
468 Explicit State

Why does this algorithm work? Consider any two nodes a and b with a path
between them: a → n1 → n2 → ... → nk → b (where k ≥ 0). We have to
show that the final graph has an edge from a to b. The nodes n1 through nk are
encountered in some order by the algorithm. When the algorithm encounters a
node ni, it “short circuits” the node, i.e., it creates a new path from a to b that
avoids the node. Therefore when the algorithm has encountered all nodes, it has
created a path that avoids all of them, i.e., it has an edge directly from a to b.

Representing a graph

To write up the algorithm as a program, we first have to choose a representation
for directed graphs. Let us consider two possible representations:

• The adjacency list representation. The graph is a list with elements of
the form I#Ns where I identifies a node and Ns is an ordered list of its
immediate successors. As we will see below, ordered lists of successors are
more efficient to calculate with than unordered lists.

• The matrix representation. The graph is a two-dimensional array. The
element with coordinates (I ,J) is true if there is an edge from node I to
node J . Otherwise, the element is false.

We find that the choice of representation strongly influences what is the best
computation model. In what follows, we assume that all graphs have at least
one node and that the nodes are consecutive integers. We first give a declarative
algorithm that uses the adjacency list representation [139]. We then give an in-
place stateful algorithm that uses the matrix representation [41]. We then give
a second declarative algorithm that also uses the matrix representation. Finally,
we compare the three algorithms.

Converting between representations

To make comparing the two algorithms easier, we first define routines to convert
from the adjacency list representation to the matrix representation and vice versa.
Here is the conversion from adjacency list to matrix:

fun {L2M GL}
M={Map GL fun {$ I#_} I end }
L={FoldL M Min M.1}
H={FoldL M Max M.1}
GM={NewArray L H unit }

in
for I#Ns in GL do

GM.I:={NewArray L H false }
for J in Ns do GM.I.J:= true end

end
GM

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.8 Case studies 469

fun {DeclTrans G}
Xs={Map G fun {$ X#_} X end }

in
{FoldL Xs

fun {$ InG X}
SX={Succ X InG} in

{Map InG
fun {$ Y#SY}

Y#if {Member X SY} then
{Union SY SX} else SY end

end }
end G}

end

Figure 6.10: Transitive closure (first declarative version)

In this routine, as in all following routines, we use GL for the adjacency list
representation and GMfor the matrix representation. Here is the conversion from
matrix to adjacency list:

fun {M2L GM}
L={Array.low GM}
H={Array.high GM}

in
for I in L..H collect:C do

{C I# for J in L..H collect:D do
if GM.I.J then {D J} end

end }
end

end

This uses the loop syntax including the accumulation procedure collect:C to
good advantage.

Declarative algorithm

We first give a declarative algorithm for transitive closure. The graph is repre-
sented as an adjacency list. The algorithm needs two utility routines, Succ , which
returns the succesor list of a given node, and Union , which calculates the union
of two ordered lists. We develop the algorithm by successive transformation of
the abstract algorithm. This design method is known as stepwise refinement.

The outermost loop in the abstract algorithm transforms the graph in suc-
cessive steps. Our declarative algorithm does the same by using FoldL , which
defines a loop with accumulator. This means we can define the main function
DeclTrans as follows:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

470 Explicit State

fun {DeclTrans G}

Xs={Nodes G} in

{FoldL Xs

fun {$ InG X}

SX={Succ X InG} in

for each node Y in pred(X, InG):
for each node Z in SX:

add edge (Y, Z)
end G}

end

The next step is to implement the two inner loops:

for each node Y in pred(X, InG):
for each node Z in SX:

add edge (Y, Z)

These loops transform one graph into another, by adding edges. Since our graph
is represented by a list, a natural choice is to use Map, which transforms one
list into another. This gives the following code, where Union is used to add the
successor list of X to that of Y:

{Map InG
fun {$ Y#SY}

Y#if “Y in pred(X, InG)” then
{Union SY SX} else SY end

end }

We finish up by noticing that Y is in pred(X, InG) if and only if X is in succ(Y, InG).
This means we can write the if condition as follows:

{Map InG
fun {$ Y#SY}

Y#if {Member X SY} then
{Union SY SX} else SY end

end }

Putting everything together we get the final definition in Figure 6.10. This uses
Map to calculate {Nodes G} . We conclude by remarking that FoldL , Map, and
other routines such as Member, Filter , etc., are basic building blocks that must
be mastered when writing declarative algorithms.

To finish up our presentation of the declarative algorithm, we give the defini-
tions of the two utility routines. Succ returns the list of successors of a node:

fun {Succ X G}
case G of Y#SY|G2 then

if X==Y then SY else {Succ X G2} end
end

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.8 Case studies 471

proc {StateTrans GM}
L={Array.low GM}
H={Array.high GM}

in
for K in L..H do

for I in L..H do
if GM.I.K then

for J in L..H do
if GM.K.J then GM.I.J:= true end

end
end

end
end

end

Figure 6.11: Transitive closure (stateful version)

Succ assumes that X is always in the adjacency list, which is true in our case.
Union returns the union of two sets, where all sets are represented as ordered
lists:

fun {Union A B}
case A#B
of nil#B then B
[] A#nil then A
[] (X|A2)#(Y|B2) then

if X==Y then X|{Union A2 B2}
elseif X<Y then X|{Union A2 B}
elseif X>Y then Y|{Union A B2}
end

end
end

Union ’s execution time is proportional to the length of the smallest input list
because its input lists are ordered. If the lists were not ordered, its execution
time would be proportional to the product of their lengths (why?), which is
usually much larger.

Stateful algorithm

We give a stateful algorithm for transitive closure. The graph is represented as
a matrix. This algorithm assumes that the matrix contains the initial graph. It
then calculates the transitive closure in-place, i.e., by updating the input matrix
itself. Figure 6.11 gives the algorithm. For each node K, this looks at each
potential edge (I , J) and adds it if there is both an edge from I to K and from K

to J . We show now the stepwise transformation that leads to this algorithm. We
first restate the abstract algorithm with the proper variable names:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

472 Explicit State

fun {DeclTrans2 GT}
H={Width GT}
fun {Loop K InG}

if K=<H then
G={MakeTuple g H} in

for I in 1..H do
G.I={MakeTuple g H}
for J in 1..H do

G.I.J=InG.I.J orelse (InG.I.K andthen InG.K.J)
end

end
{Loop K+1 G}

else InG end
end

in
{Loop 1 GT}

end

Figure 6.12: Transitive closure (second declarative version)

For each node k in the graph G:
for each node i in pred(k, G):

for each node j in succ(k, G):
add the edge (i, j) to G.

This leads to the following refinement:

proc {StateTrans GM}

L={Array.low GM}

H={Array.high GM}

in

for K in L..H do

for I in L..H do

if GM.I.K then

for each J in succ(K, GM) add GM.I.J:= true

end

end

end

end

We note that J is in succ(K, GM) if GM.K.J is true. This means we can replace
the inner loop by:

for J in L..H do
if GM.K.J then GM.I.J:= true end

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.8 Case studies 473

Second declarative algorithm

Inspired by the stateful algorithm, we develop a second declarative algorithm.
The second algorithm uses a series of tuples to store the successive approximations
of the transitive closure. We use the variable GT instead of GMto emphasize this
change in representation. A tuple is a record with fields numbered consecutively
from 1 to a maximum value. So this algorithm is restricted to nodes whose
numbering starts from 1. Note that MakeTuple creates a tuple with unbound
variables. Figure 6.12 gives the algorithm.

This is somewhat more complicated than the stateful version. Each iteration
of the outer loop uses the result of the previous iteration (InG) as input to cal-
culate the next iteration (G). The recursive function Loop passes the result from
one iteration to the next. While this may seem a bit complicated, it has the ad-
vantages of the declarative model. For example, it is straightforward to convert
it into a concurrent algorithm for transitive closure using the model of Chapter 4.
The concurrent algorithm can run efficiently on a parallel processor. We just
add thread ... end to parallelize the two outer loops as shown in Figure 6.13.
This gives a parallel dataflow implementation of the algorithm. Synchronization
is done through the tuples which initially contain unbound variables. The tuples
behave like I-structures in a dataflow machine (see Section 4.9.5). It is an inter-
esting exercise to draw a picture of an executing program, with data structures
and threads.

Example executions

Let us calculate the transitive closure of the graph [1#[2 3] 2#[1] 3#nil] .
This is the same graph we showed before in Figure 6.8 except that we use integers
to represent the nodes. Here is how to use the declarative algorithms:

{Browse {DeclTrans [1#[2 3] 2#[1] 3#nil]}}

Here is how to use the stateful algorithm:

declare GM in
{StateTrans GM={L2M [1#[2 3] 2#[1] 3#nil]}}
{Browse {M2L GM}}

This is slightly more complicated because of the calls to L2M and M2L, which we
use to give both the input and output as an adjacency list. All three algorithms
give the result [1#[1 2 3] 2#[1 2 3] 3#nil] .

Discussion

Both the declarative and stateful algorithms are actually variations of the same
conceptual algorithm, which is called the Floyd-Warshall algorithm. All three
algorithms have an asymptotic running time of O(n3) for a graph of n nodes. So
which algorithm is better? Let us explore different aspects of this question:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

474 Explicit State

fun {DeclTrans2 GT}
H={Width GT}
fun {Loop K InG}

if K=<H then
G={MakeTuple g H} in

thread
for I in 1..H do

thread
G.I={MakeTuple g H}
for J in 1..H do

G.I.J=InG.I.J orelse
(InG.I.K andthen InG.K.J)

end
end

end
end
{Loop K+1 G}

else InG end
end

in
{Loop 1 GT}

end

Figure 6.13: Transitive closure (concurrent/parallel version)

• A first aspect is ease of understanding and reasoning. Perhaps surprising-
ly, the stateful algorithm has the simplest structure. It consists of three
simple nested loops that update a matrix in a straightforward way. Both
declarative algorithms have a more complex structure:

– The first one takes an adjacency list and passes it through a sequence
of stages in pipelined fashion. Each stage takes an input list and
incrementally creates an output list.

– The second one has a similar structure as the stateful algorithm, but
creates a sequence of tuples in pipelined fashion.

Programming in the declarative model forces the algorithm to be structured
as a pipeline, written with small, independent components. Programming
in the stateful model encourages (but does not force) the algorithm to be
structured as a monolithic block, which is harder to decompose. The state-
ful model gives more freedom in how to write the program. Depending on
one’s point of view, this can be a good or bad thing.

• A second aspect is performance: running time and memory use. Both
algorithms asymptotically have the same running time and active memory
sizes. We have measured the running times of both algorithms on several

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.8 Case studies 475

large random graphs. Given a random graph of 200 nodes in which there is
an edge between any node pair with probability p. For p greater than about
0.05, the first declarative algorithm takes about 10 seconds, the second
about 12 seconds, and the stateful algorithm about 15 seconds. For p
tending to 0, the first declarative algorithm tends towards 0 seconds and the
other algorithms increase slightly, to 16 and 20 seconds, respectively.7 We
conclude that the first declarative algorithm always has better performance
than the two others. The adjacency list representation is better than the
matrix representation when the graph is sparse.

Of course, the conclusions of this particular comparison are by no means defini-
tive. We have chosen simple and clean versions of each style, but many variations
are possible. For example, the first declarative algorithm can be modified to use
a stateful Union operation. The stateful algorithm can be modified to stop loop-
ing when no more new edges are found. What then can we conclude from this
comparison?

• Both the declarative and stateful models are reasonable for implementing
transitive closure.

• The choice of representation (adjacency list or matrix) can be more impor-
tant than the choice of computation model.

• Declarative programs tend to be less readable than stateful programs, be-
cause they must be written in pipelined fashion.

• Stateful programs tend to be more monolithic than declarative programs,
because explicit state can be modified in any order.

• It can be easier to parallelize a declarative program, because there are fewer
dependencies between its parts.

6.8.2 Word frequencies (with stateful dictionary)

In Section 3.7.3 we showed how to use dictionaries to count the number of dif-
ferent words in a text file. We compared the execution times of three versions of
the word frequency counter, each one with a different implementation of dictio-
naries. The first two versions use declarative dictionaries (implemented lists and
binary trees, respectively) and the third uses the built-in definition of dictionaries
(implemented with state). The version using stateful dictionaries, shown in Fig-
ure 6.14, is slightly different from the one using declarative dictionaries, shown
in Figure 3.29:

7All measurements using Mozart 1.1.0 under Red Hat Linux release 6.1 on a Dell Latitude
CPx notebook computer with Pentium III processor at 500 MHz.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

476 Explicit State

fun {WordChar C} ... end

fun {WordToAtom PW} ... end

fun {CharsToWords PW Cs} ... end

Put=Dictionary.put
CondGet=Dictionary.condGet

proc {IncWord D W}
{Put D W {CondGet D W 0}+1}

end

proc {CountWords D Ws}
case Ws
of W|Wr then

{IncWord D W}
{CountWords D Wr}

[] nil then skip
end

end

fun {WordFreq Cs}
D={NewDictionary}

in
{CountWords D {CharsToWords nil Cs}}
D

end

Figure 6.14: Word frequencies (with stateful dictionary)

• The stateful version needs to pass just one argument as input to each pro-
cedure that uses a dictionary.

• The declarative version has to use two arguments to these procedures: one
for the input dictionary and one for the output dictionary. In Figure 3.29,
the second output is realized by using functional notation.

The difference shows up in the operations Put , IncWords , CountWords , and
WordFreq . For example, Figure 6.14 uses the stateful {Put D LI X} , which
updates D. Figure 3.29 uses the declarative {Put D1 LI X D2} , which reads D1

and returns a new dictionary D2.

6.8.3 Generating random numbers

A very useful primitive operation is a random number generator. It lets the
computer “throw dice”, so to speak. How do we generate random numbers in a

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.8 Case studies 477

computer? Here we give the main insights; see Knuth [101] for a deep discus-
sion of the theory underlying random number generators and of the concept of
randomness itself.

Different approaches

One could imagine the following ways to generate random numbers:

• A first technique would be to use unpredictable events in the computer
itself, e.g., related to concurrency, as explained in the previous chapter.
Alas, their unpredictability does not follow simple laws. For example, using
the thread scheduler as a source of randomness will give some fluctuations,
but they do not have a useful probability distribution. Furthermore, they
are intimately linked with the computation in nonobvious ways, so even if
their distribution was known, it would be dependent on the computation.
So this is not a good source of random numbers.

• A second technique would be to rely on a source of true randomness. For
example, electronic circuits generate noise, which is a completely unpre-
dictable signal whose approximate probability distribution is known. The
noise comes from the depths of the quantum world, so for all practical pur-
poses it is truly random. But there are two problems. First, the probability
distribution is not exactly known: it might vary slightly from one circuit to
the next or with the ambient temperature. The first problem is not serious;
there are ways to “normalize” the random numbers so that their distribu-
tion is a constant, known one. There is a second, more serious problem:
the randomness cannot be reproduced except by storing the random num-
bers and replaying them. It might seem strange to ask for reproducibility
from a source of randomness, but it is perfectly reasonable. For exam-
ple, the randomness might be input to a simulator. We would like to vary
some parameter in the simulator such that any variation in the simulator
depends only on the parameter, and not on any variation in the random
numbers. For this reason, computers are not usually connected to truly
random sources.

• It might seem that we have carefully worked ourselves into a tight corner.
We would like true randomness and we would like it to be reproducible.
How can we resolve this dilemma? The solution is simple: we calculate
the random numbers. How can this generate truly random numbers? The
simple answer is, it cannot. But the numbers can appear random, for all
practical purposes. They are called pseudorandom numbers. What does this
mean? It is not simple to define. Roughly, the generated numbers should
give the same behavior as truly random numbers, for the use we make of
them.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

478 Explicit State

The third solution, calculating random numbers, is the one that is almost always
implemented. The question is, what algorithm do we use? Certainly not an
algorithm chosen at random! Knuth [101] shows the pitfalls of this approach.
It almost always gives bad results. We need an algorithm that has known good
properties. We cannot guarantee that the random numbers will be good enough,
but we can try to get what we can. For example, the generated random numbers
should satisfy strong statistical properties, have the right distribution, and their
period should be sufficiently long. The last point is worth expanding on: since a
random number generator does a calculation with finite information, eventually
it will repeat itself. Clearly, the period of repetition should be very long.

Uniformly distributed random numbers

A random number generator stores an internal state, with which it calculates
the next random number and the next internal state. The state should be large
enough to allow a long period. The random number is initialized with a number
called its seed. Initializing it again with the same seed should give the same
sequence of random numbers. If we do not want the same sequence, we can
initialize it with information that will never be the same, such as the current
date and time. Modern computers almost always have an operation to get the
time information. Now we can define the abstract data type of a random number
generator:

• {NewRand ?Rand ?Init ?Max} returns three references: a random number
generator Rand, its initialization procedure Init , and its maximum value
Max. Each generator has its own internal state. For best results, Max should
be large. This allows the program to reduce the random numbers to the
smaller domains it needs for its own purposes.

• {Init Seed} initializes the generator with integer seed Seed, that should
be in the range 0, 1, ..., Max. To give many possible sequences, Max should
be large. Initialization can be done at any time.

• X={Rand} generates a new random number X and updates the internal state.
X is an integer in the range 0, 1, ..., Max-1 and has a Uniform distribution,
i.e., all integers have the same probability of appearing.

How do we calculate a new random number? It turns out that a good simple
method is the linear congruential generator. If x is the internal state and s is the
seed, then the internal state is updated as follows:

x0 = s
xn = (axn−1 + b) mod m

The constants a, b, and m have to be carefully chosen so that the sequence x0,
x1, x2, ..., has good properties. The internal state xi is a uniformly distributed
integer from 0 to m− 1. It is easy to implement this generator:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.8 Case studies 479

local
A=333667
B=213453321
M=1000000000

in
proc {NewRand ?Rand ?Init ?Max}

X={NewCell 0}
in

proc {Init Seed} X:=Seed end
fun {Rand} X:=(A*@X+B) mod M in @Xend
Max=M

end
end

This is one of the simplest methods that has reasonably good behavior. More
sophisticated methods are possible that are even better.

Using laziness instead of state

The linear congruential algorithm can be packaged in a completely different way,
as a lazy function. To get the next random number, it suffices to read the next
element of the stream. Here is the definition:

local
A=333667
B=213453321
M=1000000000

in
fun lazy {RandList S0}

S1=(A*S0+B) mod M
in

S1|{RandList S1}
end

end

Instead of using a cell, the state is stored in a recursive argument of RandList .
Instead of calling Rand explicitly to get the next number, RandList is called
implicitly when the next number is needed. Laziness acts as a kind of brake,
making sure that the computation advances only as rapidly as its results are
needed. A third difference is that higher-order programming is not needed, since
each call to RandList generates a new sequence of random numbers.

Nonuniform distributions

A good technique to generate random numbers of any distribution is to start with
a uniformly distributed random number. From this, we calculate a number with
another distribution. Using this technique we explain how to generate Gaussian
and Exponential distributions. We first define a new generator:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

480 Explicit State

declare Rand Init Max in {NewRand Rand Init Max}

Now we define functions to generate a Uniform distribution from 0 to 1 and a
Uniform integer distribution from A to B inclusive:

FMax={IntToFloat Max}
fun {Uniform}

{IntToFloat {Rand}}/FMax
end

fun {UniformI A B}
A+{FloatToInt {Floor {Uniform}*{IntToFloat B-A+1}}}

end

We will use Uniform to generate random variables with other distributions. First,
let us generate random variables with an Exponential distribution. For this dis-
tribution, the probability that X ≤ x is D(x) = 1− e−λx, where λ is a parameter
called the intensity. Since X ≤ x iff D(X) ≤ D(x), it follows that the probability
that D(X) ≤ D(x) is D(x). Writing y = D(x), it follows that the probability that
D(X) ≤ y is y. Therefore D(X) is uniformly distributed. Say D(X) = U where
U is a uniformly distributed random variable. Then we have X = − ln(1−U)/λ.
This gives the following function:

fun {Exponential Lambda}
˜{Log 1.0-{Uniform}}/Lambda

end

Now let us generate a Normal distribution with mean 0 and variance 1. This is
also called a Gaussian distribution. We use the following technique. Given two
variables U1 and U2, uniformly distributed from 0 to 1. Let R =

√
−2 ln U1 and

φ = 2πU2. Then X1 = R cos φ and X2 = R sin φ are independent variables with
a Gaussian distribution. The proof of this fact is beyond the scope of the book;
it can be found in [101]. This gives the following function:

TwoPi=4.0*{Float.acos 0.0}
fun {Gauss}

{Sqrt ˜2.0*{Log {Uniform}}} * {Cos TwoPi*{Uniform}}
end

Since each call can give us two Gaussian variables, we can use a cell to remember
one result for the next call:

local GaussCell={NewCell nil} in
fun {Gauss}

Prev={Exchange GaussCell $ nil}
in

if Prev\=nil then Prev
else R Phi in

R={Sqrt ˜2.0*{Log {Uniform}}}
Phi=TwoPi*{Uniform}
GaussCell:=R*{Cos Phi}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.8 Case studies 481

R*{Sin Phi}
end

end
end

Each call of Gauss calculates two independent Gaussian variables; we return
one and store the other in a cell. The next call returns it without doing any
calculation.

6.8.4 “Word of Mouth” simulation

Let us simulate how Web users “surf” on the Internet. To “surf” between Web
sites means to successively load different Web sites. To keep our simulator simple,
we will only look at one aspect of a Web site, namely its performance. This can
be reasonable when surfing between Web portals, which each provide a large and
similar set of services. Assume there are n Web sites with equal content and a
total of m users. Each Web site has constant performance. Each user would like
to get to the Web site with highest performance. But there is no global measure
of performance; the only way a user can find out about performance is by asking
other users. We say that information passes by “word of mouth”. This gives us
the following simulation rules:

• Each site has a constant performance. Assume the constants are uniformly
distributed.

• Each user knows which site it is on.

• Each site knows how many users are on it.

• Each user tries to step to a site with higher performance. The user asks a
few randomly-picked users about the performance at their site. The user
then goes to the site with highest performance. However, the performance
information is not exact: it is perturbed by Gaussian noise.

• One round of the simulation consists of all users doing a single step.

With these rules, we might expect users eventually to swarm among the sites
with highest performance. But is it really so? A simulation can give us answer.

Let us write a small simulation program. First, let us set up the global
constants. We use the functions Init , UniformI , and Gauss defined in the
previous section. There are n sites, m users, and we do t simulation rounds.
We initialize the random number generator and write information to the file
´ wordofmouth.txt ´ during the simulation. We use the incremental write op-
erations defined in the File module on the book’s Web site. With 10000 sites,
500000 users, and 200 rounds, this gives the following:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

482 Explicit State

declare
N=10000 M=500000 T=200
{Init 0}
{File.writeOpen ´ wordofmouth.txt ´ }
proc {Out S}

{File.write {Value.toVirtualString S 10 10}#"\n"}
end

Next, we decide how to store the simulation information. We would like to store
it in records or tuples, because they are easy to manipulate. But they cannot
be modified. Therefore, we will store the simulation information in dictionaries.
Dictionaries are very similar to records except that they can be changed dynam-
ically (see Section 6.5.1). Each site picks its performance randomly. It has a
dictionary giving its performance and the number of users on it. The following
code creates the initial site information:

declare
Sites={MakeTuple sites N}
for I in 1..N do

Sites.I={Record.toDictionary
o(hits:0 performance:{IntToFloat {UniformI 1 80000}})}

end

Each user picks its site randomly. It has a dictionary giving its current site.
It updates the Sites information. The following code creates the initial user
information:

declare
Users={MakeTuple users M}
for I in 1..M do

S={UniformI 1 N}
in

Users.I={Record.toDictionary o(currentSite:S)}
Sites.S.hits := Sites.S.hits + 1

end

Now that we have all the data structures, let us do one user step in the simulation.
The function {UserStep I} does one step for user I , i.e., the user asks three
other users for the performance of their sites, it calculates its new site, and then
it updates all the site and user information.

proc {UserStep I}
U = Users.I
% Ask three users for their performance information
L = {List.map [{UniformI 1 M} {UniformI 1 M} {UniformI 1 M}]

fun {$ X}
(Users.X.currentSite) #
Sites.(Users.X.currentSite).performance

+ {Gauss}*{IntToFloat N}
end }

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.8 Case studies 483

% Calculate the best site
MS#MP = {List.foldL L

fun {$ X1 X2} if X2.2>X1.2 then X2 else X1 end end
U.currentSite #
Sites.(U.currentSite).performance

+ {Abs {Gauss}*{IntToFloat N}}
}

in
if MS\=U.currentSite then

Sites.(U.currentSite).hits :=
Sites.(U.currentSite).hits - 1

U.currentSite := MS
Sites.MS.hits := Sites.MS.hits + 1

end
end

Now we can do the whole simulation:

for J in 1..N do
{Out {Record.adjoinAt {Dictionary.toRecord site Sites.J}

name J}}
end
{Out endOfRound(time:0 nonZeroSites:N)}
for I in 1..T do

X = {NewCell 0}
in

for U in 1..M do {UserStep U} end
for J in 1..N do

H=Sites.J.hits in
if H\=0 then

{Out {Record.adjoinAt
{Dictionary.toRecord site Sites.J} name J}}

X:=1+@X
end

end
{Out endOfRound(time:I nonZeroSites:@X)}

end
{File.writeClose}

To make the simulator self-contained, we put all the above code in one procedure
with parameters N, M, T, and the output filename.

What is the result of the simulation? Will users cluster around the sites with
highest performance, even though they have only a very narrow and inaccurate
view of what is going on? Running the above simulation shows that the number of
nonzero sites (with at least one user) decreases smoothly in inverse exponential
fashion from 10000 initially to less than 100 after 83 rounds. Average perfor-
mance of user sites increases from about 40000 (half of the maximum) to more
than 75000 (within 6% of maximum) after just 10 rounds. So we can make a pre-

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

484 Explicit State

liminary conclusion that the best sites will quickly be found and the worst sites
will quickly be abandoned, even by word-of-mouth propagation of very approxi-
mate information. Of course, our simulation has some simplifying assumptions.
Feel free to change the assumptions and explore. For example, the assumption
that a user can pick any three other users is unrealistic–it assumes that each user
knows all the others. This makes convergence too fast. See the Exercises of this
chapter for a more realistic assumption on user knowledge.

6.9 Advanced topics

6.9.1 Limitations of stateful programming

Stateful programming has some strong limitations due to its use of explicit state.
Object-oriented programming is a special case of stateful programming, so it
suffers from the same limitations.

The real world is parallel

The main limitation of the stateful model is that programs are sequential. In
the real world, entities are both stateful and act in parallel. Sequential stateful
programming does not model the parallel execution.

Sometimes this limitation is appropriate, e.g., when writing simulators where
all events must be coordinated (stepping from one global state to another in a
controlled way). In other cases, e.g., when interacting with the real world, the
limitation is an obstacle. To remove the limitation, the model needs to have both
state and concurrency. We have seen one simple way to achieve this in Chapter 5.
Another way is given in Chapter 8. As Section 4.7.6 explains, concurrency in the
model can model parallelism in the real world.

The real world is distributed

Explicit state is hard to use well in a distributed system. Chapter 11 explains this
limitation in depth. Here we give just the main points. In a distributed system,
the store is partitioned into separate parts. Within one part, the store behaves
efficiently as we have seen. Between parts, communication is many orders of
magnitude more expensive. The parts coordinate with one another to maintain
the desired level of global consistency. For cells this can be expensive because cell
contents can change at any time in any part. The programmer has to decide on
both the level of consistency and the coordination algorithm used. This makes it
tricky to do distributed programming with state.

The declarative model and its extension to concurrent message passing in
Chapter 5 are much easier to use. As Chapter 5 explains, a system can be de-
composed into independent components that communicate with messages. This

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.9 Advanced topics 485

fits very well with the partitioned store of a distributed system. When program-
ming a distributed system, we recommend to use the message-passing model
whenever possible for coordinating the parts. Chapter 11 explains how to pro-
gram a distributed system and when to use the different computation models in
a distributed setting.

6.9.2 Memory management and external references

As explained in Section 2.4.7, garbage collection is a technique for automatic
memory management that recovers memory for all entities inside the computation
model that no longer take part in the computation. This is not good enough for
entities outside the computation model. Such entities exist because there is a
world outside of the computation model, which interacts with it. How can we do
automatic memory management for them? There are two cases:

• From inside the computation model, there is a reference to an entity outside
it. We call such a reference a resource pointer. Here are some examples:

– A file descriptor, which points to a data structure held by the operating
system. When the file descriptor is no longer referenced, we would like
to close the file.

– A handle to access an external database. When the handle is no longer
referenced, we would like to close the connection to the database.

– A pointer to a block of memory allocated through the Mozart C++
interface. When the memory is no longer referenced, we would like it
to be freed.

• From the external world, there is a reference to inside the computation
model. We call such a reference a ticket. Tickets are used in distributed
programming as a means to connect processes together (see Chapter 11).

In the second case, there is no safe way in general to recover memory. By safe
we mean not to release memory as long as external references exist. The external
world is so big that the computation model cannot know whether any reference
still exists or not. One pragmatic solution is to add the language entity to the root
set for a limited period of time. This is known as a time-lease mechanism. The
time period can be renewed when the language entity is accessed. If the time
period expires without a renewal, we assume that there are no more external
references. The application has to be designed to handle the rare case when this
assumption is wrong.

In the first case, there is a simple solution based on parameterizing the garbage
collector. This solution, called finalization, gives the ability to perform a user-
defined action when a language entity has become unreachable. This is imple-
mented by the System module Finalize . We first explain how the module works.
We then give some examples of how it is used.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

486 Explicit State

Finalization

Finalization is supported by the Finalize module. The design of this module
is inspired by the guardian concept of [51]. Finalize has the following two
operations:

• {Finalize.register X P} registers a reference X and a procedure P.
When X becomes otherwise unreachable (otherwise than through finaliza-
tion), {P X} is eventually executed in its own thread. During this execution,
X is reachable again until its reference is no longer accessible.

• {Finalize.everyGC P} registers a procedure P to be invoked eventually
after every garbage collection.

In both of these operations, you cannot rely on how soon after the garbage collec-
tion the procedure P will be invoked. It is in principle possible that the call may
only be scheduled several garbage collections late if the system has very many
live threads and generates garbage at a high rate.

There is no limitation on what the procedure P is allowed to do. This is
because P is not executed during garbage collection, when the system’s internal
data structures can be temporarily inconsistent, but is scheduled for execution
after garbage collection. P can even reference X and itself call Finalize .

An interesting example is the everyGC operation itself, which is defined in
terms of register :

proc {EveryGC P}
proc {DO _} {P} {Finalize.register DO DO} end

in
{Finalize.register DO DO}

end

This creates a procedure DOand registers it using itself as its own handler. When
EveryGC exits, the reference to DO is lost. This means that DOwill be invoked
after the next garbage collection. When invoked, it calls P and registers itself
again.

Laziness and external resources

To make lazy evaluation practical for external resources like files, we need to use
finalization to release the external resources when they are no longer needed. For
example, in Section 4.5.5 we defined a function ReadListLazy that reads a file
lazily. This function closes the file after it is completely read. But this is not good
enough: even if only part of the file is needed, the file should also be closed. We
can implement this with finalization. We extend the definition of ReadListLazy

to close the file when it becomes inaccessible:

fun {ReadListLazy FN}
{File.readOpen FN}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.10 Exercises 487

fun lazy {ReadNext}
L T I in

{File.readBlock I L T}
if I==0 then T=nil {File.readClose} else T={ReadNext} end
L

end
in

{Finalize.register F proc {$ F} {File.readClose} end }
{ReadNext}

end

This requires just one call to Finalize .

6.10 Exercises

1. What is state. Section 6.1 defines the function SumList , which has a
state encoded as the successive values of two arguments at recursive calls.
For this exercise, rewrite SumList so that the state is no longer encoded in
arguments, but by cells.

2. Emulating state with concurrency. This exercise explores whether
concurrency can be used to obtain explicit state.

(a) First use concurrency to create an updatable container. We create a
thread that uses a recursive procedure to read a stream. The stream
has two possible commands: access(X) , which binds X to the con-
tainer’s current content, and assign(X) , which assigns X as the new
content. Here is how it is done:

fun {MakeState Init}
proc {Loop S V}

case S of access(X)|S2 then
X=V {Loop S2 V}

[] assign(X)|S2 then
{Loop S2 X}

else skip end
end
S

in
thread {Loop S Init} end
S

end

S={MakeState 0}

The call {MakeState Init} creates a new container with initial con-
tent Init . We use the container by putting commands on the stream.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

488 Explicit State

For example, here is a sequence of three commands for the container
S:

declare S1 X Y in
S=access(X)|assign(3)|access(Y)|S1

This binds X to 0 (the initial content), puts 3 in the container, and
then binds Y to 3.

(b) Now rewrite SumList to use this container to count the number of
calls. Can this container be encapsulated, i.e., can it be added without
changing the arguments of SumList ? Why or why not? What happens
when we try to add the function SumCount like in Section 6.1.2?

3. Implementing ports. In Chapter 5 we introduced the concept of port,
which is a simple communication channel. Ports have the operations {NewPort

S P} , which returns a port P with stream S, and {Send P X} , which sends
message X on port P. From these operations, it is clear that ports are a
stateful unbundled ADT. For this exercise, implement ports in terms of
cells, using the techniques of Section 6.4.

4. Explicit state and security. Section 6.4 gives four ways to construct
secure ADTs. From these constructions, it seems that the ability to make
ADTs secure is a consequence of using one or both of the following concepts:
procedure values (which provide hiding through lexical scoping) and name
values (which are unforgeable and unguessable). In particular, explicit state
seems to have no role with respect to security. For this exercise, think
carefully about this assertion. Is it true? Why or why not?

5. Declarative objects and identity. Section 6.4.2 shows how to build a
declarative object, which combines value and operations in a secure way.
However, the implementation given misses one aspect of objects, namely
their identity. That is, an object should keep the same identity after state
changes. For this exercise, extend the declarative objects of Section 6.4.2
to have an identity.

6. Revocable capabilities. Section 6.4.3 defines the three-argument proce-
dure Revocable , which takes a capability and uses explicit state to cre-
ate two things: a revocable version of that capability and a revoker. For
Revocable , the capability is represented as a one-argument procedure and
the revoker is a zero-argument procedure. For this exercise, write a version
of Revocable that is a one-argument procedure and where the revoker is
also a one-argument procedure. This allows Revocable to be used recur-
sively on all capabilities including revokers and itself. For example, the
ability to revoke a capability can then be made revocable.

7. Abstractions and memory management. Consider the following ADT
which allows to collect information together into a list. The ADT has three

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.10 Exercises 489

operations. The call C={NewCollector} creates a new collector C. The
call {Collect C X} adds X to C’s collection. The call L={EndCollect}

returns the final list containing all collected items in the order they were
collected. Here are two ways to implement collectors that we will compare:

• C is a cell that contains a pair H|T , where H is the head of the collected
list and T is its unbound tail. Collect is implemented as:

proc {Collect C X}
H T in

{Exchange C H|(X|T) H|T}
end

Implement the NewCollector and EndCollect operations with this
representation.

• C is a pair H|T , where H is the head of the collected list and T is a cell
that contains its unbound tail. Collect is implemented as:

proc {Collect C X}
T in

{Exchange C.2 X|T T}
end

Implement the NewCollector and EndCollect operations with this
representation.

• We compare the two implementations with respect to memory man-
agement. Use the table of Section 3.5.2 to calculate how many words
of memory are allocated by each version of Collect . How many of
these words immediately become inactive in each version? What does
this imply for garbage collection? Which version is best?

This example is taken from the Mozart system. Collection in the for loop
was originally implemented with one version. It was eventually replaced by
the other. (Note that both versions work correctly in a concurrent setting,
i.e., if Collect is called from multiple threads.)

8. Call by name. Section 6.4.4 shows how to code call by name in the stateful
computation model. For this exercise, consider the following example taken
from [56]:

procedure swap(callbyname x,y:integer);

var t:integer;

begin

t:=x; x:=y; y:=t

end;

var a:array [1..10] of integer;

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

490 Explicit State

var i:integer;

i:=1; a[1]:=2; a[2]=1;

swap(i, a[i]);

writeln(a[1], a[2]);

This example shows a curious behavior of call by name. Running the exam-
ple does not swap i and a[i], as one might expect. This shows an undesir-
able interaction between destructive assignment and the delayed evaluation
of an argument.

• Explain the behavior of this example using your understanding of call
by name.

• Code the example in the stateful computation model. Use the following
encoding of array[1..10]:

A={MakeTuple array 10}
for J in 1..10 do A.J={NewCell 0} end

That is, code the array as a tuple of cells.

• Explain the behavior again in terms of your coding.

9. Call by need. With call by name, the argument is evaluated again each
time it is needed.

• For this exercise, redo the swap example of the previous exercise with
call by need instead of call by name. Does the counterintuitive be-
havior still occur? If not, can similar problems still occur with call by
need by changing the definition of swap?

• In the code that implements call by need, Sqr will always call A. This
is fine for Sqr , since we can see by inspection that the result is needed
three times. But what if the need cannot be determined by inspection?
We do not want to call A unnecessarily. One possibility is to use lazy
functions. Modify the coding of call by need given in Section 6.4.4
so that it uses laziness to call A only when needed, even if that need
cannot be determined by inspection. A should be called at most once.

10. Evaluating indexed collections. Section 6.5.1 presents four indexed col-
lection types, namely tuples, records, arrays, and dictionaries, with different
performance/expressiveness trade-offs. For this exercise, compare these four
types in various usage scenarios. Evaluate their relative performance and
usefulness.

11. Extensible arrays. The extensible array of Section 6.5 only extends the
array upwards. For this exercise, modify the extensible array so it extends
the array in both directions.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.10 Exercises 491

12. Generalized dictionaries. The built-in dictionary type only works for
literal keys, i.e., numbers, atoms, or names. For this exercise, implement a
dictionary that can use any value as a key. One possible solution uses the
fact that the == operation can compare any values. Using this operation,
the dictionary could store entries as an association list, which is a list of
pairs Key#Value , and do simple linear search.

13. Loops and invariant assertions. Use the method of invariant asser-
tions to show that the proof rules for the while and for loops given in
Section 6.6.4 are correct.

14. The break statement. A block is a set of statements with a well-defined
entry point and exit point. Many modern imperative programming lan-
guages, such as Java and C++, are based on the concept of block. These
languages allow defining nested blocks and provide an operation to jump
immediately from within a block to the block’s exit point. This operation
is called break. For this exercise, define a block construct with a break
operation that can be called as follows:

{Block proc {$ Break} 〈stmt〉 end }

This should have exactly the same behavior as executing 〈stmt〉, except
that executing {Break} inside 〈stmt〉 should immediately exit the block.
Your solution should work correctly for nested blocks and exceptions raised
within blocks. If 〈stmt〉 creates threads, then these should not be affected
by the break operation. Hint: use the exception handling mechanism.

15. “Small World” simulation. The “Word of Mouth” simulation of Sec-
tion 6.8.4 makes some strong simplifying assumptions. For example, the
simulation assumes that each user can choose any three users at random
to ask them about their performance. This is much too strong an assump-
tion. The problem is that the choice ranges over all users. This gives each
user a potentially unbounded amount of knowledge. In actuality, each user
has bounded knowledge: a small network of acquaintances that changes
but slowly. Each user asks only members of his network of acquaintances.
Rewrite the simulation program to take this assumption into account. This
can make convergence much slower. With this assumption, the simulation
is called a “Small World” simulation [203].

16. Performance effects in “Word of Mouth” simulation. The “Word
of Mouth” simulation of Section 6.8.4 assumes that site performance is
constant. A better way to take performance into account is to assume that
it is constant up to a given threshold number of users, which is fixed for each
site. Beyond this threshold, performance goes down in inverse proportion
to the number of users. This is based on the premise that for small numbers
of users, Internet performance is the bottleneck, and for large numbers of
users, site performance is the bottleneck.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

492 Explicit State

17. Word frequency application. Section 6.8.2 gives a version of the word
frequency algorithm that uses stateful dictionaries. Rewrite the word fre-
quency application of Section 3.9.4 to use the stateful version.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Chapter 7

Object-Oriented Programming

“The fruit is too well known to need any
description of its external characteristics.”
– From entry “Apple”, Encyclopaedia Britannica (11th edition)

This chapter introduces a particularly useful way of structuring stateful pro-
grams called object-oriented programming. It introduces one new concept over
the last chapter, namely inheritance, which allows to define ADTs in incremen-
tal fashion. However, the computation model is the same stateful model as in
the previous chapter. We can loosely define object-oriented programming as
programming with encapsulation, explicit state, and inheritance. It is often sup-
ported by a linguistic abstraction, the concept of class, but it does not have to
be. Object-oriented programs can be written in almost any language.

From a historical viewpoint, the introduction of object-oriented programming
made two major contributions to the discipline of programming. First, it made
clear that encapsulation is essential. Programs should be organized as collec-
tions of ADTs. This was first clearly stated in the classic article on “information
hiding” [142], reprinted in [144]. Each module, component, or object has a “se-
cret” known only to itself. Second, it showed the importance of building ADTs
incrementally, using inheritance. This avoids duplicated code.

Object-oriented programming is one of the most successful and pervasive ar-
eas in informatics. From its timid beginnings in the 1960’s it has invaded every
area of informatics, both in scientific research and technology development. The
first object-oriented language was Simula 67, developed in 1967 as a descendant
of Algol 60 [130, 137, 152]. Simula 67 was much ahead of its time and had little
immediate influence. Much more influential in making object-oriented program-
ming popular was Smalltalk-80, released in 1980 as the result of research done in
the 1970’s [60]. The currently most popular programming languages, Java and
C++, are object-oriented [186, 184]. The most popular “language-independent”
design aids, the Unified Modeling Language (UML) and Design Patterns, both
implicitly assume that the underlying language is object-oriented [58, 159]. With

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

494 Object-Oriented Programming

all this exposure, one might feel that object-oriented programming is well under-
stood (see the chapter quote). Yet, this is far from being the case.

Structure of the chapter

The purpose of this chapter is not to cover all of object-oriented programming
in 100 pages or less. This is impossible. Instead, we give an introduction that
emphasizes areas where other programming books are weak: the relationship with
other computation models, the precise semantics, and the possibilities of dynamic
typing. The chapter is structured as follows:

• Motivations (Section 7.1). We give the principal motivation for object-
oriented programming, namely to support inheritance, and how its features
relate to this.

• An object-oriented computation model (Sections 7.2 and 7.3). We
define an object system that takes advantage of dynamic typing to combine
simplicity and flexibility. This allows us to explore better the limits of
the object-oriented abstraction and situate existing languages within them.
We single out three areas: controlling encapsulation, single and multiple
inheritance, and higher-order programming techniques. We give the object
system syntactic and implementation support to make it easier to use and
more efficient.

• Programming with inheritance (Section 7.4). We explain the basic
principles and techniques for using inheritance to construct object-oriented
programs. We illustrate them with realistic example programs. We give
pointers into the literature on object-oriented design.

• Relation to other computation models (Section 7.5). From the view-
point of multiple computation models, we show how and when to use and
not use object-oriented programming. We relate it to component-based pro-
gramming, object-based programming, and higher-order programming. We
give additional design techniques that become possible when it is used to-
gether with other models. We explain the pros and cons of the oft-repeated
principle stating that every language entity should be an object. This prin-
ciple has guided the design of several major object-oriented languages, but
is often misunderstood.

• Implementing the object system (Section 7.6). We give a simple and
precise semantics of our object system, by implementing it in terms of the
stateful computation model. Because the implementation uses a compu-
tation model with a precise semantics, we can consider it as a semantic
definition.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.1 Motivations 495

• The Java language (Section 7.7). We give an overview of the sequential
part of Java, a popular object-oriented programming language. We show
how the concepts of Java fit in the object system of the chapter.

• Active objects (Section 7.8). An active object extends a port object of
Chapter 5 by using a class to define its behavior. This combines the abilities
of object-oriented programming with message-passing concurrency.

After reading this chapter, you will have a better view of what object-oriented
programming is about, how to situate it among other computation models, and
how to use the expressiveness it offers.

Object-Oriented Software Construction

For more information on object-oriented programming techniques and principles,
we recommend the book Object-Oriented Software Construction, Second Edition,
by Bertrand Meyer [122]. This book is especially interesting for its detailed
discussion of inheritance, including multiple inheritance.

7.1 Motivations

7.1.1 Inheritance

As we saw in the previous chapter, stateful abstract data types are a very useful
concept for organizing a program. In fact, a program can be built in a hierarchical
structure as ADTs that depend on other ADTs. This is the idea of component-
based programming.

Object-oriented programming takes this idea one step further. It is based on
the observation that components frequently have much in common. Take the
example of sequences. There are many different ADTs that are “sequence-like”.
Sometimes we want them to behave like stacks (adding and deleting at the same
end). Sometimes we want them to behave like queues (adding and deleting at
opposite ends). And so forth, with dozens of possibilities. All of these sequences
share the basic, linear-order property of the concept of sequence. How can we
implement them without duplicating the common parts?

Object-oriented programming answers this question by introducing the addi-
tional concept of inheritance. An ADT can be defined to “inherit” from other
ADTs, that is, to have substantially the same functionality as the others, with
possibly some modifications and extensions. Only the differences between the
ADT and its ancestors have to be specified. Such an incremental definition of an
ADT is called a class.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

496 Object-Oriented Programming

Stateful model with inheritance

Inheritance is the essential difference between object-oriented programming and
most other kinds of stateful programming. It is important to emphasize that
inheritance is a programming technique; the underlying computation model of
object-oriented programming is simply the stateful model (or the shared-state
concurrent model, for concurrent object-oriented programming). Object-oriented
languages provide linguistic support for inheritance by adding classes as a lin-
guistic abstraction.

Caveats

It turns out that inheritance is a very rich concept that can be rather tricky.
There are many ways that an ADT can be built by modifying other ADTs.
The primary approach used in object-oriented programming is syntactic: a new
ADT is defined by doing simple syntactic manipulations of an existing ADT.
Because the resulting changes in semantics are not always easy to infer, these
manipulations must be done with great care.

The component approach to building systems is much simpler. A component
groups together any set of entities and treats them as a unit from the viewpoint
of use dependency. A component is built from subcomponents, respecting their
specifications.

Potential

Despite the difficulties of using inheritance, it has a great potential: it increases
the possibilities of factoring an application, i.e., to make sure that each abstrac-
tion is implemented just once. Having more than one implementation of an
abstraction does not just make the program longer. It is an invitation to dis-
aster: if one implementation is changed, then the others must also be changed.
What’s more, the different implementations are usually slightly different, which
makes nonobvious the relationships among all the changes. This “code duplica-
tion” of an abstraction is one of the biggest sources of errors. Inheritance has the
potential to remove this duplication.

The potential to factor an application is a two-edged sword. It comes at
the price of “spreading out” an ADT’s implementation over large parts of the
program. The implementation of an ADT does not exist in one place; all the
ADTs that are part of it have to be considered together. Even stronger, part of
the implementation may exist only as compiled code, with no access to the source
code.

Early on, it was believed that inheritance would solve the problem of software
reuse. That is, it would make it easier to build libraries that can be distributed
to third parties, for use in other applications. This has not worked out in prac-
tice. The failure of inheritance as a reuse technique is clear from the success of

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.1 Motivations 497

other techniques such as components, frameworks, and design patterns. Inheri-
tance remains most useful within a single application or closely-related family of
applications.

Inheritance is not an unmixed blessing, but it takes its place next to higher-
order programming as one of the most important techniques for structuring a
program.

7.1.2 Encapsulated state and inheritance

The combination of encapsulating explicit state and inheritance has led to the
field of object-oriented programming, which is presented in this chapter. This
field has developed a rich theory and practice on how to write stateful programs
with inheritance. Unfortunately, this theory tends to consider everything as be-
ing an object and to mix the notions of state and encapsulation. The advantages
to be gained by considering other entities than objects and by using encapsula-
tion without state are often ignored. Chapters 3 and 4 explain well how to use
these two ideas. The present chapter follows the object-oriented philosophy and
emphasizes how to build ADTs with both explicit state and inheritance.

Most object-oriented programming languages consider that ADTs should have
explicit state by default. For example, Smalltalk, C++, and Java all consider
variables to be stateful, i.e., mutable, by default. In Java it is possible to make
variables immutable by declaring them as final, but it is not the default. This
goes against the rule of thumb given in Section 4.7.6, and in our view it is a
mistake. Explicit state is a complex notion which should not be the first one
that students are taught. There are simpler ways to program, e.g., using variable
identifiers to refer to values or dataflow variables. These simpler ways should be
considered first before moving to explicit state.

7.1.3 Objects and classes

An object is an entity that encapsulates a state so that it can only be accessed
in a controlled way from outside the object. The access is provided by means of
methods, which are procedures that are accessible from the outside and that can
directly access the internal state. The only way to modify the state is by calling
the methods. This means that the object can guarantee that the state always
satisfies some invariant property.

A class is an entity that specifies an object in an incremental way, by defining
the classes that the object inherits from (its direct ancestors) and defining how
the class is different from the direct ancestors. Most modern languages support
classes as a linguistic abstraction. We will do the same in this chapter. To make
the concepts precise we will add a simple yet powerful class construct.

This chapter only talks about objects that are used sequentially, i.e., that are
used in a single thread. Chapter 8 explains how to use objects in a concurrent

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

