
498 Object-Oriented Programming

class Counter
attr val
meth init(Value)

val:=Value
end
meth browse

{Browse @val}
end
meth inc(Value)

val:=@val+Value
end

end

Figure 7.1: An example class Counter (with class syntax)

setting, when multiple threads use the objects. In particular, object locking is
explained there.

7.2 Classes as complete ADTs

The heart of the object concept is controlled access to encapsulated data. The
behavior of an object is specified by a class. In the most general case, a class
is an incremental definition of an ADT, that defines the ADT as a modification
of other ADTs. There is a rich set of concepts for defining classes. We classify
these concepts into two sets, according as they permit the class to define an ADT
completely or incrementally:

• Complete ADT definition. These are all the concepts that permit a
class, taken by itself, to define an ADT. There are two sets of concepts:

– Defining the various elements that make up a class (Section 7.2.3),
namely methods, attributes, and properties. Attributes can be initial-
ized in several ways, per object or per class (Section 7.2.4).

– Taking advantage of dynamic typing. This gives first-class messages
(Section 7.2.5) and first-class attributes (Section 7.2.6). This allows
powerful forms of polymorphism that are difficult or impossible to do
in statically-typed languages. This increased freedom comes with an
increased responsibility of the programmer to use it correctly.

• Incremental ADT definition. These are all the concepts related to in-
heritance, that is, they define how a class is related to existing classes. They
are given in Section 7.3.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.2 Classes as complete ADTs 499

local
proc {Init M S}

init(Value)=M in (S.val):=Value
end
proc {Browse2 M S}

{Browse @(S.val)}
end
proc {Inc M S}

inc(Value)=M in (S.val):=@(S.val)+Value
end

in
Counter=c(attrs:[val]

methods:m(init:Init browse:Browse2 inc:Inc))
end

Figure 7.2: Defining the Counter class (without syntactic support)

7.2.1 An example

To see how classes and objects work in the object system, let us define an example
class and use it to create an object. We assume that the language has a new
construct, the class declaration. We assume that classes are first-class values
in the language. This lets us use a class declaration as either statement or
expression, in similar manner to a proc declaration. Later on in the chapter, we
will see how to define classes in the kernel language of the stateful model. This
would let us define class as a linguistic abstraction.

Figure 7.1 defines a class referred to by the variable Counter . This class has
one attribute, val , that holds a counter’s current value, and three methods, init ,
browse , and inc , for initializing, displaying, and incrementing the counter. The
attribute is assigned with the := operator and accessed with the @operator. This
seems quite similar to how other languages would do it, modulo a different syntax.
But appearances can be deceiving!

The declaration of Figure 7.1 is actually executed at run time, i.e., it is a
statement that creates a class value and binds it to Counter . Replace “Counter ”
by “$” and the declaration can be used in an expression. Putting this declaration
at the head of a program will declare the class before executing the rest, which is
familiar behavior. But this is not the only possibility. The declaration can be put
anywhere that a statement can be. For example, putting the declaration inside a
procedure will create a new and distinct class each time the procedure is called.
Later on we will use this possibility to make parameterized classes.

Let us create an object of class Counter and do some operations with it:

C={New Counter init(0)}
{C inc(6)} {C inc(6)}
{C browse}

This creates the counter object C with initial value 0, increments it twice by 6,

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

500 Object-Oriented Programming

fun {New Class Init}
Fs={Map Class.attrs fun {$ X} X#{NewCell _} end }
S={List.toRecord state Fs}
proc {Obj M}

{Class.methods.{Label M} M S}
end

in
{Obj Init}
Obj

end

Figure 7.3: Creating a Counter object

and then displays the counter’s value. The statement {C inc(6)} is called an
object application. The message inc(6) is sent to the object, which invokes the
corresponding method. Now try the following:

local X in {C inc(X)} X=5 end
{C browse}

This displays nothing at all! The reason is that the object application

{C inc(X)}

blocks inside the method inc . Can you see exactly where? Now try the following
variation:

declare S in
local X in thread {C inc(X)} S= unit end X=5 end
{Wait S} {C browse}

Things now work as expected. We see that dataflow execution keeps its familiar
behavior when used with objects.

7.2.2 Semantics of the example

Before going on to describe the additional abilities of classes, let us give the
semantics of the Counter example. It is a simple application of higher-order
programming with explicit state. The semantics we give here is slightly simplified;
it leaves out the abilities of class that are not used in the example (such as
inheritance and self). Section 7.6 gives the full semantics.

Figure 7.2 shows what Figure 7.1 does by giving the definition of the class
Counter in the stateful model without any class syntax. We can see that
according to this definition, a class is simply a record containing a set of attribute
names and a set of methods. An attribute name is a literal. A method is a
procedure that has two arguments, the message and the object state. In each
method, assigning to an attribute (“val:= ”) is done with a cell assignment and
accessing an attribute (“@val”) is done with a cell access.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.2 Classes as complete ADTs 501

〈statement〉 ::= class 〈variable〉 { 〈classDescriptor〉 }
{ meth 〈methHead〉 [´ =´ 〈variable〉]

(〈inExpression〉 | 〈inStatement〉) end }
end

| lock [〈expression〉 then] 〈inStatement〉 end

| 〈expression〉 ´ := ´ 〈expression〉
| 〈expression〉 ´ , ´ 〈expression〉
| ...

〈expression〉 ::= class ´ $´ { 〈classDescriptor〉 }
{ meth 〈methHead〉 [´ =´ 〈variable〉]

(〈inExpression〉 | 〈inStatement〉) end }
end

| lock [〈expression〉 then] 〈inExpression〉 end

| 〈expression〉 ´ := ´ 〈expression〉
| 〈expression〉 ´ , ´ 〈expression〉
| ´ @́ 〈expression〉
| self

| ...
〈classDescriptor〉 ::= from { 〈expression〉 }+ | prop { 〈expression〉 }+

| attr { 〈attrInit〉 }+
〈attrInit〉 ::= ([´ ! ´] 〈variable〉 | 〈atom〉 | unit | true | false)

[´ : ´ 〈expression〉]
〈methHead〉 ::= ([´ ! ´] 〈variable〉 | 〈atom〉 | unit | true | false)

[´ (´ { 〈methArg〉 } [´ ... ´] ´) ´]
[´ =´ 〈variable〉]

〈methArg〉 ::= [〈feature〉 ´ : ´] (〈variable〉 | ´ _´ | ´ $´) [´ <=´ 〈expression〉]

Table 7.1: Class syntax

Figure 7.3 defines the function Newwhich is used to create objects from classes.
This function creates the object state, defines a one-argument procedure Obj that
is the object, and initializes the object before returning it. The object state S

is a record holding one cell for each attribute. The object state is hidden inside
Obj by lexical scoping.

7.2.3 Defining classes

A class is a data structure that defines an object’s internal state (attributes), its
behavior (methods), the classes it inherits from, and several other properties and
operations that we will see later on. More generally, a class is a data structure
that describes an ADT and gives its partial or total implementation. Table 7.1
gives the syntax of classes. There can be any number of objects of a given class.
They are called instances of the class. These objects have different identities

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

502 Object-Oriented Programming

and can have different values for their internal state. Otherwise, all objects of a
given class behave according to the class definition. An object Obj is called with
the syntax {Obj M} , where M is a record that defines the message. Calling an
object is also called sending a message to the object. This terminology exists for
historical reasons; we do not recommend it since it is easily confused with sending
a message on a communication channel. An object invocation is synchronous,
like a procedure’s. The invocation returns only when the method has completely
executed.

A class defines the constituent parts that each instance will have. In object-
oriented terminology, these parts are often called members. There are three kinds
of members:

• Attributes (declared with the keyword “attr ”). An attribute, is a cell
that contains part of the instance’s state. In object-oriented terminology, an
attribute is often called an instance variable. The attribute can contain any
language entity. The attribute is visible only in the class definition and all
classes that inherit from it. Every instance has a separate set of attributes.
The instance can update an attribute with the following operations:

– An assignment statement: 〈expr〉1:= 〈expr〉2. This assigns the result of
evaluating 〈expr〉2 to the attribute whose name is obtained by evalu-
ating 〈expr〉1.

– An access operation: @〈expr〉. This accesses the attribute whose name
is obtained by evaluating 〈expr〉. The access operation can be used in
any expression that is lexically inside the class definition. In particular,
it can be used inside of procedures that are defined inside the class.

– An exchange operation. If the assignment 〈expr〉1:= 〈expr〉2 is used as
an expression, then it has the effect of an exchange. For example,
consider the statement 〈expr〉3=〈expr〉1:= 〈expr〉2. This first evaluates
the three expressions. Then it it unifies 〈expr〉3 with the content of the
attribute 〈expr〉1 and atomically sets the new content to 〈expr〉2.

• Methods (declared with the keyword “meth ”). A method is a kind of
procedure that is called in the context of a particular object and that can
access the object’s attributes. The method consists of a head and body.
The head consists of a label, which must be an atom or a name, and a set
of arguments. The arguments must be distinct variables, otherwise there
is a syntax error. For increased expressiveness, method heads are similar
to patterns and messages are similar to records. Section 7.2.5 explains the
possibilities.

• Properties (declared with the keyword “prop ”). A property modifies how
an object behaves. For example:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.2 Classes as complete ADTs 503

– The property locking creates a new lock with each object instance.
The lock can be accessed inside the class with the lock ... end con-
struct. Locking is explained in Chapter 8.

– The property final makes the class be a final class, i.e., it cannot be
extended with inheritance. Inheritance is explained in Section 7.3.

Attributes and methods are literals. If they are defined with atom syntax, then
they are atoms. If they are defined with identifier syntax (e.g., capitalized), then
the system will create new names for them. The scope of these names is the class
definition. Using names gives a fine-grained control over object security, as we
will see. Section 7.2.4 shows how to initialize attributes.

In addition to having these kinds of members, Section 7.3 shows how a class
can inherit members from other classes. An instance of a class is created with
the operation New:

MyObj={New MyClass init}

This creates a new object MyObj of class MyClass and passes init as the first
message to the object. This message is used to initialize the object.

7.2.4 Initializing attributes

Attributes can be initialized in two ways: per instance or per class.

• Per instance. An attribute can be given a different initial value per in-
stance. This is done by not initializing it in the class definition. For exam-
ple:

class OneApt
attr streetName
meth init(X) @streetName=X end

end
Apt1={New OneApt init(drottninggatan)}
Apt2={New OneApt init(rueNeuve)}

Each instance, including Apt1 and Apt2 , will initially reference a different
unbound variable. Each variable can be bound to a different value.

• Per class. An attribute can be given a value that is the same for all
instances of a class. This is done by initializing it with “: ” in the class
definition. For example:

class YorkApt
attr

streetName:york
streetNumber:100
wallColor:_
floorSurface:wood

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

504 Object-Oriented Programming

meth init skip end
end
Apt3={New YorkApt init}
Apt4={New YorkApt init}

All instances, including Apt3 and Apt4 , have the same initial values for
all four attributes. This includes wallColor , even though the initial value
is an unbound variable. All instances refer to the same unbound variable. It
can be bound by binding it in one of the instances, e.g., @wallColor=white .
Then all instances will see this value. Be careful not to confuse the two op-
erations @wallColor=white and wallColor:=white .

• Per brand. This is another way to use the per-class initialization. A brand
is a set of classes that are related in some way, but not by inheritance. An
attribute can be given a value that is the same for all members of a brand
by initializing with the same variable for all members. For example:1

L=linux
class RedHat

attr ostype:L
end
class SuSE

attr ostype:L
end
class Debian

attr ostype:L
end

Each instance of each class will be initialized to the same value.

Since an attribute is stateful, its initial reference can be changed.

7.2.5 First-class messages

The principle is simple: messages are records and method heads are patterns that
match a record. As a consequence, the following possibilities exist for object calls
and method definitions:

• In the object call {Obj M} , the following is possible:

1. Static record as message. In the simplest case, M is a record
that is known at compile time, e.g., like in the object call {Counter

inc(X)} .

2. Dynamic record as message. It is possible to call {Obj M} where
M is a variable that references a record that is calculated at run time.

1With apologies to all omitted Linux distributions.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.2 Classes as complete ADTs 505

Because of dynamic typing, it is possible to create new record types
at run time (e.g., with Adjoin or List.toRecord).

• In the method definition, the following is possible:

1. Fixed argument list. The method head is a pattern consisting of a
label followed by a series of arguments in parentheses. For example:

meth foo(a:A b:B c:C)
% Method body

end

The method head foo(a:A b:B c:C) is a pattern that must match
the message exactly, i.e., the label foo and arity [a,b,c] must match.
The features (a, b, and c) can be given in any order. A class can only
have one method definition with a given label, otherwise there is a
syntax error.

2. Flexible argument list. The method head is the same as in the fixed
argument list except it ends in “... ”. For example:

meth foo(a:A b:B c:C ...)
% Method body

end

The “... ” in the method head means that any message is accepted
if it has at least the listed arguments. This means the same as the
“... ” in patterns, e.g., in a case statement. The given label must
match the message label and the given arity must be a subset of the
message arity.

3. Variable reference to method head. The whole method head
is referenced by a variable. This is particularly useful with flexible
argument lists, but it can also be used with a fixed argument list. For
example:

meth foo(a:A b:B c:C ...)=M
% Method body

end

The variable Mreferences the full message as a record. The scope of M

is the method body.

4. Optional argument. A default is given for an argument. The default
is used if the argument is not in the message. For example:

meth foo(a:A b:B<=V)
% Method body

end

The “<=V” in the method head means that the field b is optional
in the object call. That is, the method can be called either with or

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

506 Object-Oriented Programming

without the field. With the field, an example call is foo(a:1 b:2) ,
which ignores the expression V. Without the field, an example call is
foo(a:1) , for which the actual message received is foo(a:1 b:V) .

5. Private method label. We said that method labels can be names.
This is denoted by using a variable identifier:

meth A(bar:X)
% Method body

end

The method A is bound to a fresh name when the class is defined. A

is initially visible only in the scope of the class definition. If it has to
be used elsewhere in the program, it must be passed explicitly.

6. Dynamic method label. It is possible to calculate a method label at
run time, by using an the escaped variable identifier. This is possible
because class definitions are executed at run time. The method label
has to be known when the class definition is executed. For example:

meth !A(bar:X)
% Method body

end

causes the method label to be whatever the variable A was bound to.
The variable must be bound to an atom or a name. By using names,
this technique can make methods secure (see Section 7.3.3).

7. The otherwise method. The method head with label otherwise is
a catchall that accepts any message for which no other method exists.
For example:

meth otherwise(M)
% Method body

end

A class can only have one method with head otherwise , otherwise
there is a syntax error. This method must have just one argument,
otherwise a run-time “arity mismatch” error is given. If this method
exists, then the object accepts any message. If no method is defined
for the message, then the otherwise(M) method is called with the
full message in M as a record. This mechanism allows to implement
delegation, an alternative to inheritance explained in Section 7.3.4.
This mechanism also allows making wrappers around method calls.

All these possibilities are covered by the syntax of Table 7.1. In general, for
the call {Obj M} , the compiler tries to determine statically what the object Obj

and the method M are. If it can, then it compiles a very fast specialized call
instruction. If it cannot, then it compiles a general object call instruction. The
general instruction uses caching. The first call is slower, because it looks up the

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.3 Classes as incremental ADTs 507

method and caches the result. Subsequent calls find the method in the cache and
are almost as fast as the specialized call.

7.2.6 First-class attributes

Attribute names can be calculated at run time. For example, it is possible to
write methods to access and assign any attributes:

class Inspector
meth get(A ?X)

X=@A
end
meth set(A X)

A:=X
end

end

The get method can access any attribute and the set method can assign any
attribute. Any class that has these methods will open up its attributes for pub-
lic use. This ability is dangerous for programming but can be very useful for
debugging.

7.2.7 Programming techniques

The class concept we have introduced so far gives a convenient syntax for defining
ADTs with encapsulated state and multiple operations. The class statement
defines a class value, which can be instantiated to give objects. In addition to
having a convenient syntax, class values as defined here keep all the advantages of
procedure values. All of the programming techniques for procedures also apply for
classes. Classes can have external references just like procedure values. Classes
are compositional: classes can be nested within classes. They are compatible
with procedure values: classes can be nested within procedures and vice versa.
Classes are not this flexible in all object-oriented languages; usually some limits
are imposed, as explained in Section 7.5.

7.3 Classes as incremental ADTs

As explained before, the main addition that object-oriented programming adds
to component-based programming is inheritance. Object-oriented programming
allows to define a class incrementally, by extending existing classes. It is not
enough to say which classes are extended; to properly define a new ADT more
concepts are needed. Our model includes three sets of concepts:

• The first is inheritance itself (Section 7.3.1), which defines which preexisting
classes are extended.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

508 Object-Oriented Programming

A1 B1

BA

C

A1 B1

BA

C

Illegal class hierarchy Legal class hierarchy

m m m

m

(two ‘‘m’’ visible from C) (one ‘‘m’’ visible from C)

Method m

Figure 7.4: Illegal and legal class hierarchies

• The second is method access control (Section 7.3.2), which defines how
to access particular methods both in the new class and in the preexisting
classes. It is done with static and dynamic binding and the concept of self .

• The third is encapsulation control (Section 7.3.3), which defines what part
of a program can see a classes’ attributes and methods.

In addition, the model can use first-class messages to implement delegation, a
completely different way to define ADTs incrementally (see Section 7.3.4).

7.3.1 Inheritance

Inheritance is a way to construct new classes from existing classes. It defines
what attributes and methods are available in the new class. We will restrict our
discussion of inheritance to methods. The same rules apply to attributes. The
methods available in a class C are defined through a precedence relation on the
methods that appear in the class hierarchy. We call this relation the overriding
relation:

• A method in class C overrides any method with the same label in all of C’s
superclasses.

Classes may inherit from one or more classes, which appear after the keyword
from in the class declaration. A class that inherits from exactly one class is said
to use single inheritance (sometimes called simple inheritance). Inheriting from
more than one class is called multiple inheritance. A class B is a superclass of a
class A if:

• B appears in the from declaration of A, or

• B is a superclass of a class appearing in the from declaration of A.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.3 Classes as incremental ADTs 509

compilation execution
Class declaration

in source code class declaration
Compiled Class value

(in byte code)

Figure 7.5: A class declaration is an executable statement

A class hierarchy with the superclass relation can be seen as a directed graph with
the current class being the root. The edges are directed towards the subclasses.
There are two requirements for the inheritance to be legal. First, the inheritance
relation is directed and acyclic. So the following is not allowed:

class A from B ... end
class B from A ... end

Second, after striking out all overridden methods, each remaining method should
have a unique label and is defined in only one class in the hierarchy. Hence, class
C in the following example is illegal because the two methods labeled mremain:

class A1 meth m(...) ... end end
class B1 meth m(...) ... end end
class A from A1 end
class B from B1 end
class C from A B end

Figure 7.4 shows this hierarchy and a slightly different one that is legal. The class
C below is also illegal, since two methods mare available in C:

class A meth m(...) ... end end
class B meth m(...) ... end end
class C from A B end

Run time is all there is

If a program containing the declaration of class C is compiled in Mozart then the
system will not complain. It is only when the program executes the declaration
that the system will raise an exception. If the program does not execute the
declaration then no exception is raised. For example, a program that contains
the following source code:

fun {StrangeClass}
class A meth foo(X) X=a end end
class B meth foo(X) X=b end end
class C from A B end

in C end

can be successfully compiled and executed. Its execution has the effect of defining
the function StrangeClass . It is only during the call {StrangeClass} that an

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

510 Object-Oriented Programming

class Account
attr balance:0
meth transfer(Amt)

balance:=@balance+Amt
end
meth getBal(Bal)

Bal=@balance
end
meth batchTransfer(AmtList)

for A in AmtList do { self transfer(A)} end
end

end

Figure 7.6: An example class Account

exception will be raised. This “late error detection” is not just a property of class
declarations. It is a general property of the Mozart system that is a consequence
of the dynamic nature of the language. Namely, there is no distinction between
compile time and run time. The object system shares this dynamic nature. For
example, it is possible to define classes whose method labels are calculated at run
time (see Section 7.2.5).

The Mozart system blurs the distinction between run time and compile time,
to the point where everything is run time. The compiler is part of the run-time
system. A class declaration is an executable statement. Compiling and executing
it creates a class, which is a value in the language (see Figure 7.5). The class
value can be passed to New to create an object.

A programming system does not strictly need to distinguish between compile
time and run time. The distinction is simply a way to help the compiler perform
certain kinds of optimization. Most mainstream languages, including C++ and
Java, make this distinction. Typically, a few operations (like declarations) can
be executed only at compile time, and all other operations can be executed only
at run time. The compiler can then execute all declarations at the same time,
without any interference from the program’s execution. This allows it to do
more powerful optimizations when generating code. But it greatly reduces the
flexibility of the language. For example, genericity and instantiation are no longer
available to the programmer as general tools.

Because of Mozart’s dynamic nature, the role of the compiler is very small.
Since the compiler does not actually execute any declarations (it just converts
them to executable statements), it needs very little knowledge of the language
semantics. The compiler does in fact have some knowledge of language semantics,
but this is an optimization that allows earlier detection of some errors and more
efficient compiled code. More knowledge could be added to the compiler, for
example to detect class hierarchy errors when it can deduce what the method
labels are.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.3 Classes as incremental ADTs 511

7.3.2 Static and dynamic binding

When executing inside an object, we often want to call another method in the
same object, i.e., do a kind of recursive invocation. This seems simple enough, but
it becomes slightly more complicated when inheritance is involved. A common
use of inheritance is to define a new ADT that extends an existing ADT. To
implement this correctly, it turns out that we need two ways to do a recursive
call. They are called static and dynamic binding. We explain them by means of
an example.

Consider the class Account defined in Figure 7.6. This class models a simple
bank account with a balance. We can transfer money to it with transfer , inspect
the balance with getBal , and do a series of transfers with batchTransfer . Note
that batchTransfer calls transfer for each transfer.

Let us extend Account to do logging, i.e., to keep a record of all transactions
it does. One way is to use inheritance, by overriding the transfer method:

class LoggedAccount from Account
meth transfer(Amt)

{LogObj addentry(transfer(Amt))}
...

end
end

where LogObj is an object that keeps the log. Let us create a logged account
with an initial balance of 100:

LogAct={New LoggedAccount transfer(100)}

Now the question is, what happens when we call batchTransfer ? Does it call
the old transfer in Account or the new transfer in LoggedAccount ? We
can deduce what the answer must be, if we assume that a class is an ADT. Every
ADT has a set of methods that define what it does. For LoggedAccount , this
set consists of the getBal and batchTransfer methods defined in Account

as well as the new transfer defined in LoggedAccount itself. Therefore, the
answer is that batchTransfer must call the new transfer in LoggedAccount .
This is called dynamic binding. It is written as a call to self , i.e., as { self

transfer(A)} .

When Account was defined, there was no LoggedAccount yet. Using dy-
namic binding keeps open the possibility that Account can be extended with
inheritance, while ensuring that the new class is an ADT that correctly extends
the old ADT. That is, it keeps all the functionality of the old ADT while adding
some new functionality.

However, dynamic binding is usually not enough to implement the extended
ADT. To see why, let us investigate closer how the new transfer is defined.
Here is the full definition:

class LoggedAccount from Account
meth transfer(Amt)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

512 Object-Oriented Programming

{LogObj addentry(transfer(Amt))}
Account,transfer(Amt)

end
end

Inside the new transfer , we have to call the old transfer . We cannot use
dynamic binding, since this would always call the new transfer . Instead, we
use another technique called static binding. In static binding, we call a method
by pinpointing the method’s class. Here the notation Account,transfer(Amt)

pinpoints the method transfer in the class Account .
Both static and dynamic binding are needed when using inheritance to over-

ride methods. Dynamic binding allows the new ADT to correctly extend the old
ADT by letting old methods call new methods, even though the new method did
not exist when the old method was defined. Static binding allows new methods
to call old methods when they have to. We summarize the two techniques:

• Dynamic binding. This is written { self M}. This chooses the method
matching Mthat is visible in the current object. This takes into account the
overriding that has been done.

• Static binding. This is written C, M (with a comma), where C is a class
that defines a method matching M. This chooses the method matching M

that is visible in the class C. This takes overriding into account from the
root class up to class C, but no further. If the object is of a subclass of C

that has overridden Magain, then this is not taken into account.

Dynamic binding is the only possible behavior for attributes. Static binding is
not possible for them since the overridden attributes simply do not exist, neither
in a logical sense (the only object that exists is the instance of the final class) nor
in a practical sense (the implementation allocates no memory for them).

7.3.3 Controlling encapsulation

The principle of controlling encapsulation in an object-oriented language is to
limit access to class members, namely attributes and methods, according to the
requirements of the application architecture. Each member is defined with a
scope. The scope is that part of the program text in which the member is visible,
i.e., can be accessed by mentioning its name. Usually, the scope is statically
defined, by the structure of the program. It can also be dynamically defined,
namely during execution, if names are used (see below).

Programming languages usually give a default scope to each member when
it is declared. This default can be altered with special keywords. Typical key-
words used are public, private, and protected. Unfortunately, different languages
use these terms to define slightly different scopes. Visibility in programming lan-
guages is a tricky concept. In the spirit of [54], we will try to bring order to this
chaos.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.3 Classes as incremental ADTs 513

SubSubC

I3I2 ... In

SubC

C

...

I1

to Smalltalk and Oz
‘‘private’’ according

Class hierarchy

Instances

Region of visibility for
object I3: all private
attributes in this region
are visible to I3

=

to C++ and Java
‘‘private’’ according

Figure 7.7: The meaning of “private”

Private and public scopes (in the ADT sense)

The two most basic scopes are private and public, with the following meanings:

• A private member is one which is only visible in the object instance. The
object instance can see all members defined in its class and its superclasses.
Thus private defines a kind of vertical visibility.

• A public member is one which is visible anywhere in the program.

In both Smalltalk and Oz, attributes are private and methods are public according
to this definition.

These definitions of private and public are natural if classes are used to con-
struct ADTs. Let us see why:

• First of all, a class is not the same thing as the ADT it defines! The class
is an increment; it defines an ADT as an incremental modification of its
superclasses. The class is only needed during the ADT’s construction. The
ADT is not an increment; it stands on its own, with all its own attributes
and methods. Many of these may come from the superclasses and not from
the class.

• Second, attributes are internal to the ADT and should be invisible from the
outside. This is exactly the definition of private.

• Finally, methods make up the external interface of the ADT, so they should
be visible to all entities that reference the ADT. This is exactly the definition
of public.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

514 Object-Oriented Programming

Constructing other scopes

Techniques for writing programs to control encapsulation are based essentially on
two concepts: lexical scoping and name values. The private and public scopes
defined above can be implemented with these two concepts. However, many other
scopes can also be expressed using name values and lexical scoping. For example,
it is possible to express the private and protected scopes of C++ and Java, as well
as write programs that have much more elaborate security policies. The basic
technique is to let method heads be name values instead of atoms. A name is
an unforgeable constant; the only way to know a name is if someone gives you a
reference to it (see Section 3.7.5 and Appendix B.2). In this way, a program can
pass the reference in a controlled way, to exactly those areas of the program in
which it should be visible.

In the examples of the previous sections, we have used atoms as method labels.
But atoms are not secure: if a third party finds out the atom’s print representation
(either by guessing or by some other way) then he can call the method too. Names
are a simple way to plug this kind of security leak. This is important for a software
development project with well-defined interfaces between different components.
It is even more important for open distributed programs, where code written at
different times by different groups can coexist (see Chapter 11).

Private methods (in the C++ and Java sense)

When a method head is a name value, then its scope is limited to all instances
of the class, but not to subclasses or their instances. This is exactly private in
the sense of C++ and Java. Because of its usefulness, the object system of this
chapter gives syntactic support for this technique. There are two ways to write
it, depending on whether the name is defined implicitly inside the class or comes
from the outside:

• By using a variable identifier as the method head. This implicitly creates a
name when the class is defined and binds it to the variable. For example:

class C
meth A(X)

% Method body
end

end

Method head A is bound to a name. The variable A is only visible inside the
class definition. An instance of C can call method A in any other instance of
C. Method A is invisible to subclass definitions. This is a kind of horizontal
visibility. It corresponds to the concept of private method as it exists in C++
and Java (but not in Smalltalk). As Figure 7.7 shows, private in C++ and
Java is very different from private in Smalltalk and Oz. In Smalltalk and
Oz, private is relative to an object and its classes, e.g., I3 in the figure. In

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.3 Classes as incremental ADTs 515

C++ and Java, private is relative to a class and its instances, e.g., SubSubC
in the figure.

• By using an escaped variable identifier as the method head. This syntax
indicates that we will declare and bind the variable identifier outside of the
class. When the class is defined then the method head is bound to whatever
the variable is bound to. This is a very general mechanism that can be used
to protect methods in many ways. It can also be used for other purposes
than security (see Section 7.2.5). Here is an example that does exactly the
same as the previous case:

local
A={NewName}

in
class C

meth !A(X)
% Method body

end
end

end

This creates a name at class definition time, just like in the previous case,
and binds the method head to it. In fact, the previous definition is just a
short-hand for this example.

Letting the programmer determine the method label allows to define a security
policy at a very fine grain. The program can pass the method label to exactly
those entities who need to know it.

Protected methods (in the C++ sense)

By default, methods in the object system of this chapter are public. Using names,
we can construct the concept of a protected method, including both the C++
version and the Java version. In C++, a method is protected if it is accessible
only in the class it is defined or in descendant classes (and all instance objects
of these classes). The protected concept is a combination of the Smalltalk notion
of private with the C++/Java notion of private: it has both a horizontal and
vertical component. Let us show how to express the C++ notion of protected.
The Java notion of protected is somewhat different; we leave it to an exercise. In
the following class, method A is protected:

class C
attr pa:A
meth A(X) skip end
meth foo(...) { self A(5)} end

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

516 Object-Oriented Programming

It is protected because the attribute pa stores a reference to A. Now create a
subclass C1 of C. We can access method A as follows in the subclass:

class C1 from C
meth b(...) A=@pa in { self A(5)} end

end

Method b accesses the method with label A through the attribute pa , which exists
in the subclass. The method label can be stored in the attribute because it is
just a value.

Attribute scopes

Attributes are always private. The only way to make them public is by means of
methods. Because of dynamic typing, it is possible to define generic methods that
give read and write access to all attributes. The class Inspector in Section 7.2.6
shows one way to do this. Any class that inherits from Inspector will have all
its attributes potentially be public. Atom attributes are not secure since they
can be guessed. Name attributes are secure even when using Inspector , since
they cannot be guessed.

Atoms or names as method heads?

When should one use an atom or a name as a method head? By default, atoms
are visible throughout the whole program and names are visible only in the lexical
scope of their creation. We can give a simple rule when implementing ADTs: for
internal methods use names and for external methods use atoms.

Most popular object-oriented programming languages (e.g., Smalltalk, C++,
and Java) support only atoms as method heads, not names. These languages
make atoms usable by adding special operations to restrict their visibility (e.g.,
private and protected declarations). On the other hand, names are practical
too. Their visibility can be extended by passing around references. But the
capability-based approach exemplified by names has not yet become popular.
Let us look more closely at the trade-offs in using names versus atoms.

Atoms are uniquely identified by their print representations. This means they
can be stored in program source files, in emails, on Web pages, etc. In particular,
they can be stored in the programmer’s head! When writing a large program, a
method can be called from anywhere by just giving its print representation. On
the other hand, with names this is more awkward: the program itself has somehow
to pass the name to the caller. This adds some complexity to the program as
well as being a burden for the programmer. So atoms win out both for program
simplicity and for the psychological comfort factor during development.

Names have other advantages. First, it is impossible to have conflicts with
inheritance (either single or multiple). Second, encapsulation can be better man-
aged, since an object reference does not necessarily have the right to call all the

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.3 Classes as incremental ADTs 517

Inheritance

‘‘Static’’ approach:
at class definition time

‘‘Dynamic’’ approaches:
at object creation time

Loose bindingTight binding between original object/class
and derived object/class

common self no common selfcommon self

defined on classes defined on objects defined on objects

ForwardingDelegation

Figure 7.8: Different ways to extend functionality

object’s methods. Therefore, the program as a whole can be made less error-
prone and better structured. A final point is that names can be given syntactic
support to simplify their use. For example, in the object system of this chapter
it suffices to capitalize the method head.

7.3.4 Forwarding and delegation

Inheritance is one way to reuse already-defined functionality when defining new
functionality. Inheritance can be tricky to use well, because it implies a tight
binding between the original class and its extension. Sometimes it is better to
use looser approaches. Two such approaches are forwarding and delegation. Both
are defined at the level of objects: if object Obj1 does not understand message
M, then M is passed transparently to object Obj2 . Figure 7.8 compares these
approaches with inheritance.

Forwarding and delegation differ in how they treat self . In forwarding, Obj1

and Obj2 keep their separate identities. A self call in Obj2 will stay in Obj2 . In
delegation, there is just one identity, namely that of Obj1 . A self call in Obj2

will call Obj1 . We say that delegation, like implementation inheritance, implies
a common self. Forwarding does not imply a common self.

Let us show how to express forwarding and delegation. We define special
object creation functions, NewF and NewD, for forwarding and delegation. We
are helped in this by the flexibility of our object system: we use the otherwise

method, messages as values, and the dynamic creation of classes. We start with
forwarding since it is the simplest.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

518 Object-Oriented Programming

Forwarding

An object can forward to any other object. In the object system of this chapter,
this can be implemented with the otherwise(M) method (see Section 7.2.5).
The argument Mis a first-class message that can be passed to another object. Let
us define NewF, a version of New that creates objects that can forward:

local
class ForwardMixin

attr Forward:none
meth setForward(F) Forward:=F end
meth otherwise(M)

if @Forward==none then raise undefinedMethod end
else {@Forward M} end

end
end

in
fun {NewF Class Init}

{New class $ from Class ForwardMixin end Init}
end

end

Objects created with NewF have a method setForward(F) that lets them set
dynamically the object to which they will forward messages they do not under-
stand. Let us create two objects Obj1 and Obj2 such that Obj2 forwards to
Obj1 :

class C1
meth init skip end
meth cube(A B) B=A*A*A end

end

class C2
meth init skip end
meth square(A B) B=A*A end

end

Obj1={NewF C1 init}
Obj2={NewF C2 init}
{Obj2 setForward(Obj1)}

Doing {Obj2 cube(10 X)} will cause Obj2 to forward the message to Obj1 .

Delegation

Delegation is a powerful way to structure a system dynamically [113]. It lets us
build a hierarchy among objects instead of among classes. Instead of an object
inheriting from a class (at class definition time), we let an object delegate to
another object (at object creation time). Delegation can achieve the same effects

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.3 Classes as incremental ADTs 519

local
SetSelf={NewName}
class DelegateMixin

attr this Delegate:none
meth !SetSelf(S) this:=S end
meth set(A X) A:=X end
meth get(A ?X) X=@A end
meth setDelegate(D) Delegate:=D end
meth Del(M S) SS in

SS=@this this:=S
try { self M} finally this:=SS end

end
meth call(M) SS in

SS=@this this:= self
try { self M} finally this:=SS end

end
meth otherwise(M)

if @Delegate==none then
raise undefinedMethod end

else
{@Delegate Del(M @this)}

end
end

end
in

fun {NewD Class Init}
Obj={New class $ from Class DelegateMixin end Init}

in
{Obj SetSelf(Obj)}
Obj

end
end

Figure 7.9: Implementing delegation

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

520 Object-Oriented Programming

as inheritance, with two main differences: the hierarchy is between objects, not
classes, and it can be changed at any time.

Given any two objects Obj1 and Obj2 , we suppose there exists a method
setDelegate such that {Obj2 setDelegate(Obj1)} sets Obj2 to delegate to
Obj1 . In other words, Obj1 behaves as the “superclass” of Obj2 . Whenever a
method is invoked that is not defined in Obj2 , the method call will be retried
at Obj1 . The delegation chain can grow to any length. If there is an Obj3 that
delegates to Obj2 , then calling Obj3 can climb up the chain all the way to Obj1 .

An important property of the delegation semantics is that self is always pre-
served: it is the self of the original object that initiated the delegation chain. It
follows that the object state (the attributes) is also the state of the original object.
In that sense, the other objects play the role of classes: in a first instance, it is
their methods that are important in delegation, not the values of their attributes.

Let us implement delegation using our object system. Figure 7.9 gives the
implementation of NewD, which is used instead of Newto create objects. In order
to use delegation, we impose the following syntactic constraints on how the object
system must be used:

Operation Original syntax Delegation syntax
Object call { 〈obj〉 M} { 〈obj〉 call(M)}

Self call { self M} {@this M}

Get attribute @〈attr〉 {@this get(〈attr〉 $)}

Set attribute 〈attr〉:=X {@this set(〈attr〉 X)}

Set delegate { 〈obj〉1 setDelegate(〈obj〉2)}

These syntactic constraints could be eliminated by an appropriate linguistic ab-
straction. Now let us give a simple example of how delegation works. We define
two objects Obj1 and Obj2 and let Obj2 delegate to Obj1 . We give each object
an attribute i and a way to increment it. With inheritance this would look as
follows:

class C1NonDel
attr i:0
meth init skip end
meth inc(I) i:=@i+I end
meth browse { self inc(10)} {Browse c1#@i} end
meth c { self browse} end

end

class C2NonDel from C1NonDel
attr i:0
meth init skip end
meth browse { self inc(100)} {Browse c2#@i} end

end

With our delegation implementation we can get the same effect by using the code
of Figure 7.10. It is more verbose, but that is only because the system has no

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.3 Classes as incremental ADTs 521

class C1
attr i:0
meth init skip end
meth inc(I)

{@this set(i {@this get(i $)}+I)}
end
meth browse

{@this inc(10)}
{Browse c1#{@this get(i $)}}

end
meth c {@this browse} end

end
Obj1={NewD C1 init}

class C2
attr i:0
meth init skip end
meth browse

{@this inc(100)}
{Browse c2#{@this get(i $)}}

end
end
Obj2={NewD C2 init}
{Obj2 setDelegate(Obj1)}

Figure 7.10: An example of delegation

syntactic support for delegation. It is not due to the concept itself. Note that
this just scratches the surface of what we could do with delegation. For example,
by calling setDelegate again we could change the hierarchy of the program at
run-time. Let us now call Obj1 and Obj2 :

{Obj2 call(c)}
{Obj1 call(c)}

Doing these calls several times shows that each object keeps its own local state,
that Obj2 “inherits” the inc and c methods from object Obj1 , and that Obj2

“overrides” the browse method. Let us make the delegation chain longer:

class C2b
attr i:0
meth init skip end

end
ObjX={NewD C2b init}
{ObjX setDelegate(Obj2)}

ObjX inherits all its behavior from Obj2 . It is identical to Obj2 except that it
has a different local state. The delegation hierarchy now has three levels: ObjX ,
Obj2 , and Obj1 . Let us change the hierarchy by letting ObjX delegate to Obj1 :

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

522 Object-Oriented Programming

{ObjX setDelegate(Obj1)}
{ObjX call(c)}

In the new hierarchy, ObjX inherits its behavior from Obj1 . It uses the browse

method of Obj1 , so it will increment by 10 instead of by 100.

7.3.5 Reflection

A system is reflective if it can inspect part of its execution state while it is
running. Reflection can be purely introspective (only reading the internal state,
without modifying it) or intrusive (both reading and modifying the internal state).
Reflection can be done at a high or low level of abstraction. One example of
reflection at a high level would be the ability to see the entries on the semantic
stack as closures. It can be explained simply in terms of the abstract machine.
On the other hand, the ability to read memory as an array of integers is reflection
at a low level. There is no simple way to explain it in the abstract machine.

Meta-object protocols

Object-oriented programming, because of its richness, is a particularly fertile area
for reflection. For example, the system could make it possible to examine or even
change the inheritance hierarchy, while a program is running. This is possible
in Smalltalk. The system could make it possible to change how objects execute
at a basic level, e.g., how inheritance works (how method lookup is done in the
class hierarchy) and how methods are called. The description of how an object
system works at a basic level is called a meta-object protocol. The ability to
change the meta-object protocol is a powerful way to modify an object system.
Meta-object protocols are used for many purposes: debugging, customizing, and
separation of concerns (e.g., transparently adding encryption or format changes
to method calls). Meta-object protocols were originally invented in the context
of the Common Lisp Object System (CLOS) [100, 140]. They are an active area
of research in object-oriented programming.

Method wrapping

A common use of meta-object protocols is to do method wrapping, that is, to
intercept each method call, possibly performing a user-defined operation before
and after the call and possibly changing the arguments to the call itself. In our
object system, we can implement this in a simple way by taking advantage of
the fact that objects are one-argument procedures. For example, let us write a
tracer to track the behavior of an object-oriented program. The tracer should
display the method label whenever we enter a method and exit a method. Here
is a version of New that implements this:

fun {TraceNew Class Init}
Obj={New Class Init}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.3 Classes as incremental ADTs 523

proc {TracedObj M}
{Browse entering({Label M})}
{Obj M}
{Browse exiting({Label M})}

end
in TracedObj end

An object created with TraceNew behaves identically to an object created with
New, except that method calls (except for calls to self) are traced. The defi-
nition of TraceNew uses higher-order programming: the procedure TracedObj

has the external reference Obj . This definition can easily be extended to do more
sophisticated wrapping. For example, the message M could be transformed in
some way before being passed to Obj .

A second way to implement TraceNew is to do the wrapping with a class
instead of a procedure. This traces all method calls including calls to self . This
gives the following definition:

fun {TraceNew2 Class Init}
Obj={New Class Init}
TInit={NewName}
class Tracer

meth !TInit skip end
meth otherwise(M)

{Browse entering({Label M})}
{Obj M}
{Browse exiting({Label M})}

end
end

in {New Tracer TInit} end

This uses dynamic class creation, the otherwise method, and a fresh name
TInit for the initialization method to avoid conflicts with other method labels.

Reflection of object state

Let us show a simple but useful example of reflection in object-oriented program-
ming. We would like to be able to read and write the whole state of an object,
independent of the object’s class. The Mozart object system provides this ability
through the class ObjectSupport.reflect . Inheriting from this class gives the
following three additional methods:

• clone(X) creates a clone of self and binds it to X. The clone is a new
object with the same class and the same values of attributes.

• toChunk(X) binds to X a protected value (a “chunk”) that contains the
current values of the attributes.

• fromChunk(X) sets the object state to X, where X was obtained from a
previous call of toChunk .

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

524 Object-Oriented Programming

A chunk is like a record but with a restricted set of operations. It is protected in
the sense that only authorized programs can look inside it (see Appendix B.4).
Chunks can be implemented with procedure values and names, as explained in
Section 3.7.5. Let us extend the Counter class we saw before to do state reflec-
tion:

class Counter from ObjectSupport.reflect
attr val
meth init(Value)

val:=Value
end
meth browse

{Browse @val}
end
meth inc(Value)

val:=@val+Value
end

end

We can define two objects:

C1={New Counter init(0)}
C2={New Counter init(0)}

and then transfer state from one to the other:

{C1 inc(10)}
local X in {C1 toChunk(X)} {C2 fromChunk(X)} end

At this point C2 also has the value 10. This is a simplistic example, but state
reflection is actually a very powerful tool. It can be used to build generic ab-
stractions on objects, i.e., abstractions that work on objects of any class.

7.4 Programming with inheritance

All the programming techniques of stateful programming and declarative pro-
gramming are still possible in the object system of this chapter. Particularly use-
ful are techniques that are based on encapsulation and state to make programs
modular. See the previous chapter, and especially the discussion of component-
based programming, which relies on encapsulation.

This section focuses on the new techniques that are made possible by object-
oriented programming. All these techniques center around the use of inheritance:
first, using it correctly, and then, taking advantage of its power.

7.4.1 The correct use of inheritance

There are two ways to view inheritance:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.4 Programming with inheritance 525

VerboseAccount

Account

AccountWithFee

Figure 7.11: A simple hierarchy with three classes

• The type view. In this view, classes are types and subclasses are subtypes.
For example, take a LabeledWindow class that inherits from a Window

class. All labeled windows are also windows. The type view is consistent
with the principle that classes should model real-world entities or some
abstract versions of them. In the type view, classes satisfy the substitution
property: every operation that works for an object of class C also works for
objects of a subclass of C. Most object-oriented languages, such as Java and
Smalltalk, are designed for the type view [63, 60]. Section 7.4.1 explores
what happens if we do not respect the type view.

• The structure view. In this view, inheritance is just another program-
ming tool that is used to structure programs. This view is strongly dis-
couraged because classes no longer satisfy the substitution property. The
structure view is an almost unending source of bugs and bad designs. Ma-
jor commercial projects, which shall here remain anonymous, have failed for
this reason. A few object-oriented languages, notably Eiffel, are designed
from the start to allow both the type and structure views [122].

In the type view, each class stands on its own two feet, so to speak, as a bona fide
ADT. This is even true for classes that have subclasses; from the viewpoint of
the subclass, the class is an ADT, with sole access through the methods and its
attributes hidden. In the structure view, classes are sometimes just scaffolding,
which exists only for its role in structuring the program.

In the vast majority of cases, inheritance should respect the type view. Doing
otherwise gives subtle and pernicious bugs that can poison a whole system. Let
us give an example. We take as base class the Account class we saw before,
which is defined in Figure 7.6. We will extend it in two ways. The first extension
is conservative, i.e., it respects the type view:

class VerboseAccount from Account

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

526 Object-Oriented Programming

meth verboseTransfer(Amt)
{ self transfer(Amt)}
{Browse ´ Balance: ´ #@balance}

end
end

We simply add a new method verboseTransfer . Since the existing methods
are not changed, this implies that a VerboseAccount object will work correctly
in all cases where an Account object works. Let us now do a second, more
dangerous extension:

class AccountWithFee from VerboseAccount
attr fee:5
meth transfer(Amt)

VerboseAccount,transfer(Amt-@fee)
end

end

Figure 7.11 shows the resulting hierarchy. The open arrowhead in this figure is
the usual notation to represent an inheritance link. AccountWithFree overrides
the method transfer . Overriding is not a problem in of itself. The problem
is that an AccountWithFee object does not work correctly when viewed as an
Account object. They do not satisfy the same invariant. Consider the sequence
of three calls:

{A getBalance(B)}
{A transfer(S)}
{A getBalance(B2)}

If A is an Account object, this implies B+S=B2. If A is an AccountWithFee

object, this implies B+S-@fee=B2 . This will break any program that relies on
the behavior of Account objects. Typically, the origin of the break will not
be obvious, since it is carefully hidden inside a method somewhere in a large
application. It will appear long after the change was made, as a slight imbalance
in the books. Debugging such “slight” problems is amazingly difficult and time-
consuming.

The rest of this section primarily considers the type view. Almost all uses
of inheritance should respect the type view. However, the structure view is oc-
casionally useful. Its main use is in changing the behavior of the object system
itself. For this purpose, it should be used only by expert language implementors
who clearly understand the ramifications of what they are doing. A simple ex-
ample is method wrapping (see Section 7.3.5), which requires using the structure
view. For more information, we recommend [122] for a deeper discussion of the
type view versus the structure view.

A cautionary tale

We end the discussion on the correct use of inheritance with a cautionary tale.
Some years ago, a well-known company initiated an ambitious project based

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.4 Programming with inheritance 527

NilClass ConsClass

ListClass

Figure 7.12: Constructing a hierarchy by following the type

on object-oriented programming. Despite a budget of several billion dollars, the
project failed. Among many reasons for the failure was an incorrect use of object-
oriented programming, in particular concerning inheritance. Two major mistakes
were made:

• The substitution property was regularly violated. Routines that worked
correctly with objects of a given class did not work with objects of a sub-
class. This made it much more difficult to use objects: instead of one
routine being sufficient for many classes, many routines were needed.

• Classes were subclassed to fix small problems. Instead of fixing the class
itself, a subclass was defined to patch the class. This was done so frequently
that it gave layers upon layers of patches. Object invocations were slowed
down by an order of magnitude. The class hierarchy became unnecessarily
deep, which increased complexity of the system.

The lesson to heed is to be careful to use inheritance in a correct way. Respect the
substitution property whenever possible. Use inheritance to add new functionality
and not to patch a broken class. Study common design patterns to learn the
correct use of inheritance.

Reengineering At this point, we should mention the discipline of reengineer-
ing, which can be used to fix architectural problems like these two incorrect uses
of inheritance [44, 15]. The general goal of reengineering is to take an existing sys-
tem and attempt to improve some of its properties by changing the source code.
Many properties can be improved in this way: system architecture, modularity,
performance, portability, quality of documentation, and use of new technology.
However, reengineering cannot resurrect a failed project. It is more like curing a
disease. If the designer has a choice, the best approach remains to prevent the
disease, i.e., to design a system so that it can be adapted to changing require-
ments. In Section 6.7 and throughout the book, we give design principles that
work towards this goal.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

