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Messages will still ping-pong indefinitely, but how? Which messages will be
sent and how will the object executions be interleaved? Will the interleaving
be in lock-step (alternating between objects strictly), looser (subject to
fluctuations due to thread scheduling), or something in between?

2. Lift control system. Section 5.4.4 gives the design of a simple lift control
system. Let us explore it:

• The current design has one controller object per lift. To economize on
costs, the developer decides to change this to keep just one controller
for the whole system. Each lift then communicates with this controller.
The controller’s internal definition stays the same. Is this a good idea?
How does it change the behavior of the lift control system?

• In the current design, the controller steps up or down one floor at a
time. It stops at all floors that it passes, even if the floor was not
requested. Change the lift and controller objects to avoid this jumpy
behavior by stopping only at requested floors.

3. Fault tolerance for the lift control system. There are two kinds of
faults that can happen: components can be blocked temporarily or they
can be permanently out of order. Let us see how to handle each case:

• A lift is blocked. Extend the system to continue working when a lift
is temporarily blocked at a floor by a malicious user. First extend the
floor to reset the door timer when the floor is called while the doors
are open. Then the lift’s schedule should be given to other lifts and the
floors should no longer call that particular lift. When the lift works
again, floors should again be able to call the lift. This can be done
with time-outs.

• A lift is out of order. The first step is to add generic primitives for
failure detection. We might need both synchronous and asynchronous
detection. In synchronous detection, when a component goes down, we
assume that any message sent to it gets the immediate reply down(Id) ,
where Id identifies the component. In asynchronous detection, we
“link” a component to another when they are both still working. Then,
when the second component crashes, the down message is sent to the
first one immediately. Now extend the system to continue working
when a lift is out of order. The system should reconfigure itself to
continue working for a building with one less lift.

• A floor is out of order. Extend the system to continue working when a
floor is out of order. The system should reconfigure itself to continue
working for a building with one less floor.

• Lift maintenance. Extend the system so that a lift can be brought
down for maintenance and brought back up again later.
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• Interactions. What happens if several floors and lifts become out of
order simultaneously? Does your system handle this properly?

4. Termination detection. Replace definition of SubThread in Section 5.5.3
by:

proc {SubThread P}
thread

{Send Pt 1} {P} {Send Pt ˜1}
end

end

Explain why the result is not correct. Give an execution such that there
exists a point where the sum of the elements on the port’s stream is zero,
yet all threads have not terminated.

5. Concurrent filter. Section 5.5.4 defines a concurrent version of Filter ,
called ConcFilter , that calculates each output element independently, i.e.,
without waiting for the previous ones to be calculated.

(a) What happens when the following is executed:

declare Out
{ConcFilter [5 1 2 4 0] fun {$ X} X>2 end Out}
{Show Out}

How many elements are displayed by the ShowWhat is the order of the
displayed elements? If several displays are possible, give all of them.
Is the execution of ConcFilter deterministic? Why or why not?

(b) What happens when the following is executed:

declare Out
{ConcFilter [5 1 2 4 0] fun {$ X} X>2 end Out}
{Delay 1000}
{Show Out}

What is displayed now by Show? If several displays are possible, give
all of them.

(c) What happens when the following is executed:

declare Out A
{ConcFilter [5 1 A 4 0] fun {$ X} X>2 end Out}
{Delay 1000}
{Show Out}

What is displayed now? What is the order of the displayed elements?
If, after the above, A is bound to 3, then what happens to the list Out ?

(d) If the input list has n elements, what is the complexity (in “big-Oh”
notation) of the number of operations of ConcFilter ? Discuss the
difference in execution time between Filter and ConcFilter .
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6. Semantics of Erlang’s receive. Section 5.6.3 shows how to translate
Erlang’s receive operation. The second form of this operation, with time
out, is the most general one. Let us take a closer look.

(a) Verify that the second form reduces to the third form, when the time
out delay is zero.

(b) Verify that the second form reduces to the first form, when the time
out delay approaches infinity.

(c) Another way to translate the second form would be to insert a unique
message (using a name) after n milliseconds. This requires some care to
keep the unique message from appearing in the output stream. Write
another translation of the third form that uses this technique. What
are the advantages and disadvantages of this translation with respect
to the one in the book?

7. Erlang’s receive as a control abstraction. For this exercise, implement
the Erlang receive operation, which is defined in Section 5.6.3, as the
following control abstraction:

• C={Mailbox.new} creates a new mailbox C.

• {Mailbox.send C M} sends message Mto mailbox C.

• {Mailbox.receive C [P1#E1 P2#E2 ... Pn#En] D} performs a
receive on mailbox C. Pi is a one-argument boolean function fun {$

M} 〈expr〉 end that represents a pattern and its guard. The function
returns true if and only if the pattern and guard succeed for message
M. Ei is a one-argument function fun {$ M} 〈expr〉 end that represents
a body. It is executed when message M is received and the receive
returns its result. D represents the delay. It is either a nonnegative
integer giving the delay in milliseconds or the atom infinity , which
represents an infinite delay.

8. Limitations of stream communication. In this exercise, we explore the
limits of stream communication in the nondeterministic concurrent model.
Section 5.7.1 claims that we can partially solve the problem of putting server
references in a data structure. How far can we go? Consider the following
active object:

declare NS
thread {NameServer NS nil} end

where NameServer is defined as follows:

proc {NameServer NS L}
case NS
of register(A S)|NS1 then
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{NameServer NS1 A#S|L}
[] getstream(A S)|NS1 then L1 OldS NewS in

L1={Replace L A OldS NewS}
thread {StreamMerger S NewS OldS} end
{NameServer NS1 L1}

[] nil then
skip

end
end

fun {Replace InL A OldS NewS}
case InL
of B#S|L1 andthen A=B then

OldS=S
A#NewS|L1

[] E|L1 then
E|{Replace L1 A OldS NewS}

end
end

The NameServer object understands two commands. Assume that S is a
server’s input stream and foo is the name we wish to give the server. Given
a reference NSto the name server’s input stream, doing NS=register(foo

S)|NS1 will add the pair foo#S to its internal list L. Doing NS=getstream(foo

S1)|NS1 will create a fresh input stream, S1, for the server whose name is
foo , which the name server has stored on its internal list L. Since foo is a
constant, we can put it in a data structure. Therefore, it seems that we can
put server references in a data structure, by defining a name server. Is this
a practical solution? Why or why not? Think before reading the answer in
the footnote.10

10It’s not possible to name the name server! It has to be added as an extra argument to all
procedures. Eliminating this argument needs explicit state.
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Chapter 6

Explicit State

“L’état c’est moi.”
“I am the state.”
– Louis XIV (1638–1715)

“If declarative programming is like a crystal, immutable and prac-
tically eternal, then stateful programming is organic: it grows and
evolves as we watch.”
– Inspired by On Growth and Form, D’Arcy Wentworth Thompson
(1860–1948)

At first glance, explicit state is just a minor extension to declarative program-
ming: in addition to depending on its arguments, the component’s result also
depends on an internal parameter, which is called its “state”. This parameter
gives the component a long-term memory, a “sense of history” if you will.1 With-
out state, a component has only short-term memory, one that exists during a
particular invocation of the component. State adds a potentially infinite branch
to a finitely running program. By this we mean the following. A component that
runs for a finite time can only have gathered a finite amount of information. If the
component has state, then to this finite information can be added the information
stored by the state. This “history” can be indefinitely long, since the component
can have a memory that reaches far into the past.

Oliver Sacks has described the case of people with brain damage who only
have a short-term memory [161]. They live in a continuous “present” with no
memory beyond a few seconds into the past. The mechanism to “fix” short-term
memories into the brain’s long-term storage is broken. Strange it must be to live
in this way. Perhaps these people use the external world as a kind of long-term
memory? This analogy gives some idea of how important state can be for people.
We will see that state is just as important for programming.

1Chapter 5 also introduced a form of long-term memory, the port. It was used to define port
objects, active entities with an internal memory. The main emphasis there was on concurrency.
The emphasis of this chapter is on the expressiveness of state without concurrency.
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414 Explicit State

Structure of the chapter

This chapter gives the basic ideas and techniques of using state in program design.
The chapter is structured as follows:

• We first introduce and define the concept of explicit state in the first three
sections.

– Section 6.1 introduces explicit state: it defines the general notion of
“state”, which is independent of any computation model, and shows
the different ways that the declarative and stateful models implement
this notion.

– Section 6.2 explains the basic principles of system design and why state
is an essential part of system design. It also gives first definitions of
component-based programming and object-oriented programming.

– Section 6.3 precisely defines the stateful computation model.

• We then introduce ADTs with state in the next two sections.

– Section 6.4 explains how to build abstract data types both with and
without explicit state. It shows the effect of explicit state on building
secure abstract data types.

– Section 6.5 gives an overview of some useful stateful ADTs, namely
collections of items. It explains the trade-offs of expressiveness and
efficiency in these ADTs.

• Section 6.6 shows how to reason with state. We present a technique, the
method of invariants, that can make this reasoning almost as simple as
reasoning about declarative programs, when it can be applied.

• Section 6.7 explains component-based programming. This is a basic pro-
gram structuring technique that is important both for very small and very
large programs. It is also used in object-oriented programming.

• Section 6.8 gives some case studies of programs that use state, to show more
clearly the differences with declarative programs.

• Section 6.9 introduces some more advanced topics: the limitations of state-
ful programming and how to extend memory management for external ref-
erences.

Chapter 7 continues the discussion of state by developing a particularly rich
programming style, namely object-oriented programming. Because of the wide
applicability of object-oriented programming, we devote a full chapter to it.
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A problem of terminology

Stateless and stateful programming are often called declarative and imperative
programming, respectively. The latter terms are not quite right, but tradition
has kept their use. Declarative programming, taken literally, means programming
with declarations, i.e., saying what is required and letting the system determine
how to achieve it. Imperative programming, taken literally, means to give com-
mands, i.e., to say how to do something. In this sense, the declarative model of
Chapter 2 is imperative too, because it defines sequences of commands.

The real problem is that “declarative” is not an absolute property, but a
matter of degree. The language Fortran, developed in the late 1950’s, was the
first mainstream language that allowed writing arithmetic expressions in a syntax
that resembles mathematical notation [13]. Compared to assembly language this
is definitely declarative! One could tell the computer that I+J is required with-
out specifying where in memory to store I and J and what machine instructions
are needed to retrieve and add them. In this relative sense, languages have been
getting more declarative over the years. Fortran led to Algol-60 and structured
programming [46, 45, 130], which led to Simula-67 and object-oriented program-
ming [137, 152].2

This book sticks to the traditional usage of declarative as stateless and im-
perative as stateful. We call the computation model of Chapter 2 “declarative”,
even though later models are arguably more declarative, since they are more ex-
pressive. We stick to the traditional usage because there is an important sense in
which the declarative model really is declarative according to the literal meaning.
This sense appears when we look at the declarative model from the viewpoint of
logic and functional programming:

• A logic program can be “read” in two ways: either as a set of logical axioms
(the what) or as a set of commands (the how). This is summarized by
Kowalski’s famous equation Program = Logic + Control [106]. The logical
axioms, when supplemented by control flow information (either implicit or
explicitly given by the programmer), give a program that can be run on a
computer. Section 9.3.3 explains how this works for the declarative model.

• A functional program can also be “read” in two ways: either as a definition
of a set of functions in the mathematical sense (the what) or as a set of
commands for evaluating those functions (the how). As a set of commands,
the definition is executed in a particular order. The two most popular orders
are eager and lazy evaluation. When the order is known, the mathematical
definition can be run on a computer. Section 4.9.2 explains how this works
for the declarative model.

2It is a remarkable fact that all three languages were designed in one ten-year period, from
approximately 1957 to 1967. Considering that Lisp and Absys, among other languages, also
date from this period and that Prolog is from 1972, we can speak of a veritable golden age in
programming language design.
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However, in practice, the declarative reading of a logic or functional program can
lose much of its “what” aspect because it has to go into a lot of detail on the “how”
(see the O’Keefe quote for Chapter 3). For example, a declarative definition
of tree search has to give almost as many orders as an imperative definition.
Nevertheless, declarative programming still has three crucial advantages. First, it
is easier to build abstractions in a declarative setting, since declarative operations
are by nature compositional. Second, declarative programs are easier to test, since
it is enough to test single calls (give arguments and check the results). Testing
stateful programs is harder because it involves testing sequences of calls (due to
the internal history). Third, reasoning with declarative programming is simpler
than with imperative programming (e.g., algebraic reasoning is possible).

6.1 What is state?

We have already programmed with state in the declarative model of Chapter 3.
For example, the accumulators of Section 3.4.3 are state. So why do we need a
whole chapter devoted to state? To see why, let us look closely at what state
really is. In its simplest form, we can define state as follows:

A state is a sequence of values in time that contains the intermediate
results of a desired computation.

Let us examine the different ways that state can be present in a program.

6.1.1 Implicit (declarative) state

The sequence need only exist in the mind of the programmer. It does not need
any support at all from the computation model. This kind of state is called
implicit state or declarative state. As an example, look at the declarative function
SumList :

fun {SumList Xs S}
case Xs
of nil then S
[] X|Xr then {SumList Xr X+S}
end

end

It is recursive. Each call has two arguments: Xs, the unexamined rest of the input
list, and S, the sum of the examined part of the input list. While calculating the
sum of a list, SumList calls itself many times. Let us take the pair (Xs#S) at
each call, since it gives us all the information we need to know to characterize the
call. For the call {SumList [ 1 2 3 4] 0} this gives the following sequence:

[1 2 3 4] # 0
[2 3 4] # 1
[3 4] # 3
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[4] # 6
nil # 10

This sequence is a state. When looked at in this way, SumList calculates with
state. Yet neither the program nor the computation model “knows” this. The
state is completely in the mind of the programmer.

6.1.2 Explicit state

It can be useful for a function to have a state that lives across function calls
and that is hidden from the callers. For example, we can extend SumList to
count how many times it is called. There is no reason why the function’s callers
need to know about this extension. Even stronger: for modularity reasons the
callers should not know about the extension. This cannot be programmed in the
declarative model. The closest we can come is to add two arguments to SumList

(an input and output count) and thread them across all the callers. To do it
without additional arguments we need an explicit state:

An explicit state in a procedure is a state whose lifetime extends over
more than one procedure call without being present in the procedure’s
arguments.

Explicit state cannot be expressed in the declarative model. To have it, we
extend the model with a kind of container that we call a cell. A cell has a name,
an indefinite lifetime, and a content that can be changed. If the procedure knows
the name, it can change the content. The declarative model extended with cells is
called the stateful model. Unlike declarative state, explicit state is not just in the
mind of the programmer. It is visible in both the program and the computation
model. We can use a cell to add a long-term memory to SumList . For example,
let us keep track of how many times it is called:

local
C={NewCell 0}

in
fun {SumList Xs S}

C:=@C+1
case Xs
of nil then S
[] X|Xr then {SumList Xr X+S}
end

end
fun {SumCount} @C end

end

This is the same definition as before, except that we define a cell and update
its content in SumList . We also add the function SumCount to make the state
observable. Let us explain the new operations that act on the explicit state.
NewCell creates a new cell with initial content 0. @gets the content and := puts
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in a new content. If SumCount is not used, then this version of SumList cannot
be distinguished from the previous version: it is called in the same way and gives
the same results.3

The ability to have explicit state is very important. It removes the limits
of declarative programming (see Section 4.7). With explicit state, abstract da-
ta types gain tremendously in modularity since it is possible to encapsulate an
explicit state inside them. The access to the state is limited according to the
operations of the abstract data type. This idea is at the heart of object-oriented
programming, a powerful programming style that is elaborated in Chapter 7. The
present chapter and Chapter 7 both explore the ramifications of explicit state.

6.2 State and system building

The principle of abstraction

As far as we know, the most successful system-building principle for intelligent
beings with finite thinking abilities, such as human beings, is the principle of
abstraction. Consider any system. It can be thought of as having two parts: a
specification and an implementation. The specification is a contract, in a math-
ematical sense that is stronger than the legal sense. The contract defines how
the rest of the world interacts with the system, as seen from the outside. The
implementation is how the system is constructed, as seen from the inside. The
miraculous property of the distinction specification/implementation is that the
specification is usually much simpler to understand than the implementation.
One does not have to know how to build a watch in order to read time on it.
To paraphrase evolutionist Richard Dawkins, it does not matter whether the
watchmaker is blind or not, as long as the watch works.

This means that it is possible to build a system as a concentric series of layers.
One can proceed step by step, building layer upon layer. At each layer, build an
implementation that takes the next lower specification and provides the next
higher one. It is not necessary to understand everything at once.

Systems that grow

How is this approach supported by declarative programming? With the declar-
ative model of Chapter 2, all that the system “knows” is on the outside, except
for the fixed set of knowledge that it was born with. To be precise, because a
procedure is stateless, all its knowledge, its “smarts,” are in its arguments. The
smarter the procedure gets, the “heavier” and more numerous the arguments get.
Declarative programming is like an organism that keeps all its knowledge outside
of itself, in its environment. Despite his claim to the contrary (see the chapter
quote), this was exactly the situation of Louis XIV: the state was not in his person

3The only differences are a minor slowdown and a minor increase in memory use. In almost
all cases, these differences are irrelevant in practice.
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but all around him, in 17th century France.4 We conclude that the principle of
abstraction is not well supported by declarative programming, because we cannot
put new knowledge inside a component.

Chapter 4 partly alleviated this problem by adding concurrency. Stream ob-
jects can accumulate internal knowledge in their internal arguments. Chapter 5
enhanced the expressive power dramatically by adding ports, which makes possi-
ble port objects. A port object has an identity and can be viewed from the outside
as a stateful entity. But this requires concurrency. In the present chapter, we
add explicit state without concurrency. We shall see that this promotes a very
different programming style than the concurrent component style of Chapter 5.
There is a total order among all operations in the system. This cements a strong
dependency between all parts of the system. Later, in Chapter 8, we will add
concurrency to remove this dependency. The model of that chapter is difficult to
program in. Let us first see what we can do with state without concurrency.

6.2.1 System properties

What properties should a system have to best support the principle of abstrac-
tion? Here are three:

• Encapsulation. It should be possible to hide the internals of a part.

• Compositionality. It should be possible to combine parts to make a new
part.

• Instantiation/invocation. It should be possible to create many instances
of a part based on a single definition. These instances “plug” themselves
into their environment (the rest of the system in which they will live) when
they are created.

These properties need support from the programming language, e.g., lexical scop-
ing supports encapsulation and higher-order programming supports instantiation.
The properties do not require state; they can be used in declarative programming
as well. For example, encapsulation is orthogonal to state. On the one hand, it
is possible to use encapsulation in declarative programs without state. We have
already used it many times, for example in higher-order programming and stream
objects. On the other hand, it is also possible to use state without encapsulation,
by defining the state globally so all components have free access to it.

Invariants

Encapsulation and explicit state are most useful when used together. Adding
state to declarative programming makes reasoning about the program much hard-

4To be fair to Louis, what he meant was that the decision-making power of the state was
vested in his person.
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er, because the program’s behavior depends on the state. For example, a pro-
cedure can do a side effect, i.e., it modifies state that is visible to the rest of
the program. Side effects make reasoning about the program extremely difficult.
Bringing in encapsulation does much to make reasoning tractable again. This is
because stateful systems can be designed so that a well-defined property, called
an invariant, is always true when viewed from the outside. This makes reasoning
about the system independent of reasoning about its environment. This part-
ly gives us back one of the properties that makes declarative programming so
attractive.

Invariants are only part of the story. An invariant just says that the com-
ponent is not behaving incorrectly; it does not guarantee that the component
is making progress towards some goal. For that, a second property is needed
to mark the progress. This means that even with invariants, programming with
state is not quite as simple as declarative programming. We find that a good
rule of thumb for complex systems is to keep as many components as possible
declarative. State should not be “smeared out” over many components. It should
be concentrated in just a few carefully-selected components.

6.2.2 Component-based programming

The three properties of encapsulation, compositionality, and instantiation define
component-based programming (see Section 6.7). A component specifies a pro-
gram fragment with an inside and an outside, i.e., with a well-defined interface.
The inside is hidden from the outside, except for what the interface permits.
Components can be combined to make new components. Components can be
instantiated, making a new instance that is linked into its environment. Compo-
nents are a ubiquitous concept. We have already seen them in several guises:

• Procedural abstraction. We have seen a first example of components in
the declarative computation model. The component is called a procedure
definition and its instance is called a procedure invocation. Procedural ab-
straction underlies the more advanced component models that came later.

• Functors (compilation units). A particularly useful kind of component is
a compilation unit, i.e., it can be compiled independently of other compo-
nents. In this book, we call such components functors and their instances
modules.

• Concurrent components. A system with independent, interacting enti-
ties can be seen as a graph of concurrent components that send each other
messages.

In component-based programming, the natural way to extend a component is
by using composition: build a new component that contains the original one.
The new component offers a new functionality and uses the old component to
implement the functionality.
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We give a concrete example from our experience to show the usefulness of
components. Component-based programming was an essential part of the In-
formation Cities project, which did extensive multi-agent simulations using the
Mozart system [155, 162]. The simulations were intended to model evolution and
information flow in parts of the Internet. Different simulation engines (in a single
process or distributed, with different forms of synchronization) were defined as
reusable components with identical interfaces. Different agent behaviors were de-
fined in the same way. This allowed rapidly setting up many different simulations
and extending the simulator without having to recompile the system. The setup
was done by a program, using the module manager provided by the System mod-
ule Module . This is possible because components are values in the Oz language
(see Section 3.9.3).

6.2.3 Object-oriented programming

A popular set of techniques for stateful programming is called object-oriented
programming. We devote the whole of Chapter 7 to these techniques. Object-
oriented programming adds a fourth property to component-based programming:

• Inheritance. It is possible to build the system in incremental fashion, as
a small extension or modification of another system.

Incrementally-built components are called classes and their instances are called
objects. Inheritance is a way of structuring programs so that a new implementa-
tion extends an existing one.

The advantage of inheritance is that it factors the implementation to avoid
redundancy. But inheritance is not an unmixed blessing. It implies that a com-
ponent strongly depends on the components it inherits from. This dependency
can be difficult to manage. Much of the literature on object-oriented design, e.g.,
on design patterns [58], focuses on the correct use of inheritance. Although com-
ponent composition is less flexible than inheritance, it is much simpler to use.
We recommend to use it whenever possible and to use inheritance only when
composition is insufficient (see Chapter 7).

6.3 The declarative model with explicit state

One way to introduce state is to have concurrent components that run indefinitely
and that can communicate with other components, like the stream objects of
Chapter 4 or the port objects of Chapter 5. In the present chapter we directly
add explicit state to the declarative model. Unlike in the two previous chapters,
the resulting model is still sequential. We will call it the stateful model.

Explicit state is a pair of two language entities. The first entity is the state’s
identity and the second is the state’s current content. There exists an operation
that when given the state’s identity returns the current content. This operation
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Immutable store Mutable store (cells)

Semantic stack

V=c2

U=@V   X=U.age   if @X>=18 then ...

W=34

Z=person(age: Y)

U

c1:W
c2:Z

Y=c1
X

Figure 6.1: The declarative model with explicit state

defines a system-wide mapping between state identities and all language entities.
What makes it stateful is that the mapping can be modified. Interestingly, neither
of the two language entities themselves is modified. It is only the mapping that
changes.

6.3.1 Cells

We add explicit state as one new basic type to the computation model. We call
the type a cell. A cell is a pair of a constant, which is a name value, and a reference
into the single-assignment store. Because names are unforgeable, cells are a true
abstract data type. The set of all cells lives in the mutable store. Figure 6.1
shows the resulting computation model. There are two stores: the immutable
(single-assignment) store, which contains dataflow variables that can be bound
to one value, and the mutable store, which contains pairs of names and references.
Table 6.1 shows its kernel language. Compared to the declarative model, it adds
just two new statements, the cell operations NewCell and Exchange . These
operations are defined informally in Table 6.2. For convenience, this table adds
two more operations, @(access) and := (assignment). These do not provide any
new functionality since they can be defined in terms of Exchange . Using C:=Y as
an expression has the effect of an Exchange : it gives the old value as the result.

Amazingly, adding cells with their two operations is enough to build all the
wonderful concepts that state can provide. All the sophisticated concepts of ob-
jects, classes, and other abstract data types can be built with the declarative
model extended with cells. Section 7.6.2 explains how to build classes and Sec-
tion 7.6.3 explains how to build objects. In practice, their semantics are defined
in this way, but the language has syntactic support to make them easy to use
and the implementation has support to make them more efficient [75].
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〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| {NewName〈x〉} Name creation
| 〈y〉=!! 〈x〉 Read-only view
| try 〈s〉1 catch 〈x〉 then 〈s〉2 end Exception context
| raise 〈x〉 end Raise exception
| {NewCell 〈x〉 〈y〉} Cell creation
| {Exchange 〈x〉 〈y〉 〈z〉} Cell exchange

Table 6.1: The kernel language with explicit state

Operation Description
{NewCell X C} Create a new cell C with initial content X.
{Exchange C X Y} Atomically bind X with the old content of

cell C and set Y to be the new content.
X=@C Bind X to the current content of cell C.
C:=X Set X to be the new content of cell C.
X=C:=Y Another syntax for {Exchange C X Y} .

Table 6.2: Cell operations
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6.3.2 Semantics of cells

The semantics of cells is quite similar to the semantics of ports given in Sec-
tion 5.1.2. It is instructive to compare them. In similar manner to ports, we
first add a mutable store. The same mutable store can hold both ports and cells.
Then we define the operations NewCell and Exchange in terms of the mutable
store.

Extension of execution state

Next to the single-assignment store σ and the trigger store τ , we add a new store
µ called the mutable store. This store contains cells, which are pairs of the form
x : y, where x and y are variables of the single-assignment store. The mutable
store is initially empty. The semantics guarantees that x is always bound to a
name value that represents a cell. On the other hand, y can be any partial value.
The execution state becomes a triple (MST, σ, µ) (or a quadruple (MST, σ, µ, τ)
if the trigger store is considered).

The NewCell operation

The semantic statement ({NewCell 〈x〉 〈y〉} , E) does the following:

• Create a fresh cell name n.

• Bind E(〈y〉) and n in the store.

• If the binding is successful, then add the pair E(〈y〉) : E(〈x〉) to the mutable
store µ.

• If the binding fails, then raise an error condition.

Observant readers will notice that this semantics is almost identical to that of
ports. The principal difference is the type. Ports are identified by a port name
and cells by a cell name. Because of the type, we can enforce that cells can only
be used with Exchange and ports can only be used with Send.

The Exchange operation

The semantic statement ({Exchange 〈x〉 〈y〉 〈z〉} , E) does the following:

• If the activation condition is true (E(〈x〉) is determined), then do the fol-
lowing actions:

– If E(〈x〉) is not bound to the name of a cell, then raise an error condi-
tion.

– If the mutable store contains E(〈x〉) : w then do the following actions:

∗ Update the mutable store to be E(〈x〉) : E(〈z〉).
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∗ Bind E(〈y〉) and w in the store.

• If the activation condition is false, then suspend execution.

Memory management

Two modifications to memory management are needed because of the mutable
store:

• Extending the definition of reachability: A variable y is reachable if the
mutable store contains x : y and x is reachable.

• Reclaiming cells: If a variable x becomes unreachable, and the mutable
store contains the pair x : y, then remove this pair.

The same modifications are needed independent of whether the mutable store
holds cells or ports.

6.3.3 Relation to declarative programming

In general, a stateful program is no longer declarative, since running the program
several times with the same inputs can give different outputs depending on the
internal state. It is possible, though, to write stateful programs that behave as
if they were declarative, i.e., to write them so they satisfy the definition of a
declarative operation. It is a good design principle to write stateful components
so that they behave declaratively.

A simple example of a stateful program that behaves declaratively is the
SumList function we gave earlier. Let us show a more interesting example, in
which the state is used as an intimate part of the function’s calculation. We
define a list reversal function by using a cell:

fun {Reverse Xs}
Rs={NewCell nil}

in
for X in Xs do Rs := X|@Rs end
@Rs

end

Since the cell is encapsulated inside the Reverse , there is no way to tell the
difference between this implementation and a declarative implementation. It is
often possible to take a declarative program and convert it to a stateful program
with the same behavior by replacing the declarative state with an explicit state.
The reverse direction is often possible as well. We leave it as an exercise for the
reader to take a declarative implementation of Reverse and to convert it to a
stateful implementation.

Another interesting example is memoization, in which a function remembers
the results of previous calls so that future calls can be handled quicker. Chapter 10
gives an example using a simple graphical calendar display. It uses memoization
to avoid redrawing the display unless it has changed.
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6.3.4 Sharing and equality

By introducing cells we have extended the concept of equality. We have to dis-
tinguish the equality of cells from the equality of their contents. This leads to
the concepts of sharing and token equality.

Sharing

Sharing, also known as aliasing, happens when two identifiers X and Y refer to
the same cell. We say that the two identifiers are aliases of each other. Changing
the content of X also changes the content of Y. For example, let us create a cell:

X={NewCell 0}

We can create a second reference Y to this cell:

declare Y in
Y=X

Changing the content of Y will change the content of X:

Y:=10
{Browse @X}

This displays 10. In general, when a cell’s content is changed, then all the cell’s
aliases see the changed content. When reasoning about a program, the program-
mer has to be careful to keep track of aliases. This can be difficult, since they
can easily be spread out through the whole program. This problem can be made
manageable by encapsulating the state, i.e., using it in just a small part of a pro-
gram and guaranteeing that it cannot escape from there. This is one of the key
reasons why abstract data types are an especially good idea when used together
with explicit state.

Token equality and structure equality

Two values are equal if they have the same structure. For example:

X=person(age:25 name:"George")
Y=person(age:25 name:"George")
{Browse X==Y}

This displays true . We call this structure equality. It is the equality we have
used up to now. With cells, though, we introduce a new notion of equality called
token equality. Two cells are not equal if they have the same content, rather they
are equal if they are the same cell! For example, let us create two cells:

X={NewCell 10}
Y={NewCell 10}

These are different cells with different identities. The following comparison:

{Browse X==Y}
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displays false . It is logical that the cells are not equal, since changing the
content of one cell will not change the content of the other. However, our two
cells happen to have the same content:

{Browse @X==@Y}

This displays true . This is a pure coincidence; it does not have to stay true
throughout the program. We conclude by remarking that aliases do have the
same identities. The following example:

X={NewCell 10}
Y=X
{Browse X==Y}

displays true because X and Y are aliases, i.e., they refer to the same cell.

6.4 Abstract data types

As we saw in Section 3.7, an abstract data type is a set of values together with
a set of operations on those values. Now that we have added explicit state to
the model, we can complete the discussion started in Section 3.7. That section
shows the difference between secure and open ADTs in the case of declarative
programming. State adds an extra dimension to the possibilities.

6.4.1 Eight ways to organize ADTs

An ADT with the same functionality can be organized in many different ways.
For example, in Section 3.7 we saw that a simple ADT like a stack can be either
open or secure. Here we will introduce two more axes, state and bundling, each
with two choices. Because these axes are orthogonal, this gives eight ways in all
to organize an ADT! Some are rarely used. Others are common. But each has
its advantages and disadvantages. We briefly explain each axis and give some
examples. In the examples later on in the book, we choose whichever of the eight
ways that is appropriate in each case.

Openness and security

An open ADT is one in which the internal representation is completely visible to
the whole program. Its implementation can be spread out over the whole program.
Different parts of the program can extend the implementation independently of
each other. This is most useful for small programs in which expressiveness is
more important than security.

A secure ADT is one in which the implementation is concentrated in one part
of the program and is inaccessible to the rest of the program. This is usually
what is desired for larger programs. It allows the ADT to be implemented and
tested independently of the rest of the program. We will see the different ways
to define a secure ADT. Perhaps surprisingly, we will see that a secure ADT can
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be defined completely in the declarative model with higher-order programming.
No additional concepts (such as names) are needed.

An ADT can be partially secure, e.g., the rights to look at its internal repre-
sentation can be given out in a controlled way. In the stack example of Section 3.7,
the Wrap and Unwrap functions can be given out to certain parts of the program,
for example to extend the implementation of stacks in a controlled way. This is
an example of programming with capabilities.

State

A stateless ADT, also known as a declarative ADT, is written in the declarative
model. Chapter 3 gives examples: a declarative stack, queue, and dictionary.
With this approach, ADT instances cannot be modified, but new ones must be
created. When passing an ADT instance to a procedure, you can be sure about
exactly what value is being passed. Once created, the instance never changes.
On the other hand, this leads to a proliferation of instances that can be difficult
to manage. The program is also less modular, since instances must be explicitly
passed around, even through parts that may not need the instance themselves.

A stateful ADT internally uses explicit state. Examples of stateful ADTs are
components and objects, which are usually stateful. With this approach, ADT
instances can change as a function of time. One cannot be sure about what value
is encapsulated inside the instance without knowing the history of all procedure
calls at the interface since its creation. In contrast to declarative ADTs, there
is only one instance. Furthermore, this one instance often does not have to be
passed as a parameter; it can be accessed inside procedures by lexical scoping.
This makes the program more concise. The program is also potentially more
modular, since parts that do not need the instance do not need to mention it.

Bundling

Next to security and state, a third choice to make is whether the data is kept
separate from the operations (unbundled) or whether they are kept together (bun-
dled). Of course, an unbundled ADT can always be bundled in a trivial way by
putting the data and operations in a record. But a bundled ADT cannot be
unbundled; the language semantics guarantees that it always stays bundled.

An unbundled ADT is one that can separate its data from its operations. It is
a remarkable fact that an unbundled ADT can still be secure. To achieve security,
each instance is created together with a “key”. The key is an authorization to
access the internal data of the instance (and update it, if the instance is stateful).
All operations of the ADT know the key. The rest of the program does not
know the key. Usually the key is a name, which is an unforgeable constant (see
Section B.2).

An unbundled ADT can be more efficient than a bundled one. For example,
a file that stores instances of an ADT can contain just the data, without any
operations. If the set of operations is very large, then this can take much less
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Open, declarative,
and unbundled

Secure, declarative,
and unbundled

as it exists in Prolog and Scheme
The usual open declarative style,

secure by using wrappers
The declarative style is made

Secure, stateful,
and bundled

Secure, stateful,
and unbundled

as it exists in Smalltalk and Java
The usual object-oriented style,

usual object-oriented style

Secure, declarative,
and bundled flavor to the declarative style

Bundling gives an object-oriented

An unbundled variation of the

Figure 6.2: Five ways to package a stack

space than storing both the data and the operations. When the data is reloaded,
then it can be used as before as long as the key is available.

A bundled ADT is one that keeps together its data and its operations in such
a way that they cannot be separated by the user. As we will see in Chapter 7,
this is what object-oriented programming does. Each object instance is bundled
together with its operations, which are called “methods”.

6.4.2 Variations on a stack

Let us take the 〈Stack T〉 type from Section 3.7 and see how to adapt it to
some of the eight possibilities. We give five useful possibilities. We start from
the simplest one, the open declarative version, and then use it to build four
different secure versions. Figure 6.2 summarizes them. Figure 6.3 gives a graphic
illustration of the four secure versions and their differences. In this figure, the
boxes labeled “Pop” are procedures that can be invoked. Incoming arrows are
inputs and outgoing arrows are outputs. The boxes with keyholes are wrapped
data structures that are the inputs and outputs of the Pop procedures. The
wrapped data structures can only be unwrapped inside the Pop procedures. Two
of the Pop procedures (the second and third) themselves wrap data structures.

Open declarative stack

We set the stage for these secure versions by first giving the basic stack function-
ality in the simplest way:

fun {NewStack} nil end
fun {Push S E} E|S end
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Figure 6.3: Four versions of a secure stack

fun {Pop S ?E}
case S of X|S1 then E=X S1 end

end
fun {IsEmpty S} S==nil end

This version is open, declarative, and unbundled.

Secure declarative unbundled stack

We make this version secure by using a wrapper/unwrapper pair, as seen in
Section 3.7:

local Wrap Unwrap in
{NewWrapper Wrap Unwrap}
fun {NewStack} {Wrap nil} end
fun {Push S E} {Wrap E|{Unwrap S}} end
fun {Pop S ?E}

case {Unwrap S} of X|S1 then E=X {Wrap S1} end
end
fun {IsEmpty S} {Unwrap S}==nil end

end

This version is secure, declarative, and unbundled. The stack is unwrapped when
entering the ADT and wrapped when exiting. Outside the ADT, the stack is
always wrapped.
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Secure declarative bundled stack

Let us now make a bundled version of the declarative stack. The idea is to hide
the stack inside the operations, so that it cannot be separated from them. Here
is how it is programmed:

local
fun {StackOps S}

fun {Push X} {StackOps X|S} end
fun {Pop ?E}

case S of X|S1 then E=X {StackOps S1} end
end
fun {IsEmpty} S==nil end

in ops(push:Push pop:Pop isEmpty:IsEmpty) end
in

fun {NewStack} {StackOps nil} end
end

This version is secure, declarative, and bundled. Note that it does not use wrap-
ping, since wrapping is only needed for unbundled ADTs. The function StackOps

takes a list S and returns a record of procedure values, ops(pop:Pop push:Push

isEmpty:IsEmpty) , in which S is hidden by lexical scoping. Using a record lets
us group the operations in a nice way. Here is an example use:

declare S1 S2 S3 X in
S1={NewStack}
{Browse {S1.isEmpty}}
S2={S1.push 23}
S3={S2.pop X}
{Browse X}

It is a remarkable fact that making an ADT secure needs neither explicit state
nor names. It can be done with higher-order programming alone. Because this
version is both bundled and secure, we can consider it as a declarative form of
object-oriented programming. The stack S1 is a declarative object.

Secure stateful bundled stack

Now let us construct a stateful version of the stack. Calling NewStack creates a
new stack with three operations Push , Pop, and IsEmpty :

fun {NewStack}
C={NewCell nil}
proc {Push X} C:=X|@C end
fun {Pop}

case @Cof X|S1 then C:=S1 X end
end
fun {IsEmpty} @C==nil end

in
ops(push:Push pop:Pop isEmpty:IsEmpty)
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end

This version is secure, stateful, and bundled. In like manner to the declarative
bundled version, we use a record to group the operations. This version provides
the basic functionality of object-oriented programming, namely a group of opera-
tions (“methods”) with a hidden internal state. The result of calling NewStack is
an object instance with three methods Push , Pop, and IsEmpty . Since the stack
value is always kept hidden inside the implementation, this version is already
secure even without names.

Comparing two popular versions

Let us compare the simplest secure versions in the declarative and stateful models,
namely the declarative unbundled and the stateful bundled versions. Each of
these two versions is appropriate for secure ADTs in its respective model. It pays
to compare them carefully and think about the different styles they represent:

• In the declarative unbundled version, each operation that changes the stack
has two arguments more than the stateful version: an input stack and an
output stack.

• The implementations of both versions have to do actions when entering and
exiting an operation. The calls of Unwrap and Wrap correspond to calls of
@and := , respectively.

• The declarative unbundled version needs no higher-order techniques to work
with many stacks, since all stacks work with all operations. On the other
hand, the stateful bundled version needs instantiation to create new versions
of Push , Pop and IsEmpty for each instance of the stack ADT.

Here is the interface of the declarative unbundled version:

〈fun {NewStack}: 〈Stack T〉〉
〈fun {Push 〈Stack T〉 T}: 〈Stack T〉〉
〈fun {Pop 〈Stack T〉 T}: 〈Stack T〉〉
〈fun {IsEmpty 〈Stack T〉}: 〈Bool〉〉

Because it is declarative, the stack type 〈Stack T〉 appears in every operation.
Here is the interface of the stateful bundled version:

〈fun {NewStack}: 〈Stack T〉〉
〈proc {Push T} 〉
〈fun {Pop}: T〉
〈fun {IsEmpty}: 〈bool〉〉

In the stateful bundled version, we define the stack type 〈Stack T〉 as
〈op(push: 〈proc {$ T} 〉 pop: 〈fun {$}: T〉 isEmpty: 〈fun {$}: 〈Bool〉〉) 〉.
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Secure stateful unbundled stack

It is possible to combine wrapping with cells to make a version that is secure,
stateful, and unbundled. This style is little used in object-oriented programming,
but deserves to be more widely known. It does not need higher-order program-
ming. Each operation has one stack argument instead of two for the declarative
version:

local Wrap Unwrap in
{NewWrapper Wrap Unwrap}
fun {NewStack} {Wrap {NewCell nil}} end
proc {Push S X} C={Unwrap S} in C:=X|@C end
fun {Pop S}
C={Unwrap S} in

case @Cof X|S1 then C:=S1 X end
end
fun {IsEmpty S} @{Unwrap S}==nil end

end

In this version, NewStack only needs Wrap and the other functions only need
Unwrap .

6.4.3 Revocable capabilities

Using explicit state, it is possible to build secure ADTs that have controllable
security. As an example of this, let us show how to build revocable capabilities.
Chapter 3 introduced the concept of a capability, which gives its owner an irre-
vocable right to do something. Sometimes we would like to give a revocable right
instead, i.e., a right that can be removed. We can implement this with explicit
state. Without loss of generality, we assume the capability is represented as a
one-argument procedure.5 Here is a generic procedure that takes any capability
and returns a revocable version of that capability:

proc {Revocable Obj ?R ?RObj}
C={NewCell Obj}

in
proc {R}

C:= proc {$ M} raise revokedError end end
end
proc {RObj M}

{@C M}
end

end

Given any one-argument procedure Obj , the procedure returns a revoker R and
a revocable version RObj . At first, RObj forwards all its messages to Obj . After

5This is an important case because it covers the object system of Chapter 7.
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executing {R} , calling RObj invariably raises a revokedError exception. Here
is an example:

fun {NewCollector}
Lst={NewCell nil}

in
proc {$ M}

case M
of add(X) then T in {Exchange Lst T X|T}
[] get(L) then L={Reverse @Lst}
end

end
end

declare C R in
C={Revocable {NewCollector} R}

The function NewCollector creates an instance of an ADT that we call a col-
lector. It has two operations, add and get . With add , it can collect items into
a list in the order that they are collected. With get , the current value of the
list can be retrieved at any time. We make the collector revocable. When it has
finished its job, the collector can be made inoperable by calling R.

6.4.4 Parameter passing

Now that we have introduced explicit state, we are at a good point to investigate
the different ways that languages do parameter passing. This book almost always
uses call by reference. But many other ways have been devised to pass information
to and from a called procedure. Let us briefly define the most prominent ones.
For each mechanism, we give an example in a Pascal-like syntax and we code
the example in the stateful model of this chapter. This coding can be seen as a
semantic definition of the mechanism. We use Pascal because of its simplicity.
Java is a more popular language, but explaining its more elaborate syntax is not
appropriate for this section. Section 7.7 gives an example of Java syntax.

Call by reference

The identity of a language entity is passed to the procedure. The procedure can
then use this language entity freely. This is the primitive mechanism used by
the computation models of this book, for all language entities including dataflow
variables and cells.

Imperative languages often mean something slightly different by call by refer-
ence. They assume that the reference is stored in a cell local to the procedure. In
our terminology, this is a call by value where the reference is considered as a value
(see below). When studying a language that has call by reference, we recommend
looking carefully at the language definition to see exactly what is meant.
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Call by variable

This is a special case of call by reference. The identity of a cell is passed to the
procedure. Here is an example:

procedure sqr(var a:integer);

begin

a:=a*a

end

var c:integer;

c:=25;

sqr(c);

browse(c);

We code this example as follows:

proc {Sqr A}
A:=@A*@A

end

local
C={NewCell 0}

in
C:=25
{Sqr C}
{Browse @C}

end

For the call {Sqr C} , the A inside Sqr is a synonym of the C outside.

Call by value

A value is passed to the procedure and put into a cell local to the procedure.
The implementation is free either to copy the value or to pass a reference, as long
as the procedure cannot change the value in the calling environment. Here is an
example:

procedure sqr(a:integer);

begin

a:=a+1;

browse(a*a)

end;

sqr(25);

We code this example as follows:
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proc {Sqr D}
A={NewCell D}

in
A:=@A+1
{Browse @A*@A}

end

{Sqr 25}

The cell A is initialized with the argument of Sqr . The Java language uses call
by value for both values and object references. This is explained in Section 7.7.

Call by value-result

This is a modification of call by variable. When the procedure is called, the
content of a cell (i.e., a mutable variable) is put into another mutable variable
local to the procedure. When the procedure returns, the content of the latter is
put into the former. Here is an example:

procedure sqr(inout a:integer);

begin

a:=a*a

end

var c:integer;

c:=25;

sqr(c);

browse(c);

This uses the keyword “inout” to indicate call by value-result, as is used in the
Ada language. We code this example as follows:

proc {Sqr A}
D={NewCell @A}

in
D:=@D*@D
A:=@D

end

local
C={NewCell 0}

in
C:=25
{Sqr C}
{Browse @C}

end

There are two mutable variables: one inside Sqr (namely D) and one outside
(namely C). Upon entering Sqr , D is assigned the content of C. Upon exiting, C
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is assigned the content of D. During the execution of Sqr , modifications to D are
invisible from the outside.

Call by name

This mechanism is the most complex. It creates a procedure value for each
argument. A procedure value used in this way is called a thunk. Each time the
argument is needed, the procedure value is evaluated. It returns the name of a
cell, i.e., the address of a mutable variable. Here is an example:

procedure sqr(callbyname a:integer);

begin

a:=a*a

end;

var c:integer;

c:=25;

sqr(c);

browse(c);

This uses the keyword “callbyname” to indicate call by name. We code this
example as follows:

proc {Sqr A}
{A}:=@{A}*@{A}

end

local C={NewCell 0} in
C:=25
{Sqr fun {$} C end }
{Browse @C}

end

The argument A is a function that when evaluated returns the name of a mutable
variable. The function is evaluated each time the argument is needed. Call by
name can give unintuitive results if array indices are used in the argument (see
Exercise).

Call by need

This is a modification of call by name in which the procedure value is evaluated
only once. Its result is stored and used for subsequent evaluations. Here is one
way to code call by need for the call by name example:

proc {Sqr A}
B={A}

in
B:=@B*@B
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