client to pass a
continuation to the server. After the server is done, it passes the continuation
back to the client so that the client can continue. In that way, the client never
waits and deadlock is avoided. Here is the server definition:

proc {ServerProc Msg}
case Msg
of calc(X Client Cont) then
X1 D Y in

{Send Client delta(D)}
X1=X+D
Y=X1*X1+2.0*X1+2.0
{Send Client Cont#Y}

end
end
Server={NewPortObject2 ServerProc}

After finishing its own work, the server passes Cont#Y back to the client. It adds
Y to the continuation since Y is needed by the client!

proc {ClientProc Msg}
case Msg
of work(?Z) then

{Send Server calc(10.0 Client cont(Z))}
[] cont(Z)#Y then

Z=Y+100.0
[] delta(?D) then

D=1.0
end

end
Client={NewPortObject2 ClientProc}
{Browse {Send Client work($)}}
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The part of work after the server call is put into a new method, cont . The client
passes the server the continuation cont(Z) . The server calculates Y and then lets
the client continue its work by passing it cont(Z)#Y .

When the client is called from outside, the continuation-based solution to
callbacks behaves in the same way as the thread-based solution. Namely, Z will
usually not be bound yet when the client call returns. We handle this in the same
way as the thread-based solution, by lifting the synchronization from the client
to its caller.

5.3.5 RMI with callback (using procedure continuation)

The previous example can be generalized in a powerful way by passing a procedure
instead of a record. We change the client as follows (the server is unchanged):

proc {ClientProc Msg}
case Msg
of work(?Z) then

C=proc {$ Y} Z=Y+100.0 end
in

{Send Server calc(10.0 Client cont(C))}
[] cont(C)#Y then

{C Y}
[] delta(?D) then

D=1.0
end

end
Client={NewPortObject2 ClientProc}
{Browse {Send Client work($)}}

The continuation contains the work that the client has to do after the server call
returns. Since the continuation is a procedure value, it is self-contained: it can
be executed by anyone without knowing what is inside.

5.3.6 Error reporting

All the protocols we covered so far assume that the server will always do its job
correctly. What should we do if this is not the case, that is, if the server can
occasionally make an error? For example, it might be due to a network problem
between the client and server, or the server process is no longer running. In any
case, the client should be notified that an error has occurred. The natural way to
notify the client is by raising an exception. Here is how we can modify the server
to do this:

proc {ServerProc Msg}
case Msg
of sqrt(X Y E) then

try
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Y={Sqrt X}
E=normal

catch Exc then
E=exception(Exc)

end
end

end
Server={NewPortObject2 ServerProc}

The extra argument E signals whether execution was normal or not. The server
calculates square roots. If the argument is negative, Sqrt raises an exception,
which is caught and passed to the client.

This server can be called by both synchronous and asynchronous protocols.
In a synchronous protocol, the client can call it as follows:

{Send Server sqrt(X Y E)}
case E of exception(Exc) then raise Exc end end

The case statement blocks the client until E is bound. In this way, the client
synchronizes on one of two things happening: a normal result or an exception. If
an exception was raised at the server, then the exception is raised again at the
client. This guarantees that Y is not used unless it is bound to a normal result.
In an asynchronous protocol there is no guarantee. It is the client’s responsibility
to check E before using Y.

This example makes the basic assumption that the server can catch the ex-
ception and pass it back to the client. What happens when the server fails or the
communication link between the client and server is cut or too slow for the client
to wait? These cases will be handled in Chapter 11.

5.3.7 Asynchronous RMI with callback

Protocols can be combined to make more sophisticated ones. For example, we
might want to do two asynchronous RMIs where each RMI does a callback. Here
is the server:

proc {ServerProc Msg}
case Msg
of calc(X ?Y Client) then
X1 D in

{Send Client delta(D)}
thread

X1=X+D
Y=X1*X1+2.0*X1+2.0

end
end

end

Here is the client:
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proc {ClientProc Msg}
case Msg
of work(?Y) then
Y1 Y2 in

{Send Server calc(10.0 Y1 Client)}
{Send Server calc(20.0 Y2 Client)}
thread Y=Y1+Y2 end

[] delta(?D) then
D=1.0

end
end

What is the message diagram for the call {Send Client work(Y)} ? What
would happen if the server did not create a thread for doing the work after the
callback?

5.3.8 Double callbacks

Sometimes the server does a first callback to the client, which itself does a second
callback to the server. To handle this, both the client and the server must continue
immediately and not wait until the result comes back. Here is the server:

proc {ServerProc Msg}
case Msg
of calc(X ?Y Client) then
X1 D in

{Send Client delta(D)}
thread

X1=X+D
Y=X1*X1+2.0*X1+2.0

end
[] serverdelta(?S) then

S=0.01
end

end

Here is the client:

proc {ClientProc Msg}
case Msg
of work(Z) then
Y in

{Send Server calc(10.0 Y Client)}
thread Z=Y+100.0 end

[] delta(?D) then S in
{Send Server serverdelta(S)}
thread D=1.0+S end

end
end
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Calling {Send Client work(Z)} calls the server, which calls the client method
delta(D) , which itself calls the server method serverdelta(S) . A question for
an alert reader: why is the last statement D=1.0+S also put in a thread?2

5.4 Program design for concurrency

This section gives an introduction to component-based programming with con-
current components.

In Section 4.3.5 we saw how to do digital logic design using the declarative
concurrent model. We defined a logic gate as the basic circuit component and
showed how to compose them to get bigger and bigger circuits. Each circuit had
inputs and outputs, which were modeled as streams.

This section continues that discussion in a more general setting. We put it in
the larger context of component-based programming. Because of message-passing
concurrency we no longer have the limitations of the synchronous “lock-step”
execution of Chapter 4.

We first introduce the basic concepts of concurrent modeling. Then we give a
practical example, a lift control system. We show how to design and implement
this system using high-level component diagrams and state diagrams. We start
by explaining these concepts.

5.4.1 Programming with concurrent components

To design a concurrent application, the first step is to model it as a set of con-
current activities that interact in well-defined ways. Each concurrent activity
is modeled by exactly one concurrent component. A concurrent component is
sometimes known as an “agent”. Agents can be reactive (have no internal state)
or have internal state. The science of programming with agents is sometimes
known as multi-agent systems, often abbreviated as MAS. Many different proto-
cols of varying complexities have been devised in MAS. This section only briefly
touches on these protocols. In component-based programming, agents are usually
considered as quite simple entities with little intelligence built-in. In the artifi-
cial intelligence community, agents are usually considered as doing some kind of
reasoning.

Let us define a simple model for programming with concurrent components.
The model has primitive components and ways to combine components. The
primitive components are used to create port objects.

A concurrent component

Let us define a simple model for component-based programming that is based
on port objects and executes with concurrent message-passing. In this model, a

2Strictly speaking, it is not needed in this example. But in general, the client does not know
whether the server will do another callback!
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concurrent component is a procedure with inputs and outputs. When invoked,
the procedure creates a component instance, which is a port object. An input is
a port whose stream is read by the component. An output is a port to which the
component can send.

Procedures are the right concept to model concurrent components since they
allow to compose components and to provide arbitrary numbers of inputs and
outputs. Inputs and outputs can be local, with visibility restricted to inside the
component.

Interface

A concurrent component interacts with its environment through its interface.
The interface consists of the set of its inputs and outputs, which are collectively
known as its wires. A wire connects one or more outputs to one or more inputs.
The message-passing model of this chapter provides two basic kinds of wires:
one-shot and many-shot. One-shot wires are implemented by dataflow variables.
They are used for values that do not change or for one-time messages (like ac-
knowledgements). Only one message can be passed and only one output can be
connected to a given input. Many-shot wires are implemented by ports. They
are used for message streams. Any number of messages can be passed and any
number of outputs can write to a given input.

The declarative concurrent model of Chapter 4 also has one-shot and many-
shot wires, but the latter are restricted in that only one output can write to a
given input.

Basic operations

There are four basic operations in component-based programming:

• Instantiation: creating an instance of a component. By default, each in-
stance is independent of each other instance. In some cases, instances might
all have a dependency on a shared instance.

• Composition: build a new component out of other components. The lat-
ter can be called subcomponents to emphasize their relationship with the
new component. We assume that the default is that the components we
wish to compose have no dependencies. This means that they are concur-
rent! Perhaps surprisingly, compound components in a sequential system
have dependencies even if they share no arguments. This follows because
execution is sequential.

• Linking: combining component instances by connecting inputs and outputs.
Different kinds of links: one-shot, many-shot, inputs that can be connected
to one output only or to many outputs, outputs that can be connected
to one input only or to many inputs. Usually, one-shot links go from one
output to many inputs. All inputs see the same value when it is available.
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Many-shot links go from many outputs to many inputs. All inputs see the
same stream of input values.

• Restriction: restricting visibility of inputs or outputs to within a compound
component. Restriction means to limit some of the interface wires of the
subcomponents to the interior of the new component, i.e., they do not
appear in the new component’s interface.

Let us give an example to illustrate these concepts. In Section 4.3.5 we showed
how to model digital logic circuits as components. We defined procedures AndG,
OrG, NotG, and DelayG to implement logic gates. Executing one of these pro-
cedures creates a component instance. These instances are stream objects, but
they could have been port objects. (A simple exercise is to generalize the logic
gates to become port objects.) We defined a latch as a compound component as
follows in terms of gates:

proc {Latch C DI ?DO}
X Y Z F

in
{DelayG DO F}
{AndG F C X}
{NotG C Z}
{AndG Z DI Y}
{OrG X Y DO}

end

The latch component has five subcomponents. These are linked together by
connecting outputs and inputs. For example, the output X of the first And gate
is given as input to the Or gate. Only the wires DI and DOare visible to the
outside of the latch. The wires X, Y, Z, and F are restricted to the inside of the
component.

5.4.2 Design methodology

Designing a concurrent program is more difficult than designing a sequential
program, because there are usually many more potential interactions between
the different parts. To have confidence that the concurrent program is correct,
we need to follow a sequence of unambiguous design rules. From our experience,
the design rules of this section give good results if they are followed with some
rigor.

• Informal specification. Write down a possibly informal, but precise specifi-
cation of what the system should do.

• Components. Enumerate all the different forms of concurrent activity in
the specification. Each activity will become one component. Draw a block
diagram of the system that shows all component instances.
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• Message protocols. Decide on what messages the components will send and
design the message protocols between them. Draw the component diagram
with all message protocols.

• State diagrams. For each concurrent entity, write down its state diagram.
For each state, verify that all the appropriate messages are received and
sent with the right conditions and actions.

• Implement and schedule. Code the system in your favorite programming
language. Decide on the scheduling algorithm to be used for implementing
the concurrency between the components.

• Test and iterate. Test the system and reiterate until it satisfies the initial
specification.

We will use these rules for designing the lift control system that is presented later
on.

5.4.3 List operations as concurrency patterns

Programming with concurrent components results in many message protocols.
Some simple protocols are illustrated in Section 5.3. Much more complicated pro-
tocols are possible. Because message-passing concurrency is so close to declarative
concurrency, many of these can be programmed as simple list operations.

All the standard list operations (e.g., of the List module) can be interpreted
as concurrency patterns. We will see that this is a powerful way to write concur-
rent programs. For example, the standard Map function can be used as a pattern
that broadcasts queries and collects their replies in a list. Consider a list PL of
ports, each of which is the input port of a port object. We would like to send the
message query(foo Ans) to each port object, which will eventually bind Ans to
the answer. By using Map we can send all the messages and collect the answers
in a single line:

AL={Map PL fun {$ P} Ans in {Send P query(foo Ans)} Ans end }

The queries are sent asynchronously and the answers will eventually appear in
the list AL. We can simplify the notation even more by using the $ nesting marker
with the Send. This completely avoids mentioning the variable Ans:

AL={Map PL fun {$ P} {Send P query(foo $)} end }

We can calculate with AL as if the answers are already there; the calculation will
automatically wait if it needs an answer that is not there. For example, if the
answers are positive integers, we can calculate their maximum by doing the same
call as in a sequential program:

M={FoldL AL Max 0}
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Figure 5.4: Schematic overview of a building with lifts

5.4.4 Lift control system

Lifts are a part of our everyday life.3 Yet, have you ever wondered how they
work? How do lifts communicate with floors and how does a lift decide which
floor to go to? There are many ways to program a lift control system.

In this section we will design a simple lift control system as a concurrent
program. Our first design will be quite simple. Nevertheless, as you will see, the
concurrent program that results will still be fairly complex. Therefore we take
care to follow the design methodology given earlier.

We will model the operation of the hypothetical lift control system of a build-
ing, with a fixed number of lifts, a fixed number of floors between which lifts
travel, and users. Figure 5.4 gives an abstract view of what our building looks
like. There are floors, lifts, controllers for lift movement, and users that come
and go. We will model what happens when a user calls a lift to go to another
floor. Our model will focus on concurrency and timing, to show correctly how
the concurrent activities interact in time. But we will put in enough detail to get
a running program.

The first task is the specification. In this case, we will be satisfied with a
partial specification of the problem. There are a set of floors and a set of lifts.
Each floor has a call button that users can press. The call button does not specify
an up or down direction. The floor randomly chooses the lift that will service its
request. Each lift has a series of call(I) buttons numbered for all floors I, to tell

3Lifts are useful for those who live in flats, in the same way that elevators are useful for
those who live in apartments.
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Figure 5.5: Component diagram of the lift control system
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Figure 5.6: Notation for state diagrams

it to stop at a given floor. Each lift has a schedule, which is the list of floors that
it will visit in order.

The scheduling algorithm we will use is called FCFS (First-Come-First-Served):
a new floor is always added at the end of the schedule. This is also known as
FIFO (First-In-First-Out) scheduling. Both the call and call(I) buttons do FCFS.
When a lift arrives at a scheduled floor, the doors open and stay open for a fixed
time before closing. Moving lifts take a fixed time to go from one floor to the
next.

The lift control system is designed as a set of interacting concurrent compo-
nents. Figure 5.5 shows the block diagram of their interactions. Each rectangle
represents an instance of a concurrent component. In our design, there are four
kinds of components, namely floors, lifts, controllers, and timers. All component
instances are port objects. Controllers are used to handle lift motion. Timers
handle the real-time aspect of the system.

Because of FCFS scheduling, lifts will often move much farther than necessary.
If a lift is already at a floor, then calling that floor again may call another lift. If
a lift is on its way from one floor to another, then calling an intermediate floor
will not cause the lift to stop there. We can avoid these problems by making the
scheduler more intelligent. Once we have determined the structure of the whole
application, it will become clear how to do this and other improvements.
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State transition diagrams

A good way to design a port object is to start by enumerating the states it can be
in and the messages it can send and receive. This makes it easy to check that all
messages are properly handled in all states. We will go over the state diagrams
of each component. First we introduce the notation for state transition diagrams
(sometimes called state diagrams for short).

A state transition diagram is a finite state automaton. It consists of a finite
set of states and a set of transitions between states. At each instant, it is in
a particular state. It starts in an initial state and evolves by doing transitions.
A transition is an atomic operation that does the following. The transition is
enabled when the appropriate message is received and a boolean condition on it
and the state is true. The transition can then send a message and change the
state. Figure 5.6 shows the graphical notation. Each circle represents a state.
Arrows between circles represent transitions.

Messages can be sent in two ways: to a port or by binding a dataflow variable.
Messages can be received on the port’s stream or by waiting for the binding.
Dataflow variables are used as a lightweight channel on which only one message
can be sent (a “one-shot wire”). To model time delays, we use a timer protocol:
the caller Pid sends the message starttimer(N Pid) to a timer agent to request
a delay of N milliseconds. The caller then continues immediately. When time
is up, the timer agent sends a message stoptimer back to the caller. (The
timer protocol is similar to the {Delay N} operation, reformulated in the style
of concurrent components.)

Implementation

We present the implementation of the lift control system by showing each part
separately, namely the controller, the floor, and the lift. We will define functions
to create them:

• {Floor Num Init Lifts} returns a floor Fid with number Num, initial
state Init , and lifts Lifts .

• {Lift Num Init Cid Floors} returns a lift Lid with number Num, ini-
tial state Init , controller Cid , and floors Floors .

• {Controller Init} returns a controller Cid .

For each function, we explain how it works and give the state diagram and the
source code. We then create a building with a lift control system and show how
the components interact.

The controller The controller is the easiest to explain. It has two states,
motor stopped and motor running. At the motor stopped state the controller can
receive a step(Dest) from the lift, where Dest is the destination floor number.
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Figure 5.7: State diagram of a lift controller

The controller then goes to the motor running state. Depending on the direction,
the controller moves up or down one floor. Using the timer protocol, the motor
running state automatically makes a transition to the motor stopped state after
a fixed time. This is the time needed to move from one floor to the next (either
up or down). In the example, we assume this time to be 5000 ms. The timer
protocol models a real implementation which would have a sensor at each floor.
When the lift has arrived at floor F, the controller sends the message ´ at ´ (F)

to the lift. Figure 5.7 gives the state diagram of controller Cid.
The source code of the timer and the controller is given in Figure 5.8. It is

interesting to compare the controller code with the state diagram. The timer
defined here is used also in the floor component.

Attentive readers will notice that the controller actually has more than two
states, since strictly speaking the floor number is also part of the state. To keep
the state diagram simple, we parameterize the motor stopped and motor running
states by the floor number. Representing several states as one state with variables
inside is a kind of syntactic sugar for state diagrams. It lets us represent very big
diagrams in a compact way. We will use this technique also for the floor and lift
state diagrams.

The floor Floors are more complicated because they can be in one of three
states: no lift called, lift called but not yet arrived, and lift arrived and doors
open. Figure 5.9 gives the state diagram of floor Fid. Each floor can receive a
call message from a user, an arrive(Ack) message from a lift, and an internal
timer message. The floor can send a call(F) message to a lift.

The source code of the floor is shown in Figure 5.10. It uses the random
number function OS.rand to pick a lift at random. It uses Browse to display
when a lift is called and when the doors open and close. The total time needed
for opening and closing the doors is assumed to be 5000 ms.
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