
378 Message-Passing Concurrency

fun {Timer}
{NewPortObject2

proc {$ Msg}
case Msg of starttimer(T Pid) then

thread {Delay T} {Send Pid stoptimer} end
end

end }
end

fun {Controller Init}
Tid={Timer}
Cid={NewPortObject Init

fun {$ Msg state(Motor F Lid)}
case Motor
of running then

case Msg
of stoptimer then

{Send Lid ´ at ´ (F)}
state(stopped F Lid)

end
[] stopped then

case Msg
of step(Dest) then

if F==Dest then
state(stopped F Lid)

elseif F<Dest then
{Send Tid starttimer(5000 Cid)}
state(running F+1 Lid)

else % F>Dest
{Send Tid starttimer(5000 Cid)}
state(running F-1 Lid)

end
end

end
end }

in Cid end

Figure 5.8: Implementation of the timer and controller components

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.4 Program design for concurrency 379

stoptimer /

notcalled called

doorsopen
(Ack) arrive(Ack) /starttimer(5000 Fid) to Tid

arrive(Ack) /

call / call(F) to random Lid

call / −

arrive(A) / A=Ack

call / −

starttimer(5000 Fid) to Tid

Ack=unit

Figure 5.9: State diagram of a floor

The lift Lifts are the most complicated of all. Figure 5.11 gives the state
diagram of lift Lid. Each lift can be in one of four states: empty schedule and
lift stopped (idle), nonempty schedule and lift moving past a given floor, waiting
for doors when moving past a scheduled floor, and waiting for doors when idle
at a called floor. The way to understand this figure is to trace through some
execution scenarios. For example, here is a simple scenario. A user presses the
call button at floor 1. The floor then sends call(1) to a lift. The lift receives
this and sends step(1) to the controller. Say the lift is currently at floor 3. The
controller sends ´ at ´ (2) to the lift, which then sends step(1) to the controller
again. The controller sends ´ at ´ (1) to the lift, which then sends arrive(Ack)

to floor 1 and waits until the floor acknowledges that it can leave.
Each lift can receive a call(N) message and an ´ at ´ (N) message. The lift

can send an arrive(Ack) message to a floor and a step(Dest) message to
its controller. After sending the arrive(Ack) message, the lift waits until the
floor acknowledges that the door actions have finished. The acknowledgement is
done by using the dataflow variable Ack as a one-shot wire. The floor sends an
acknowledgement by binding Ack= unit and the lift waits with {Wait Ack} .

The source code of the lift component is shown in Figure 5.12. It uses a series
of if statements to implement the conditions for the different transitions. It uses
Browse to display when a lift will go to a called floor and when the lift arrives
at a called floor. The function {ScheduleLast L N} implements the scheduler:
it adds N to the end of the schedule L and returns the new schedule.

The building We have now specified the complete system. It is instructive to
trace through the execution by hand, following the flow of control in the floors,
lifts, controllers, and timers. For example, say that there are 10 floors and 2 lifts.
Both lifts are on floor 1 and floors 9 and 10 each call a lift. What are the possible
executions of the system? Let us define a compound component that creates a
building with FN floors and LN lifts:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

380 Message-Passing Concurrency

fun {Floor Num Init Lifts}
Tid={Timer}
Fid={NewPortObject Init

fun {$ Msg state(Called)}
case Called
of notcalled then Lran in

case Msg
of arrive(Ack) then

{Browse ´ Lift at floor ´ #Num#́ : open doors ´ }
{Send Tid starttimer(5000 Fid)}
state(doorsopen(Ack))

[] call then
{Browse ´ Floor ´ #Num#́ calls a lift! ´ }
Lran=Lifts.(1+{OS.rand} mod {Width Lifts})
{Send Lran call(Num)}
state(called)

end
[] called then

case Msg
of arrive(Ack) then

{Browse ´ Lift at floor ´ #Num#́ : open doors ´ }
{Send Tid starttimer(5000 Fid)}
state(doorsopen(Ack))

[] call then
state(called)

end
[] doorsopen(Ack) then

case Msg
of stoptimer then

{Browse ´ Lift at floor ´ #Num#́ : close doors ´ }
Ack= unit
state(notcalled)

[] arrive(A) then
A=Ack
state(doorsopen(Ack))

[] call then
state(doorsopen(Ack))

end
end

end }
in Fid end

Figure 5.10: Implementation of the floor component

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.4 Program design for concurrency 381

New Pos: NPos

call(N) & N==Pos

Pos

Sched/=nil

Moving=true

Wait

doors
for

call(N) &
N/=Pos

New Sched: [N]

Sched=nil

Moving=false

Pos

Wait

doors
for

call(N)

arrive(Ack) to Pos

{Wait Ack} & Sched.2==nil

New Sched: {ScheduleLast Sched N}

at(NPos) & NPos==Sched.1
arrive(Ack) to Sched.1

{Wait Ack} / −

{Wait Ack} & Sched.2/=nil

step(Sched.2.1) to Cid
New Pos: NPos

New Sched: Sched.2

step(N) to Cid

New Pos: NPos

at(NPos) & NPos/=Sched.1
step(Sched.1) to Cid

Figure 5.11: State diagram of a lift

proc {Building FN LN ?Floors ?Lifts}
Lifts={MakeTuple lifts LN}
for I in 1..LN do Cid in

Cid={Controller state(stopped 1 Lifts.I)}
Lifts.I={Lift I state(1 nil false) Cid Floors}

end
Floors={MakeTuple floors FN}
for I in 1..FN do

Floors.I={Floor I state(notcalled) Lifts}
end

end

This uses MakeTuple to create a new tuple containing unbound variables. Each
component instance will run in its own thread. Here is a sample execution:

declare F L in
{Building 2 0 2 F L}
{Send F.20 call}
{Send F.4 call}
{Send F.10 call}
{Send L.1 call(4)}

This makes the lifts move around in a building with 20 floors and 2 lifts.

Reasoning about the lift control system To show that the lift works cor-
rectly, we can reason about its invariant properties. For example, an ´ at ´ (_)

message can only be received when Sched\=nil . This is a simple invariant that
can be proved easily from the fact that ´ at ´ and step messages occur in pairs.
It is easy to see by inspection that a step message is always done when the lift
goes into a state where Sched\=nil , and that the only transition out of this

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

382 Message-Passing Concurrency

fun {ScheduleLast L N}
if L\=nil andthen {List.last L}==N then L
else {Append L [N]} end

end

fun {Lift Num Init Cid Floors}
{NewPortObject Init

fun {$ Msg state(Pos Sched Moving)}
case Msg
of call(N) then

{Browse ´ Lift ´ #Num#́ needed at floor ´ #N}
if N==Pos andthen {Not Moving} then

{Wait {Send Floors.Pos arrive($)}}
state(Pos Sched false)

else Sched2 in
Sched2={ScheduleLast Sched N}
if {Not Moving} then

{Send Cid step(N)} end
state(Pos Sched2 true)

end
[] ´ at ´ (NewPos) then

{Browse ´ Lift ´ #Num#́ at floor ´ #NewPos}
case Sched
of S|Sched2 then

if NewPos==S then
{Wait {Send Floors.S arrive($)}}
if Sched2==nil then

state(NewPos nil false)
else

{Send Cid step(Sched2.1)}
state(NewPos Sched2 true)

end
else

{Send Cid step(S)}
state(NewPos Sched Moving)

end
end

end
end }

end

Figure 5.12: Implementation of the lift component

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.4 Program design for concurrency 383

Controller C

User

at(F)

step(D)arrive(Ack)

call(F)

User

call

Ack=unit

call(F)

LiftShaft

Floor F Lift L

Figure 5.13: Hierarchical component diagram of the lift control system

state (triggered by a call message) preserves the invariant. Another invariant is
that successive elements of a schedule are always different (can you prove this?).

5.4.5 Improvements to the lift control system

The lift control system of the previous section is somewhat naive. In this section
we will indicate five ways in which it can be improved: by using component
composition to make it hierarchical, by improving how it opens and closes doors,
by using negotiation to find the best lift to call, by improving scheduling to reduce
the amount of lift motion, and by handling faults (lifts that stop working). We
leave the last three improvements as exercises for the reader.

Hierarchical organization

Looking at the component diagram of Figure 5.5, we see that each controller talks
only with its corresponding lift. This is visible also in the definition of Building .
This means that we can improve the organization by combining controller and
lift into a compound component, which we call a lift shaft. Figure 5.13 shows the
updated component diagram with a lift shaft. We implement this by defining the
component LiftShaft as follows:

fun {LiftShaft I state(F S M) Floors}
Cid={Controller state(stopped F Lid)}
Lid={Lift I state(F S M) Cid Floors}

in Lid end

Then the Building procedure can be simplified:

proc {Building FN LN ?Floors ?Lifts}
Lifts={MakeTuple lifts LN}
for I in 1..LN do Cid in

Lifts.I={LiftShaft I state(1 nil false) Floors}
end
Floors={MakeTuple floors FN}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

384 Message-Passing Concurrency

for I in 1..FN do
Floors.I={Floor I state(notcalled) Lifts}

end
end

The encapsulation provided by LiftShaft improves the modularity of the pro-
gram. We can change the internal organization of a lift shaft without changing
its interface.

Improved door management

Our system opens all doors at a floor when the first lift arrives and closes them
a fixed time later. So what happens if a lift arrives at a floor when the doors
are already open? The doors may be just about to close. This behavior is
unacceptable for a real lift. We need to improve our lift control system so that
each lift has its own set of doors.

Improved negotiation

We can improve our lift control system so that the floor picks the closest lift
instead of a random lift. The idea is for the floor to send messages to all lifts
asking them to give an estimate of the time it would take to reach the floor. The
floor can then pick the lift with the least time. This is an example of a simple
negotiation protocol.

Improved scheduling

We can improve the lift scheduling. For example, assume the lift is moving from
floor 1 to floor 5 and is currently at floor 2. Calling floor 3 should cause the lift
to stop on its way up, instead of the naive solution where it first goes to floor 5
and then down to floor 3. The improved algorithm moves in one direction until
there are no more floors to stop at and then changes direction. Variations on this
algorithm, which is called the elevator algorithm for obvious reasons, are used to
schedule the head movement of a hard disk. With this scheduler we can have two
call buttons to call upgoing and downgoing lifts separately.

Fault tolerance

What happens if part of the system stops working? For example, a lift can be out
of order, either because of maintenance, because it has broken down, or simply
because someone is blocking open the doors at a particular floor. Floors can also
be “out of order”, e.g., a lift may be forbidden to stop at a floor for some reason.
We can extend the lift control system to handle these cases. The basic ideas are
explained in the Exercises.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.5 Using the message-passing concurrent model directly 385

5.5 Using the message-passing concurrent mod-

el directly

The message-passing model can be used in other ways rather than just program-
ming with port objects. One way is to program directly with threads, procedures,
ports, and dataflow variables. Another way is to use other abstractions. This
section gives some examples.

5.5.1 Port objects that share one thread

It is possible to run many port objects on just one thread, if the thread serializes
all their messages. This can be more efficient than using one thread per port
object. According to David Wood of Symbian Ltd., this solution was used in the
operating system of the Psion Series 3 palmtop computers, where memory is at a
premium [210]. Execution is efficient since no thread scheduling has to be done.
Objects can access shared data without any particular precautions since all the
objects run in the same thread. The main disadvantage is that synchronization is
harder. Execution cannot wait inside an object for a calculation done in another
object. Attempting this will block the program. This means that programs must
be written in a particular style. State must be either global or stored in the
message arguments, not in the objects. Messages are a kind of continuation, i.e.,
there is no return. Each object execution finishes by sending a message.

Figure 5.14 defines the abstraction NewPortObjects . It sets up the single
thread and returns two procedures, AddPortObject and Call :

• {AddPortObject PO Proc} adds a new port object with name POto the
thread. The name should be a literal or a number. Any number of new
port objects can be added to the thread.

• {Call PO Msg} asynchronously sends the message Msg to the port object
PO. All message executions of all port objects are executed in the single
thread. Exceptions raised during message execution are simply ignored.

Note that the abstraction stores the port objects’ procedures in a record and uses
AdjoinAt to extend this record when a new port object is added.

Figure 5.15 gives a screenshot of a small concurrent program, ‘Ping-Pong’,
which uses port objects that share one thread. Figure 5.16 gives the full source
code of ‘Ping-Pong’. It uses NewProgWindow , the simple progress monitor defined
in Chapter 10. Two objects are created initially, pingobj and pongobj . Each
object understands two messages, ping(N) and pong(N) . The pingobj object
asynchronously sends a pong(N) message to the pongobj object and vice versa.
Each message executes by displaying a text and then continuing execution by
sending a message to the other object. The integer argument N counts messages
by being incremented at each call. Execution is started with the initial call {Call

pingobj ping(0)} .

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

386 Message-Passing Concurrency

proc {NewPortObjects ?AddPortObject ?Call}
Sin P={NewPort Sin}

proc {MsgLoop S1 Procs}
case S1
of msg(I M)|S2 then

try {Procs.I M} catch _ then skip end
{MsgLoop S2 Procs}

[] add(I Proc Sync)|S2 then Procs2 in
Procs2={AdjoinAt Procs I Proc}
Sync= unit
{MsgLoop S2 Procs2}

[] nil then skip end
end

in
proc {AddPortObject I Proc}
Sync in

{Send P add(I Proc Sync)}
{Wait Sync}

end

proc {Call I M}
{Send P msg(I M)}

end

thread {MsgLoop Sin procs} end
end

Figure 5.14: Defining port objects that share one thread

Figure 5.15: Screenshot of the ‘Ping-Pong’ program

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.5 Using the message-passing concurrent model directly 387

declare AddPortObject Call
{NewPortObjects AddPortObject Call}

InfoMsg={NewProgWindow "See ping-pong"}

fun {PingPongProc Other}
proc {$ Msg}

case Msg
of ping(N) then

{InfoMsg "ping("#N#")"}
{Call Other pong(N+1)}

[] pong(N) then
{InfoMsg "pong("#N#")"}
{Call Other ping(N+1)}

end
end

end

{AddPortObject pingobj {PingPongProc pongobj}}
{AddPortObject pongobj {PingPongProc pingobj}}
{Call pingobj ping(0)}

Figure 5.16: The ‘Ping-Pong’ program: using port objects that share one thread

When the program starts, it creates a window that displays a term of the
form ping(123) or pong(123) , where the integer gives the message count. This
monitors execution progress. When the checkbutton is enabled, then each term
is displayed for 50 ms. When the checkbutton is disabled, then the messages are
passed internally at a much faster rate, limited only by the speed of the Mozart
run-time system.4

5.5.2 A concurrent queue with ports

The program shown in Figure 5.17 defines a thread that acts as a FIFO queue.
The function NewQueuereturns a new queue Q, which is a record queue(put:PutProc

get:GetProc) that contains two procedures, one for inserting an element in the
queue and one for fetching an element from the queue. The queue is implement-
ed with two ports. The use of dataflow variables makes the queue insensitive to
the relative arrival order of Q.get and Q.put requests. For example, the Q.get

requests can arrive even when the queue is empty. To insert an element X, call
{Q.put X} . To fetch an element in Y, call {Q.get Y} .

The program in Figure 5.17 is almost correct, but it does not work because
port streams are read-only variables. To see this, try the following sequence of

4With Mozart 1.3.0 on a 1 GHz PowerPC processor (PowerBook G4), the rate is about
300000 asynchronous method calls per second.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

388 Message-Passing Concurrency

fun {NewQueue}
Given GivePort={NewPort Given}
Taken TakePort={NewPort Taken}

in
Given=Taken
queue(put: proc {$ X} {Send GivePort X} end

get: proc {$ X} {Send TakePort X} end)
end

Figure 5.17: Queue (naive version with ports)

statements:

declare Q in
thread Q={NewQueue} end
{Q.put 1}
{Browse {Q.get $}}
{Browse {Q.get $}}
{Browse {Q.get $}}
{Q.put 2}
{Q.put 3}

The problem is that Given=Taken tries to impose equality between two read-
only variables, i.e., bind them. But a read-only variable can only be read and
not bound. So the thread defining the queue will suspend in the statement
Given=Taken . We can fix the problem by defining a procedure Match and run-
ning it in its own thread, as shown in Figure 5.18. You can verify that the above
sequence of statements now works.

Let us look closer to see why the correct version works. Doing a series of put
operations:

{Q.put I0} {Q.put I1} ... {Q.put In}

incrementally adds the elements I0 , I1 , ..., In , to the stream Given , resulting
in:

I0|I1|...|In|F1

where F1 is a read-only variable. In the same way, doing a series of get operations:

{Q.get X0} {Q.get X1} ... {Q.get Xn}

adds the elements X0, X1, ..., Xn to the stream Taken , resulting in:

X0|X1|...|Xn|F2

where F2 is another read-only variable. The call {Match Given Taken} binds
the Xi ’s to Ii ’s and blocks again for F1=F2.

This concurrent queue is completely symmetric with respect to inserting and
retrieving elements. That is, Q.put and Q.get are defined in exactly the same
way. Furthermore, because they use dataflow variables to reference queue ele-
ments, these operations never block. This gives the queue the remarkable prop-

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.5 Using the message-passing concurrent model directly 389

fun {NewQueue}
Given GivePort={NewPort Given}
Taken TakePort={NewPort Taken}
proc {Match Xs Ys}

case Xs # Ys
of (X|Xr) # (Y|Yr) then

X=Y {Match Xr Yr}
[] nil # nil then skip
end

end
in

thread {Match Given Taken} end
queue(put: proc {$ X} {Send GivePort X} end

get: proc {$ X} {Send TakePort X} end)
end

Figure 5.18: Queue (correct version with ports)

erty that it can be used to insert and retrieve elements before the elements are
known. For example, if you do a {Q.get X} when there are no elements in the
queue, then an unbound variable is returned in X. The next element that is in-
serted will be bound to X. To do a blocking retrieval, i.e., one that waits when
there are no elements in the queue, the call to Q.get should be followed by a
Wait :

{Q.get X}
{Wait X}

Similarly, if you do {Q.put X} when X is unbound, i.e., when there is no element
to insert, then the unbound variable X will be put in the queue. Binding X will
make the element known. To do an insert only when the element is known, the
call to Q.put should be preceded by a Wait :

{Wait X}
{Q.put X}

We have captured the essential asymmetry between put and get: it is in the Wait

operation. Another way to see this is that put and get reserve places in the queue.
The reservation can be done independent of whether the values of the elements
are known or not.

Attentive readers will see that there is an even simpler solution to the problem
of Figure 5.17. The procedure Match is not really necessary. It is enough to run
Given=Taken in its own thread. This is because the unification algorithm does
exactly what Match does.5

5This FIFO queue design was first given by Denys Duchier.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

390 Message-Passing Concurrency

5.5.3 A thread abstraction with termination detection
“Ladies and gentlemen, we will be arriving shortly in Brussels Midi
station, where this train terminates.”
– Announcement, Thalys high-speed train, Paris-Brussels line, Jan-
uary 2002

Thread creation with thread 〈stmt〉 end can itself create new threads during
the execution of 〈stmt〉. We would like to detect when all these new threads
have terminated. This does not seem easy: new threads may themselves create
new threads, and so forth. A termination detection algorithm like the one of
Section 4.4.3 is needed. The algorithm of that section requires explicitly passing
variables between threads. We require a solution that is encapsulated, i.e., it does
not have this awkwardness. To be precise, we require a procedure NewThread

with the following properties:

• The call {NewThread P SubThread} creates a new thread that executes
the zero-argument procedure P. It also returns a one-argument procedure
SubThread .

• During the execution of P, new threads can be created by calling {SubThread

P1} , where the zero-argument procedure P1 is the thread body. We call
these subthreads. SubThread can be called recursively, that is, inside
threads created with SubThread .

• The NewThread call returns after the new thread and all subthreads have
terminated.

That is, there are three ways to create a new thread:

thread 〈stmt〉 end

{NewThread proc {$} 〈stmt〉 end SubThread}

{SubThread proc {$} 〈stmt〉 end }

They have identical behavior except for NewThread , which has a different termi-
nation behavior. NewThread can be defined using the message-passing model as
shown in Figure 5.19. This definition uses a port. When a subthread is created,
then 1 is sent to the port. When a subthread terminates, then −1 is sent. The
procedure ZeroExit accumulates a running total of these numbers. If the total
ever reaches zero, then all subthreads have terminated and ZeroExit returns.

We can prove that this definition is correct by using invariant assertions.
Consider the following assertion: “the sum of the elements on the port’s stream is
greater than or equal to the number of active threads.” When the sum is zero, this
implies that the number of active threads is zero as well. We can use induction to
show that the assertion is true at every part of every possible execution, starting
from the call to NewThread . It is clearly true when Newthread starts since both
numbers are zero. During an execution, there are four relevant actions: sending

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.5 Using the message-passing concurrent model directly 391

local
proc {ZeroExit N Is}

case Is of I|Ir then
if N+I\=0 then {ZeroExit N+I Ir} end

end
end

in
proc {NewThread P ?SubThread}

Is Pt={NewPort Is}
in

proc {SubThread P}
{Send Pt 1}
thread

{P} {Send Pt ˜1}
end

end
{SubThread P}
{ZeroExit 0 Is}

end
end

Figure 5.19: A thread abstraction with termination detection

+1, sending -1, starting a thread, and terminating a thread. By inspection of the
program, each of these actions keeps the assertion true. (We can assume without
loss of generality that thread termination occurs just before sending -1, since the
thread then no longer executes any part of the user program.)

This definition of NewThread has two restrictions. First, P and P1 should
always call SubThread to create subthreads, never any other operation (such
as thread ... end or a SubThread created elsewhere). Second, SubThread

should not be called anywhere else in the program. The definition can be extended
to relax these restrictions or to check them. We leave these tasks as exercises for
the reader.

An issue about port send semantics

We know that the Send operation is asynchronous, that is, it completes imme-
diately. The termination detection algorithm relies on another property of Send:
that {Send Pt 1} (in the parent thread) arrives before {Send Pt ˜1} (in the
child thread). Can we assume that sends in different threads behave in this way?
Yes we can, if we are sure the Send operation reserves a slot in the port stream.
Look back to the semantics we have defined for ports in the beginning of the
chapter: the Send operation does indeed put its argument in the port stream.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

392 Message-Passing Concurrency

proc {ConcFilter L F ?L2}
Send Close

in
{NewPortClose L2 Send Close}
{Barrier

{Map L
fun {$ X}

proc {$}
if {F X} then {Send X} end

end
end }}

{Close}
end

Figure 5.20: A concurrent filter without sequential dependencies

We call this the slot-reserving semantics of Send.6

Unfortunately, this semantics is not the right one in general. We really want
an eventual slot-reserving semantics, where the Send operation might not imme-
diately reserve a slot but we are sure that it will eventually. Why is this semantics
“right”? It is because it is the natural behavior of a distributed system, where
a program is spread out over more than one process and processes can be on
different machines. A Send can execute on a different process than where the
port stream is constructed. Doing a Send does not immediately reserve a slot
because the slot might be on a different machine (remember that the Send should
complete immediately)! All we can say is that doing a Send will eventually reserve
a slot.

With the “right” semantics for Send, our termination detection algorithm is
incorrect since {Send Pt ˜1} might arrive before {Send Pt 1} . We can fix the
problem by defining a slot-reserving port in terms of an eventual slot-reserving
port:

proc {NewSPort ?S ?SSend}
S1 P={NewPort S1} in

proc {SSend M} X in {Send P M#X} {Wait X} end
thread S={Map S1 fun {$ M#X} X= unit M end } end

end

NewSPort behaves like NewPort . If NewPort defines an eventual slot-reserving
port, then NewSPort will define a slot-reserving port. Using NewSPort in the
termination detection algorithm will ensure that it is correct in case we use the
“right” port semantics.

6This is sometimes called a synchronous Send, because it only completes when the message
is delivered to the stream. We will avoid this term because the concept of “delivery” is not
clear. For example, we might want to talk about delivering a message to an application process
instead of a stream.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.5 Using the message-passing concurrent model directly 393

5.5.4 Eliminating sequential dependencies

Let us examine how to remove useless sequential dependencies between different
parts of a program. We take as example the procedure {Filter L F L2} , which
takes a list L and a one-argument boolean function F. It outputs a list L2 that
contains the elements X of L for which {F X} is true. This is a library function
(it is part of the List module) that can be defined declaratively as follows:

fun {Filter L F}
case L
of nil then nil
[] X|L2 then

if {F X} then X|{Filter L2 F} else {Filter L2 F} end
end

end

or equivalently, using the loop syntax:

fun {Filter L F}
for X in L collect:C do

if {F X} then {C X} end
end

end

This definition is efficient, but it introduces sequential dependencies: {F X} can
be calculated only after it has been calculated for all elements of L before X. These
dependencies are introduced because all calculations are done sequentially in the
same thread. But these dependencies are not really necessary. For example, in
the call:

{Filter [A 5 1 B 4 0 6] fun {$ X} X>2 end Out}

it is possible to deduce immediately that 5, 4, and 6 will be in the output, without
waiting for A and B to be bound. Later on, if some other thread does A=10, then
10 could be added to the result immediately.

We can write a new version of Filter that avoids these dependencies. It
constructs its output incrementally, as the input information arrives. We use two
building blocks:

• Concurrent composition (see Section 4.4.3). The procedure Barrier im-
plements concurrent composition: it creates a concurrent task for each list
element and waits until all are finished.

• Asynchronous channels (ports, see earlier in this chapter). The procedure
NewPortClose implements a port with a send and a close operation. Its
definition is given in the supplements file on the book’s Web site. The close
operation terminates the port’s stream with nil .

Figure 5.20 gives the definition. It first creates a port whose stream is the output
list. Then Barrier is called with a list of procedures, each of which adds X to

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

394 Message-Passing Concurrency

the output list if {F X} is true. Finally, when all list elements are taken care of,
the output list is ended by closing the port.

Is ConcFilter declarative? As it is written, certainly not, since the output
list can appear in any order (an observable nondeterminism). It can be made
declarative by hiding this nondeterminism, for example by sorting the output
list. There is another way, using the properties of ADTs. If the rest of the
program does not depend on the order (e.g., the list is a representation of a set
data structure), then ConcFilter can be treated as if it were declarative. This
is easy to see: if the list were in fact hidden inside a set ADT, then ConcFilter

would be deterministic and hence declarative.

5.6 The Erlang language

The Erlang language was developed by Ericsson for telecommunications applica-
tions, in particular, for telephony [9, 206]. Its implementation, the Ericsson OTP
(Open Telecom Platform), features fine-grained concurrency (efficient threads),
extreme reliability (high performance software fault tolerance), and hot code re-
placement ability (update software while the system is running). It is a high-level
language that hides the internal representation of data and does automatic mem-
ory management. It has been used successfully in several Ericsson products.

5.6.1 Computation model

The Erlang computation model has an elegant layered structure. We first ex-
plain the model and then we show how it is extended for distribution and fault
tolerance.

The Erlang computation model consists of entities called processes, similar to
port objects, that communicate through message passing. The language can be
divided into two layers:

• Functional core. Port objects are programmed in a dynamically-typed
strict functional language. Each port object contains one thread that runs
a recursive function whose arguments are the thread’s state. Functions can
be passed in messages.

• Message passing extension. Threads communicate by sending messages
to other threads asynchronously in FIFO order. Each thread has a unique
identifier, its PID, which is a constant that identifies the receiving thread,
but can also be embedded in data structures and messages. Messages are
values in the functional core. They are put in the receiving thread’s mailbox.
Receiving can be blocking or nonblocking. The receiving thread uses pattern
matching to wait for and then remove messages that have a given form
from its mailbox, without disturbing the other messages. This means that
messages are not necessarily treated in the order that they are sent.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.6 The Erlang language 395

A port object in Erlang consists of a thread associated with one mailbox. This
is called a process in Erlang terminology. A process that spawns a new process
specifies which function should be initially executed inside it.

Extensions for distribution and fault tolerance

The centralized model is extended for distribution and fault tolerance:

• Transparent distribution. Processes can be on the same machine or
on different machines. A single machine environment is called a node in
Erlang terminology. In a program, communication between local or remote
processes is written in exactly the same way. The PID encapsulates the
destination and allows the run-time system to decide whether to do a local or
remote operation. Processes are stationary; this means that once a process
is created in a node it remains there for its entire lifetime. Sending a
message to a remote process requires exactly one network operation, i.e.,
no intermediate nodes are involved. Processes can also be created at remote
nodes. Programs are network transparent, i.e., they give the same result
no matter on which nodes the processes are placed. Programs are network
aware since the programmer has complete control of process placement and
can optimize it according to the network characteristics.

• Failure detection. A process can be set up to detect faults in another pro-
cess. In Erlang terminology this is called linking the two processes. When
the second process fails, a message is sent to the first, which can receive it.
This failure detection ability allows many fault-tolerance mechanisms to be
programmed entirely in Erlang.

• Persistence. The Erlang run-time system comes with a database, called
Mnesia, that helps to build highly available applications.

We can summarize by saying that Erlang’s computation model (port objects
without mutable state) is strongly optimized for building fault-tolerant distribut-
ed systems. The Mnesia database compensates for the lack of a general mutable
store. A typical example of a product built using Erlang is Ericsson’s AXD301
ATM switch, which provides telephony over an ATM network. The AXD301
handles 30-40 million calls per week with a reliability of 99.9999999% (about 30
ms downtime per year) and contains 1.7 million lines of Erlang [8].

5.6.2 Introduction to Erlang programming

To give a taste of Erlang, we give some small Erlang programs and show how
to do the same thing in the computation models of this book. The programs
are mostly taken from the Erlang book [9]. We show how to write functions
and concurrent programs with message passing. For more information on Erlang
programming, we highly recommend the Erlang book.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

396 Message-Passing Concurrency

A simple function

The core of Erlang is a strict functional language with dynamic typing. Here is
a simple definition of the factorial function:

factorial(0) -> 1;

factorial(N) when N>0 -> N*factorial(N-1).

This example introduces the basic syntactic conventions of Erlang. Function
names are in lowercase and variable identifiers are capitalized. Variable identifiers
are bound to values when defined, which means that Erlang has a value store.
An identifier’s binding cannot be changed; it is single assignment, just as in the
declarative model. These conventions are inherited from Prolog, in which the
first Erlang implementation (an interpreter) was written.

Erlang functions are defined by clauses; each clause has a head (with a pattern
and optional guard) and a body. The patterns are checked in order starting with
the first clause. If a pattern matches, its variables are bound and the clause body
is executed. The optional guard is a boolean function that has to return true.
All the variable identifiers in the pattern must be different. If a pattern does not
match, then the next clause is tried. We can translate the factorial as follows in
the declarative model:

fun {Factorial N}
case N
of 0 then 1
[] N andthen N>0 then N*{Factorial N-1}
end

end

The case statement does pattern matching exactly as in Erlang, with a different
syntax.

Pattern matching with tuples

Here is a function that does pattern matching with tuples:

area({square, Side}) ->

Side*Side;

area({rectangle, X, Y}) ->

X*Y;

area({circle, Radius}) ->

3.14159*Radius*Radius;

area({triangle, A, B, C}) ->

S=(A+B+C)/2;

math:sqrt(S*(S-A)*(S-B)*(S-C)).

This uses the square root function sqrt defined in the module math. This function
calculates the area of a plane shape. It represents the shape by means of a tuple

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.6 The Erlang language 397

that identifies the shape and gives its size. Tuples in Erlang are written with curly
braces: {square, Side} would be written as square(Side) in the declarative
model. In the declarative model, the function can be written as follows:

fun {Area T}
case T
of square(Side) then Side*Side
[] rectangle(X Y) then X*Y
[] circle(Radius) then 3.14159*Radius*Radius
[] triangle(A B C) then S=(A+B+C)/2.0 in

{Sqrt S*(S-A)*(S-B)*(S-C)}
end

end

Concurrency and message passing

In Erlang, threads are created together with a mailbox that can be used to send
messages to the thread. This combination is called a process. There are three
primitives:

• The spawn operation (written as spawn(M,F,A)) creates a new process and
returns a value (called “process identifier”) that can be used to send mes-
sages to it. The arguments of spawn give the initial function call that starts
the process, identified by module M, function name F, and argument list A.

• The send operation (written as Pid!Msg) asynchronously sends the message
Msg to the process, which is identified by its process identifier Pid. The
messages are put in the mailbox, which is a kind of process queue.

• The receive operation receives a message from inside the process. It uses
pattern matching to pick a message from the mailbox.

Let us take the area function and put it inside a process. This makes it into a
server that can be called from any other process.

-module(areaserver).

-export([start/0, loop/0]).

start() -> spawn(areaserver, loop, []).

loop() ->

receive

{From, Shape} ->

From!area(Shape),

loop()

end.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

398 Message-Passing Concurrency

This defines the two operations start and loop in the new module areaserver.
These two operations are exported outside the module. We need to define them
in a module because the spawn operation requires the module name as an ar-
gument. The loop operation repeatedly reads a message (a two-argument tuple
{From, Shape}) and responds to it by calling area and sending the reply to the
process From. Now let us start a new server and call it:

Pid=areaserver:start(),

Pid!{self(), {square, 3.4}},

receive

Ans -> ...

end,

Here self() is a language operation that returns the process identifier of the
current process. This allows the server to return a reply. Let us write this in the
concurrent stateful model:

fun {Start}
S AreaServer={NewPort S} in

thread
for msg(Ans Shape) in S do

Ans={Area Shape}
end

end
AreaServer

end

Let us again start a new server and call it:

Pid={Start}
local Ans in

{Send Pid msg(Ans square(3.4))}
{Wait Ans}
...

end

This example uses the dataflow variable Ans to get the reply. This mimics the
send to From done by Erlang. To do exactly what Erlang does, we need to
translate the receive operation into a computation model of the book. This is
a little more complicated. It is explained in the next section.

5.6.3 The receive operation

Much of the unique flavor and expressiveness of concurrent programming in Er-
lang is due to the mailboxes and how they are managed. Messages are taken out
of a mailbox with the receive operation. It uses pattern matching to pick out
a desired message, leaving the other messages unchanged. Using receive gives
particularly compact, readable, and efficient code. In this section, we implement

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.6 The Erlang language 399

receive as a linguistic abstraction. We show how to translate it into the com-
putation models of this book. There are two reasons for giving the translation.
First, it gives a precise semantics for receive, which aids the understanding of
Erlang. Second, it shows how to do Erlang-style programming in Oz.

Because of Erlang’s functional core, receive is an expression that returns a
value. The receive expression has the following general form [9]:

receive

Pattern1 [when Guard1] -> Body1;

...

PatternN [when GuardN] -> BodyN;

[after Expr -> BodyT;]

end

The guards (when clauses) and the time out (after clause) are optional. This
expression blocks until a message matching one of the patterns arrives in the
current thread’s mailbox. It then removes this message, binds the corresponding
variables in the pattern, and executes the body. Patterns are very similar to pat-
terns in the case statement of this book: they introduce new single-assignment
variables whose scope ranges over the corresponding body. For example, the
Erlang pattern {rectangle, [X,Y]} corresponds to the pattern rectangle([X

Y]) . Identifiers starting with lowercase letters correspond to atoms and identi-
fiers starting with capital letters correspond to variables, like the notation of this
book. Compound terms are enclosed in braces { and } and correspond to tuples.

The optional after clause defines a time out; if no matching message arrives
after a number of milliseconds given by evaluating the expression Expr, then the
time-out body is executed. If zero milliseconds are specified, then the after

clause is executed immediately if there are no messages in the mailbox.

General remarks

Each Erlang process is translated into one thread with one port. Sending to
the process means sending to the port. This adds the message to the port’s
stream, which represents the mailbox contents. All forms of receive, when they
complete, either take exactly one message out of the mailbox or leave the mailbox
unchanged. We model this by giving each translation of receive an input stream
and an output stream. All translations have two arguments, Sin and Sout , that
reference the input stream and the output stream. These streams do not appear
in the Erlang syntax. After executing a receive, there are two possibilities for
the value of the output stream. Either it is the same as the input stream or it
has one less message than the input stream. The latter occurs if the message
matches a pattern.

We distinguish three different forms of receive that result in different trans-
lations. In each form the translation can be directly inserted in a program and
it will behave like the respective receive. The first form is translated using the

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

400 Message-Passing Concurrency

T (receive ... end Sin Sout) ≡
local

fun {Loop S T#E Sout}
case S of M|S1 then

case M
of T (Pattern1) then E=S1 T (Body1 T Sout)
...
[] T (PatternN) then E=S1 T (BodyN T Sout)
else E1 in E=M|E1 {Loop S1 T#E1 Sout}
end

end
end T

in
{Loop Sin T#T Sout}

end

Figure 5.21: Translation of receive without time out

declarative model. The second form has a time out; it uses the nondeterministic
concurrent model (see Section 8.2). The third form is a special case of the second
where the delay is zero, which makes the translation much simpler.

First form (without time out)

The first form of the receive expression is as follows:

receive

Pattern1 -> Body1;

...

PatternN -> BodyN;

end

The receive blocks until a message arrives that matches one of the patterns.
The patterns are checked in order from Pattern1 to PatternN. We leave out
the guards to avoid cluttering up the code. Adding them is straightforward. A
pattern can be any partial value; in particular an unbound variable will always
cause a match. Messages that do not match are put in the output stream and do
not cause the receive to complete.

Figure 5.21 gives the translation of the first form, which we will write as
T (receive ... end Sin Sout). The output stream contains the messages that
remain after the receive expression has removed the ones it needs. Note that the
translation T (Body T Sout) of a body that does not contain a receive expression
must bind Sout=T .

The Loop function is used to manage out-of-order reception: if a message Mis
received that does not match any pattern, then it is put in the output stream and

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.6 The Erlang language 401

T (receive ... end Sin Sout) ≡
local

Cancel={Alarm T (Expr)}
fun {Loop S T#E Sout}

if {WaitTwo S Cancel}==1 then
case S of M|S1 then

case M
of T (Pattern1) then E=S1 T (Body1 T Sout)
...
[] T (PatternN) then E=S1 T (BodyN T Sout)
else E1 in E=M|E1 {Loop S1 T#E1 Sout} end

end
else E=S T (BodyT T Sout)

end T
in

{Loop Sin T#T Sout}
end

Figure 5.22: Translation of receive with time out

Loop is called recursively. Loop uses a difference list to manage the case when a
receive expression contains a receive expression.

Second form (with time out)

The second form of the receive expression is as follows:

receive

Pattern1 -> Body1;

...

PatternN -> BodyN;

after Expr -> BodyT;

end

When the receive is entered, Expr is evaluated first, giving the integer n. If
no match is done after n milliseconds, then the time-out action is executed. If a
match is done before n milliseconds, then it is handled as if there were no time
out. Figure 5.22 gives the translation.

The translation uses a timer interrupt implemented by Alarm and WaitTwo .
{Alarm N} , explained in Section 4.6, is guaranteed to wait for at least n mil-
liseconds and then bind the unbound variable Cancel to unit . {WaitTwo S

Cancel} , which is defined in the supplements file on the book’s Web site, waits
simultaneously for one of two events: a message (S is bound) and a time out
(Cancel is bound). It can return 1 if its first argument is bound and 2 if its
second argument is bound.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

402 Message-Passing Concurrency

T (receive ... end Sin Sout) ≡
if {IsDet Sin} then

case Sin of M|S1 then
case M
of T (Pattern1) then T (Body1 S1 Sout)
...
[] T (PatternN) then T (BodyN) S1 Sout)
else T (BodyT Sin Sout) end

end
else Sout=Sin end

Figure 5.23: Translation of receive with zero time out

The Erlang semantics is slightly more complicated than what is defined in
Figure 5.22. It guarantees that the mailbox is checked at least once, even if the
time out is zero or has expired by the time the mailbox is checked. We can
implement this guarantee by stipulating that WaitTwo favors its first argument,
i.e., that it always returns 1 if its first argument is determined. The Erlang
semantics also guarantees that the receive is exited quickly after the time out
expires. While this is easily guaranteed by an actual implementation, it is not
guaranteed by Figure 5.22 since Loop could go on forever if messages arrive
quicker than the loop iterates. We leave it to the reader to modify Figure 5.22 to
add this guarantee.

Third form (with zero time out)

The third form of the receive expression is like the second form except that
the time-out delay is zero. With zero delay the receive is nonblocking. A
simpler translation is possible when compared to the case of nonzero time out.
Figure 5.23 gives the translation. Using IsDet , it first checks whether there is a
message that matches any of the patterns. {IsDet S} , explained in Section 4.9.3,
checks immediately whether S is bound or not and returns true or false . If
there is no message that matches (for example, if the mail box is empty) then
the default action BodyT is done.

5.7 Advanced topics

5.7.1 The nondeterministic concurrent model

This section explains the nondeterministic concurrent model, which is intermedi-
ate in expressiveness between the declarative concurrent model and the message-
passing concurrent model. It is less expressive than the message-passing model
but in return it has a logical semantics (see Chapter 9).

The nondeterministic concurrent model is the model used by concurrent logic

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.7 Advanced topics 403

〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| thread 〈s〉 end Thread creation
| {WaitTwo 〈x〉 〈y〉 〈z〉} Nondeterministic choice

Table 5.2: The nondeterministic concurrent kernel language

programming [177]. It is sometimes called the process model of logic program-
ming, since it models predicates as concurrent computations. It is interesting
both for historical reasons and for the insight it gives into practical concurrent
programming. We first introduce the nondeterministic concurrent model and
show how it solves the stream communication problem of Section 4.7.3. We then
show how to implement nondeterministic choice in the declarative concurrent
model with exceptions, showing that the latter is at least as expressive as the
nondeterministic model.

Table 5.2 gives the kernel language of the nondeterministic concurrent model.
It adds just one operation to the declarative concurrent model: a nondeterministic
choice that waits for either of two events and nondeterministically returns when
one has happened with an indication of which one.

Limitation of the declarative concurrent model

In Section 4.7.3 we saw a fundamental limitation of the declarative concurrent
model: stream objects must access input streams in a fixed pattern. Two streams
cannot independently feed the same stream object. How can we solve this prob-
lem? Consider the case of two client objects and a server object. We can try
to solve it by putting a new stream object, a stream merger, in between the two
clients and the server. The stream merger has two input streams and one output
stream. All the messages appearing on each of the input streams will be put on
the output stream. Figure 5.24 illustrates the solution. This seems to solve our
problem: each client sends messages to the stream merger, and the stream merger
forwards them to the server. The stream merger is defined as follows:

fun {StreamMerger OutS1 OutS2}
case OutS1#OutS2
of (M|NewS1)#OutS2 then

M|{StreamMerger NewS1 OutS2}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

404 Message-Passing Concurrency

Cli ent 1

Client 2

Server

OutS2

OutS1

InSStream

Merger

Figure 5.24: Connecting two clients using a stream merger

[] OutS1#(M|NewS2) then
M|{StreamMerger OutS1 NewS2}

[] nil#OutS2 then
OutS2

[] OutS1#nil then
OutS1

end
end

The stream merger is executed in its own thread. This definition handles the case
of termination, i.e., when either or both clients terminate. Yet, this solution has
a basic difficulty: it does not work! Why not? Think carefully before reading the
answer in the footnote.7

Adding nondeterministic choice

But this abortive solution has the germs of a working solution. The problem is
that the case statement only waits on one condition at a time. A possible solution
is therefore to extend the declarative concurrent model with an operation that
allows to wait concurrently on more than one condition. We call this operation
nondeterministic choice. One of the simplest ways is to add an operation that
waits concurrently on two dataflow variables being bound. We call this operation
WaitTwo because it generalizes Wait . The function call {WaitTwo A B} returns
when either A or B is bound. It returns either 1 or 2. It can return 1 when
A is bound and 2 when B is bound. A simple Mozart definition is given in
the supplements file on the book’s Web site. The declarative concurrent model
extended with WaitTwo is called the nondeterministic concurrent model.

7It is because the case statement tests only one pattern at a time, and only goes to the
next when the previous ones fail. While it is waiting on stream OutS1 , it cannot accept an
input from stream OutS2 , and vice versa.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.7 Advanced topics 405

Concurrent logic programming

The nondeterministic concurrent model is the basic model of concurrent logic
programming, as pioneered by IC-Prolog, Parlog, Concurrent Prolog, FCP (Flat
Concurrent Prolog), GHC (Guarded Horn Clauses), and Flat GHC [35, 36, 34,
175, 176, 191]. It is the principal computation model that was used by the
Japanese Fifth Generation Project and many other substantial projects in the
1980’s [177, 57, 190]. In the nondeterministic concurrent model, it is possible to
write a stream merger. Its definition looks as follows:

fun {StreamMerger OutS1 OutS2}
F={WaitTwo OutS1 OutS2}

in
case F#OutS1#OutS2
of 1#(M|NewS1)#OutS2 then

M|{StreamMerger OutS2 NewS1}
[] 2#OutS1#(M|NewS2) then

M|{StreamMerger NewS2 OutS1}
[] 1#nil#OutS2 then

OutS2
[] 2#OutS1#nil then

OutS1
end

end

This style of programming is exactly what concurrent logic programming does. A
typical syntax for this definition in a Prolog-like concurrent logic language would
be as follows:

streamMerger([M|NewS1], OutS2, InS) :- true |

InS=[M|NewS],

streamMerger(OutS2, NewS1, NewS).

streamMerger(OutS1, [M|NewS2], InS) :- true |

InS=[M|NewS],

streamMerger(NewS2, OutS1, NewS).

streamMerger([], OutS2, InS) :- true |

InS=OutS2.

streamMerger(OutS1, [], InS) :- true |

InS=OutS1.

This definition consists of four clauses, each of which defines one nondeterministic
choice. Keep in mind that syntactically Prolog uses [] for nil and [H|T] for
H|T . Each clause consists of a guard and a body. The vertical bar | separates
the guard from the body. A guard does only tests, blocking if a test cannot be
decided. A guard must be true for a clause to be choosable. The body is executed
only if the clause is chosen. The body can bind output variables.

The stream merger first calls WaitTwo to decide which stream to listen to.
Only after WaitTwo returns does it enter the case statement. Because of the

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

406 Message-Passing Concurrency

argument F, alternatives that do not apply are skipped. Note that the recursive
calls reverse the two stream arguments. This helps guarantee fairness between
both streams in systems where the WaitTwo statement favors one or the other
(which is often the case in an implementation). A message appearing on an input
stream will eventually appear on the output stream, independent of what happens
in the other input stream.

Is it practical?

What can we say about practical programming in this model? Assume that new
clients arrive during execution. Each client wants to communicate with the server.
This means that a new stream merger must be created for each client! The final
result is a tree of stream mergers feeding the server. Is this a practical solution?
It has two problems:

• It is inefficient. Each stream merger executes in its own thread. The tree of
stream mergers is extended at run time each time a new object references
the server. Furthermore, the tree is not necessarily balanced. It would take
extra work to balance it.

• It lacks expressiveness. It is not possible to reference the server directly.
For example, it is not possible to put a server reference in a data structure.
The only way we have to reference the server is by referencing one of its
streams. We can put this in a data structure, but only one client can
use this reference. (Remember that declarative data structures cannot be
modified.)

How can we solve these two problems? The first problem could hypothetically
be solved by a very smart compiler that recognizes the tree of stream mergers
and replaces it by a direct many-to-one communication in the implementation.
However, after two decades of research in this area, such a compiler does not
exist [190]. Some systems solve the problem in another way: by adding an ab-
straction for multi-way merge whose implementation is done outside the model.
This amounts to extending the model with ports. The second problem can be
partially solved (see Exercises), but the solution is still cumbersome.

We seem to have found an inherent limitation of the nondeterministic con-
current model. Upon closer examination, the problem seems to be that there is
no notion of explicit state in the model, where explicit state associates a name
with a store reference. Both the name and the store reference are immutable;
only their association can be changed. There are many equivalent ways to intro-
duce explicit state. One way is by adding the concept of cell, as will be shown
in Chapter 6. Another way is by adding the concept of port, as we did in this
chapter. Ports and cells are equivalent in a concurrent language: there are simple
implementations of each in terms of the other.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.8 Exercises 407

fun {WaitTwo A B}
X in

thread {Wait A} try X=1 catch _ then skip end end
thread {Wait B} try X=2 catch _ then skip end end
X

end

Figure 5.25: Symmetric nondeterministic choice (using exceptions)

fun {WaitTwo A B}
U in

thread {Wait A} U= unit end
thread {Wait B} U= unit end
{Wait U}
if {IsDet A} then 1 else 2 end

end

Figure 5.26: Asymmetric nondeterministic choice (using IsDet)

Implementing nondeterministic choice

The WaitTwo operation can be defined in the declarative concurrent model if
exceptions are added.8 Figure 5.25 gives a simple definition. This returns 1 or 2,
depending on whether A is bound or B is bound. This definition is symmetric; it
does not favor either A or B. We can write an asymmetric version that favors A

by using IsDet , as shown in Figure 5.26.9

5.8 Exercises

1. Port objects that share one thread. Section 5.5.1 gives a small pro-
gram, ‘Ping-Pong’, that has two port objects. Each object executes a
method and then asynchronously calls the other. When one initial message
is inserted into the system, this causes an infinite ping-pong of messages to
bounce between the objects. What happens if two (or more) initial mes-
sages are inserted? For example, what happens if these two initial calls are
done:

{Call Ping ping(0)}
{Call Pong pong(10000000)}

8For practical use, however, we recommend the definition given in the supplements file on
the book’s Web site.

9Both definitions have the minor flaw that they can leave threads “hanging around” forever
if one variable is never bound. The definitions can be corrected to terminate any hanging
threads. We leave these corrections as exercises for the reader.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

