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class ListClass
meth isNil(_) raise undefinedMethod end end
meth append(_ _) raise undefinedMethod end end
meth display raise undefinedMethod end end

end

class NilClass from ListClass
meth init skip end
meth isNil(B) B= true end
meth append(T U) U=T end
meth display {Browse nil} end

end

class ConsClass from ListClass
attr head tail
meth init(H T) head:=H tail:=T end
meth isNil(B) B= false end
meth append(T U)

U2={@tail append(T $)}
in

U={New ConsClass init(@head U2)}
end
meth display {Browse @head} {@tail display} end

end

Figure 7.13: Lists in object-oriented style

7.4.2 Constructing a hierarchy by following the type

When writing programs with recursion, we saw in Section 3.4.2 that it is a good
idea to define first the type of the data structure, and then to construct the
recursive program by following the type. We can use a similar idea to construct
inheritance hierarchies. For example, consider the list type 〈List T〉, which is
defined as:

〈List T〉 ::= nil

| T ´ | ´ 〈List T〉

This says that a list is either nil or a list pair. Let us implement the list ADT
in the class ListClass . Following the type definition means that we define two
other classes that inherit from ListClass , which we can call NilClass and
ConsClass . Figure 7.12 shows the hierarchy. This hierarchy is a natural design
to respect the substitution principle. An instance of NilClass is a list, so it is
easy to use it wherever a list is required. The same holds for ConsClass .

Figure 7.13 defines a list ADT that follows this hierarchy. In this figure,
ListClass is an abstract class: a class in which some methods are left unde-
fined. Trying to call the methods isNil , append , and display will raise an
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class GenericSort
meth init skip end
meth qsort(Xs Ys)

case Xs
of nil then Ys = nil
[] P|Xr then S L in

{ self partition(Xr P S L)}
{Append { self qsort(S $)}

P|{ self qsort(L $)} Ys}
end

end
meth partition(Xs P Ss Ls)

case Xs
of nil then Ss=nil Ls=nil
[] X|Xr then Sr Lr in

if { self less(X P $)} then
Ss=X|Sr Ls=Lr

else
Ss=Sr Ls=X|Lr

end
{ self partition(Xr P Sr Lr)}

end
end

end

Figure 7.14: A generic sorting class (with inheritance)

exception. Abstract classes are not intended to be instantiated, since they lack
some methods. The idea is to define another class that inherits from the ab-
stract class and that adds the missing methods. This gives a concrete class,
which can be instantiated since it defines all the methods it calls. NilClass and
ConsClass are concrete classes. They define the methods isNil , append , and
display . The call {L1 append(L2 L3)} binds L3 to the concatenation of L1

and L2 , without changing L1 or L2 . The call {L display} displays the list. Let
us now do some calculations with lists:

L1={New ConsClass
init(1 {New ConsClass

init(2 {New NilClass init})})}
L2={New ConsClass init(3 {New NilClass init})}
L3={L1 append(L2 $)}
{L3 display}

This creates two lists L1 and L2 and concatenates them to form L3 . It then
displays the contents of L3 in the browser, as 1, 2, 3, nil .
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class IntegerSort from GenericSort
meth less(X Y B)

B=(X<Y)
end

end

class RationalSort from GenericSort
meth less(X Y B)

´ / ´ (P Q)=X
´ / ´ (R S)=Y

in B=(P*S<Q*R) end
end

Figure 7.15: Making it concrete (with inheritance)

IntegerSort RationalSort

GenericSort

Figure 7.16: A class hierarchy for genericity
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fun {MakeSort Less}
class $

meth init skip end
meth qsort(Xs Ys)

case Xs
of nil then Ys = nil
[] P|Xr then S L in

{ self partition(Xr P S L)}
{Append { self qsort(S $)}

P|{ self qsort(L $)} Ys}
end

end
meth partition(Xs P Ss Ls)

case Xs
of nil then Ss=nil Ls=nil
[] X|Xr then Sr Lr in

if {Less X P} then
Ss=X|Sr Ls=Lr

else
Ss=Sr Ls=X|Lr

end
{ self partition(Xr P Sr Lr)}

end
end

end
end

Figure 7.17: A generic sorting class (with higher-order programming)

7.4.3 Generic classes

A generic class is one that only defines part of the functionality of an ADT. It has
to be completed before it can be used to create objects. Let us look at two ways to
define generic classes. The first way, often-used in object-oriented programming,
uses inheritance. The second way uses higher-order programming. We will see
that the first way is just a syntactic variation of the second. In other words,
inheritance can be seen as a programming style that is based on higher-order
programming.

Using inheritance

A common way to make classes more generic in object-oriented programming
is to use abstract classes. For example, Figure 7.14 defines an abstract class
GenericSort for sorting a list. This class uses the quicksort algorithm, which
needs a boolean comparison operation. The boolean operation’s definition de-
pends on the type of data that is sorted. Other classes can inherit from GenericSort
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IntegerSort = {MakeSort fun {$ X Y} X<Y end }

RationalSort = {MakeSort fun {$ X Y}
´ / ´ (P Q) = X
´ / ´ (R S) = Y

in P*S<Q*R end }

Figure 7.18: Making it concrete (with higher-order programming)

and add definitions of less , for example, for integers, rationals, or strings. In this
case, we specialize the abstract class to form a concrete class, i.e., a class in which
all methods are defined. Figure 7.15 defines the concrete classes IntegerSort

and RationalSort , which both inherit from GenericSort . Figure 7.16 shows
the resulting hierarchy.

Using higher-order programming

There is a second natural way to create generic classes, namely by using higher-
order programming directly. Since classes are first-class values, we can define a
function that takes some arguments and returns a class that is specialized with
these arguments. Figure 7.17 defines the function MakeSort that takes a boolean
comparison as its argument and returns a sorting class specialized with this com-
parison. Figure 7.18 defines two classes, IntegerSort and RationalSort , that
can sort lists of integers and lists of rational numbers (the latter represented as
pairs with label ´ / ´ ). Now we can execute the following statements:

ISort={New IntegerSort init}
RSort={New RationalSort init}

{Browse {ISort qsort([1 2 5 3 4] $)}}
{Browse {RSort qsort([ ´ / ´ (23 3) ´ / ´ (34 11) ´ / ´ (47 17)] $)}}

Discussion

It is clear that we are using inheritance to “plug in” one operation into another.
This is just a form of higher-order programming, where the first operation is
passed to the second. What is the difference between the two techniques? In most
programming languages, the inheritance hierarchy must be defined at compile
time. This gives a static genericity. Because it is static, the compiler may be able
to generate better code or do more error checking. Higher-order programming,
when it is possible, lets us define new classes at run-time. This gives a dynamic
genericity, which is more flexible.
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7.4.4 Multiple inheritance

Multiple inheritance is useful when an object has to be two different things in
the same program. For example, consider a graphical display that can show a
variety of geometrical figures, including circles, lines, and more complex figures.
We would like to define a “grouping” operation that can combine any number
of figures into a single, composite figure. How can we model this with object-
oriented programming? We will design a simple, fully working program. We will
use multiple inheritance to add the grouping ability to figures. The idea for this
design comes from Bertrand Meyer [122]. This program can easily be extended
to a full-fledged graphics package.

Geometric figures

We first define the class Figure to model geometric figures, with methods init

(initialize the figure), move(X Y) (move the figure), and display (display the
figure):

class Figure
meth otherwise(M)

raise undefinedMethod end
end

end

This is an abstract class; any attempt to invoke its methods will raise an excep-
tion. Actual figures are instances of subclasses of Figure . For example, here is
a Line class:

class Line from Figure
attr canvas x1 y1 x2 y2
meth init(Can X1 Y1 X2 Y2)

canvas:=Can
x1:=X1 y1:=Y1
x2:=X2 y2:=Y2

end
meth move(X Y)

x1:=@x1+X y1:=@y1+Y
x2:=@x2+X y2:=@y2+Y

end
meth display

{@canvas create(line @x1 @y1 @x2 @y2)}
end

end

and here is a Circle class:

class Circle from Figure
attr canvas x y r
meth init(Can X Y R)

canvas:=Can
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Figure 7.19: Class diagram of the graphics package

x:=X y:=Y r:=R
end
meth move(X Y)

x:=@x+X y:=@y+Y
end
meth display

{@canvas create(oval @x-@r @y-@r @x+@r @y+@r)}
end

end

Figure 7.19 shows how Line and Circle inherit from Figure . This kind of
diagram is called a class diagram. It is a part of UML, the Uniform Model-
ing Language, a widely-used set of techniques for modeling object-oriented pro-
grams [54]. Class diagrams are a useful way to visualize the class structure of
an object-oriented program. Each class is represented by a rectangle with three
parts, containing the class name, the attributes it defines, and the methods it
defines. These rectangles can be connected with lines representing inheritance
links.

Linked lists

We define the class LinkedList to group figures together, with methods init

(initialize the linked list), add(F) (add a figure), and forall(M) (execute {F

M} for all figures):

class LinkedList
attr elem next
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meth init(elem:E<=null next:N<=null)
elem:=E next:=N

end
meth add(E)

next:={New LinkedList init(elem:E next:@next)}
end
meth forall(M)

if @elem\=null then {@elem M} end
if @next\=null then {@next forall(M)} end

end
end

The forall(M) method is especially interesting because it uses first-class mes-
sages. A linked list is represented as a sequence of instances of this class. The
next field of each instance refers to the next one in the list. The last element
has the next field equal to null . There is always at least one element in the
list, called the header. The header is not an element that it seen by users of the
linked list; it is just needed for the implementation, The header always has the
elem field equal to null . Therefore an empty linked list corresponds to a header
node with both elem and next fields equal to null .

Composite figures

What is a composite figure? It is both a figure and a linked list of figures. There-
fore we define a class CompositeFigure that inherits from both Figure and
LinkedList :

class CompositeFigure from Figure LinkedList
meth init

LinkedList,init
end
meth move(X Y)

{ self forall(move(X Y))}
end
meth display

{ self forall(display)}
end

end

Figure 7.19 shows the multiple inheritance. The multiple inheritance is correct
because the two functionalities are completely different and have no undesir-
able interaction. The init method is careful to initialize the linked list. It
does not need to initialize the figure. As in all figures, there is a move and a
display method. The move(X Y) method moves all figures in the linked list.
The display method displays all figures in the linked list.

Do you see the beauty of this design? With it, a figure can consist of other
figures, some of which consist of other figures, and so forth, to any number of
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Figure 7.20: Drawing in the graphics package

levels. The inheritance structure guarantees that moving and displaying will
always work correctly.

Example execution

Let us run this example. First, we set up a window with a graphics display field:

declare
W=250 H=150 Can
Window={QTk.build td(canvas(width:W height:H bg:white handle:Can))}
{Window show}

This uses the QTk graphics tool, which is explained in Chapter 10. For now just
assume that this sets up a canvas, which is the drawing field for our geometric
figures. Next, we define a composite figure F1 containing a triangle and a circle:

declare
F1={New CompositeFigure init}
{F1 add({New Line init(Can 50 50 150 50)})}
{F1 add({New Line init(Can 150 50 100 125)})}
{F1 add({New Line init(Can 100 125 50 50)})}
{F1 add({New Circle init(Can 100 75 20)})}

We can display this figure as follows:

{F1 display}

This displays the figure once. Let us move the figure around and display it each
time:

for I in 1..10 do {F1 display} {F1 move(3 ˜2)} end

Figure 7.20 shows the result.
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Figure 7.21: Class diagram with an association

Composite figures with single inheritance

Instead of defining CompositeFigure with multiple inheritance, we can define it
using single inheritance by putting the list of figures in an attribute. This gives:

class CompositeFigure from Figure
attr figlist
meth init

figlist:={New LinkedList init}
end
meth add(F)

{@figlist add(F)}
end
meth move(X Y)

{@figlist forall(move(X Y))}
end
meth display

{@figlist forall(display)}
end

end

Figure 7.21 shows the class diagram for this case. The link between CompositeFigure

and LinkedList is called an association. It represents a relationship between
the two classes. The numbers attached to the two ends are cardinalities; each
number says how many elements there are for a particular instance. The number
1 on the linked list side means that there is exactly one linked list per composite
figure, and similarly for the other side. The association link is a specification;
it does not say how it is implemented. In our case, each composite figure has a
figlist attribute that references a linked list.

The example execution we gave before will also work in the single inheri-
tance case. What are the trade-offs in using single or multiple inheritance in this
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example? In both cases, the figures that make up the composite figure are encap-
sulated. The main difference is that multiple inheritance brings the operations of
linked lists up to the same level as figures:

• With multiple inheritance, a composite figure is also a linked list. All
the operations of the LinkedList class can be used directly on composite
figures. This is important if we want to do linked list calculations with
composite figures.

• With single inheritance, a composite figure completely hides its structure.
This is important if we want to protect the composite figure from any
calculations other than those defined in its class.

Scaling it up

It is straightforward to extend this example to be a full-fledged graphics package.
Here are some of the changes that should be made:

• Many more figures can be defined to inherit from Figure .

• In the current implementation, figures are tied to their canvas. This has
the advantage that it allows figures to be spread over multiple canvasses.
But usually we will not want this ability. Rather, we would like to be able
to draw the same figure on different canvasses. This means that the canvas
should not be an attribute of figure objects but be passed as argument to
the display method.

• A journaling facility can be added. That is, it should be possible to record
sequences of drawing commands, i.e., sequences of calls to figures, and ma-
nipulate the recordings as first-class entities. These recordings represent
drawings at a high level of abstraction. They can then be manipulated by
the application, stored on files, passed to other applications, etc.

• The display method should be able to pass arbitrary parameters from
the application program, through the graphics package, to the underlying
graphics subsystem. In the Line and Circle classes, we change it as
follows:

meth display(...)=M
{@canvas {Adjoin M create(line @x1 @y1 @x2 @y2)}}

end

The Adjoin operation combines two record arguments, where the second
argument overrides the first in the case of conflicts. This allows arbitrary
parameters to be passed through display to the canvas drawing command.
For example, the call {F display(fill:red width:3)} draws a red fig-
ure of width 3.
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7.4.5 Rules of thumb for multiple inheritance

Multiple inheritance is a powerful technique that has to be used with care. We
recommend that you use multiple inheritance as follows:

• Multiple inheritance works well when combining two completely indepen-
dent abstractions. For example, figures and linked lists have nothing in
common, so they can be combined fruitfully.

• Multiple inheritance is much harder to use correctly when the abstractions
have something in common. For example, creating a WorkStudy class from
Student and Employee is dubious, because students and employees are
both human beings. They may in fact both inherit from a common Person

class. Even if they do not have a shared ancestor, there can be problems if
they have some concepts in common.

• What happens when sibling superclasses share (directly or indirectly) a
common ancestor class that specifies a stateful object (i.e., it has attributes)?
This is known as the implementation-sharing problem. This can lead to du-
plicated operations on the common ancestor. This typically happens when
initializing an object. The initialization method usually has to initialize its
superclasses, so the common ancestor is initialized twice. The only remedy
is to understand carefully the inheritance hierarchy to avoid such duplica-
tion. Alternatively, you should only inherit from multiple classes that do
not share a stateful common ancestor.

• When name clashes occur, i.e., the same method label is used for adjacent
superclasses, then the program must define a local method that overrides
the conflict-causing methods. Otherwise the object system gives an error
message. A simple way to avoid name clashes is to use name values as
method heads. This is a useful technique for classes, such as mixin classes,
that are often inherited from by multiple inheritance.

7.4.6 The purpose of class diagrams

Class diagrams are excellent tools for visualizing the class structure of an appli-
cation. They are at the heart of the UML approach to modeling object-oriented
applications, and as such they enjoy widespread use. This popularity has often
masked their limitations. They have three clear limitations:

• They do not specify the functionality of a class. For example, if the methods
of a class enforce an invariant, then this invariant does not show up in the
class diagram.

• They do not model the dynamic behavior of the application, i.e., its evo-
lution over time. Dynamic behavior is both large-scale and small-scale.
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Applications often go through different phases, for which different class di-
agrams are valid. Application are often concurrent, with independent parts
that interact in coordinated ways.

• They only model one level in the application’s component hierarchy. As
Section 6.7 explains, well-structured applications have a hierarchical de-
composition. Classes and objects are near the base of this hierarchy. A
class diagram explains the decomposition at this level.

The UML approach recognizes these limitations and provides tools that partially
alleviate them, e.g., the interaction diagram and the package diagram. Inter-
action diagrams model part of the dynamic behavior. Package diagrams model
components at a higher level in the hierarchy than classes.

7.4.7 Design patterns

When designing a software system, it is common to encounter the same problems
over and over again. The design pattern approach explicitly recognizes this and
proposes solutions to these problems. A design pattern is a technique that solves
one of these common problems. The present book is full of design patterns in
that sense. For example, here are two:

• In declarative programming, Section 3.4.2 introduces the rule of construct-
ing a program by following a type. A program that uses a complicated
recursive data structure can often be written easily by looking at the type
of the data structure. The structure of the program mirrors the type defi-
nition.

• Section 6.4.2 introduces a series of techniques for making an ADT secure
by wrapping the functionality in a secure layer. These techniques are inde-
pendent of what the ADT does; they work for any ADT.

Design patterns were first popularized in an influential book by Gamma, Helm,
Johnson, and Vlissides [58], which gives a catalogue of design patterns in object-
oriented programming and explains how to use them. The catalogue emphasizes
patterns based on inheritance, using the type view. Let us look at a typical
design pattern of this catalogue from the viewpoint of a programmer who thinks
in terms of computation models.

The Composite pattern

Composite is a typical example of a design pattern. The purpose of Composite
is to build hierarchies of objects. Given a class that defines a leaf, the pattern
shows how to use inheritance to define trees. Figure 7.22, taken from Gamma et
al, shows the inheritance diagram of the Composite pattern. The usual way to
use this pattern is to plug in an initial leaf class, Leaf . Then the pattern defines
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Figure 7.22: The Composite pattern

both the Composite and Component classes. Component is an abstract class.
The hierarchy is either an instance of Leaf or Composite .

We can use the Composite pattern to define compound graphic figures. Sec-
tion 7.4.4 solves the problem by combining a figure and a linked list (either with
single or multiple inheritance). The Composite pattern is a more abstract solu-
tion, in that it does not assume that the grouping is done by a linked list. The
Composite class has add and remove operations but does not say how they are
implemented. They could be implemented as a linked list, but they could also be
implemented differently, e.g., as a dictionary or as a declarative list.

Given a class that defines a leaf of the tree, the Composite pattern returns a
class that defines the tree. When put in this way, this sounds much like higher-
order programming: we would like to define a function that accepts a class and
returns another class. Most programming languages, such as C++ and Java, do
not allow defining this function, however. There are two reasons for this. First,
most languages do not consider classes as first-class values. Second, the function
defines a new superclass of the input class. Most languages allow defining new
subclasses but not new superclasses. Yet despite these limitations we would still
like to use the Composite pattern in our programs.

The usual solution to this dilemma is to consider design patterns as primarily
a way to organize one’s thoughts, without necessarily being supported by the pro-
gramming language. A pattern might exist only in the mind of the programmer.
Design patterns can then be used in languages like C++ or Java, even if they
cannot be implemented as abstractions in those languages. This can be made
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easier by using a source code preprocessor. The programmer can then program
directly with design patterns, and the preprocessor generates the source code for
the target language.

Supporting the Composite pattern

The object system of this chapter lets us support a grouping pattern very much
like Composite from within the computation model. Let us implement a tree
structure whose leaves and internal nodes are objects. The leaves are instances
of the Leaf class, which is provided at run-time. The internal nodes forward all
method invocations to the leaves in their subtree. The simplest way to implement
this is to define a class Composite for the internal nodes. This class contains a list
of its children, which may be instances of Composite or Leaf . We assume that
all instances have the initialization method init and that Composite instances
have the method add for adding a new subtree.

class Composite
attr children
meth init

children:=nil
end
meth add(E)

children:=E|@nodelist
end
meth otherwise(M)

for N in @children do {N M} end
end

end

If nodes have many subnodes, then it is inefficient to remove nodes in this imple-
mentation. In that situation, using dictionaries instead of lists might be a good
choice. Here is an example of how to construct a tree:

N0={New Composite init}
L1={New Leaf init} {N0 add(L1)}
L2={New Leaf init} {N0 add(L2)}
N3={New Composite init} {N0 add(N3)}
L4={New Leaf init} {N0 add(L4)}

L5={New Leaf init} {N3 add(L5)}
L6={New Leaf init} {N3 add(L6)}
L7={New Leaf init} {N3 add(L7)}

If Leaf is the Figure class of Section 7.4.4, then Composite defines composite
figures.

Enforcing valid trees This implementation works for any Leaf class because
of dynamic typing. The disadvantage of this solution is that the system does not
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enforce all leaves to be instances of the same class. Let us add such enforcement
to Composite :

class Composite
attr children valid
meth init(Valid)

children:=nil
@valid=Valid

end
meth add(E)

if {Not {@valid E}} then raise invalidNode end end
children:=E|@children

end
meth otherwise(M)

for N in @children do {N M} end
end

end

When an instance of Composite is initialized, it is given a function Valid , which
is bound to the stateless attribute valid . The function Valid is used to check
the validity of each inserted node.

7.5 Relation to other computation models

“The language does not prevent you from deeply nesting classes,
but good taste should. [...] Nesting more than two levels invites a
readability disaster and should probably never be attempted.”
– The Java Programming Language, Second Edition,
Ken Arnold and James Gosling (1998) [10]

Object-oriented programming is one way to structure programs, which is most
often used together with explicit state. In comparison with other computation
models, it is characterized primarily by its use of inheritance. From the viewpoint
of multiple computation models, inheritance is not a new concept in the kernel
language, but emerges rather from how the class linguistic abstraction is defined.
This section examines how inheritance relates to other higher-order techniques.
This section also examines the commonly-stated desire that “everything should
be an object”, to find out what it means and to what extent it makes sense.

7.5.1 Object-based and component-based programming

Object-based programming is object-oriented programming without inheritance.
This is like component-based programming with class syntax. This gives a con-
venient notation for encapsulating state and defining multiple operations on it.
Without inheritance, the object abstraction becomes much simpler. There are no
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problems of overriding and conflict in multiple inheritance. Static and dynamic
binding are identical.

7.5.2 Higher-order programming

Object-oriented programming and higher-order programming are closely related.
For example, let us examine the case of a sorting routine that is parameterized
by an order function. A new sorting routine can be created by giving a particular
order function. In higher-order programming, this can be written as follows:

proc {NewSortRoutine Order ?SortRoutine}
proc {SortRoutine InL OutL}

% ... {Order X Y} calculates order
end

end

In object-oriented programming, this can be written as follows:

class SortRoutineClass
attr ord
meth init(Order)

ord:=Order
end
meth sort(InL OutL)

% ... {@ord order(X Y $)} calculates order
end

end

The order relation itself is written as follows:

proc {Order X Y ?B}
B=(X<Y)

end

or as follows:

class OrderClass
meth init skip end
meth order(X Y B)

B=(X<Y)
end

end

Instantiating the sorting routine is then written as follows:

SortRoutine={NewSortRoutine Order}

or as follows:

SortRoutine={New SortRoutineClass init({New OrderClass init})}
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Embellishments added by object-oriented programming

It is clear that procedure values and objects are closely related. Let us now com-
pare higher-order and object-oriented programming more carefully. The main
difference is that object-oriented programming “embellishes” higher-order pro-
gramming. It is a richer abstraction that provides a collection of additional
idioms beyond procedural abstraction:

• Explicit state can be defined and used easily.

• Multiple methods that share the same explicit state can be defined easily.
Invoking an object picks one of them.

• Classes are provided, which define a set of methods and can be instantiated.
Each instance has a fresh explicit state. If objects are like procedures, then
classes are like procedures that return procedures.

• Inheritance is provided, to define new sets of methods from existing sets,
by extending, modifying, and combining existing ones. Static and dynamic
binding make this ability particulary rich.

• Different degrees of encapsulation can be defined between classes and ob-
jects. Attributes and methods can be private, public, protected or have
some other, programmer-defined encapsulation.

It is important to note that these mechanisms do not provide any fundamentally
new ability. They can be completely defined with higher-order programming,
explicit state, and name values. On the other hand, the mechanisms are useful
idioms that lead to a programming style that is often convenient.

Object-oriented programming is an abstraction that provides a rich notation
to use any or all of these mechanisms together, whenever they are needed. This
richness is a double-edged sword. On the one hand, it makes the abstraction
particularly useful for many programming tasks. On the other hand, the ab-
straction has a complex semantics and is hard to reason about. For this reason,
we recommend to use object orientation only in those cases when it significantly
simplifies program structure, e.g., when there is a clear need for inheritance: the
program contains a set of closely-related abstract data types. In other cases, we
recommend to use simpler programming techniques.

Common limitations

The object system defined in this chapter is particularly close to higher-order
programming. Not all object systems are so close. In particular, the following
characteristics are often absent or cumbersome to use:

• Classes as values. They can be created at run-time, passed as arguments,
and stored in data structures.
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• Full lexical scoping. Full lexical scoping means that the language supports
procedure values with external references. This allows a class to be defined
inside the scope of a procedure or another class. Both Smalltalk-80 and
Java support procedure values (with some restrictions). In Java they are
instances of inner classes (i.e., nested classes). They are quite verbose due
to the class syntax (see section quote).

• First-class messages. Usually, the labels of messages and methods both
have to be known at compile time. The most general way to remove this
restriction is to allow messages to be values in the language, which can be
calculated at run time. Both Smalltalk-80 and Java provide this ability,
although it is more verbose than the usual (static) method invocations. For
example, here is a generic way to add “batching” to a class C:

class Batcher
meth nil skip end
meth ´ | ´ (M Ms) { self M} { self Ms} end

end

Mixing in the class Batcher adds batching ability to any other class:

C={New class $ from Counter Batcher end init(0)}
{C [inc(2) browse inc(3) inc(4)]}

Section 7.8.5 gives another way to add batching.

Some object-oriented languages, e.g., C++, do not support full higher-order pro-
gramming because they cannot define procedure values with lexical scoping at
run time (as explained in Section 3.6.1). In these languages, many of the abil-
ities of higher-order programming can be obtained through encapsulation and
inheritance, with a little effort from the programmer:

• A procedure value can be encoded as an object. The object’s attributes
represent the procedure value’s external references and the method argu-
ments are the procedure value’s arguments. When the object is created, its
attributes are initialized with the external references. The object can be
passed around and called just like a procedure value. With a little bit of dis-
cipline from the programmer, this allows for programming with procedure
values, thus giving true higher-order programming.

• A generic procedure can be encoded as an abstract class. A generic proce-
dure is one that takes procedure arguments and returns a specific procedure.
For example a generic sorting routine can take a comparison operation for
a given type and return a sorting routine that sorts arrays of that type. An
abstract class is a class with undefined methods. The methods are defined
in subclasses.
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Encoding procedure values as objects

Let us give an example of how to encode a procedure value in a typical object-
oriented language. Assume we have any statement 〈stmt〉. With procedural
abstraction, we can define a procedure with proc {P} 〈stmt〉 end and execute it
later as {P} . To encode this in our object system we have to know the external
references of 〈stmt〉. Assume they are X and Y. We define the following class:

class Proc
attr x y
meth init(X Y) @x=X @y=Y end
meth apply X=@x Y=@y in 〈stmt〉 end

end

The external references are represented by the stateless attributes x and y . We
define P by doing P={New Proc init(X Y)} and call it with {P apply} . This
encoding can be used in any object-oriented language. With it, we can use
almost all the higher-order programming techniques of this book. It has two
disadvantages with respect to procedures: it is more cumbersome to write and
the external references have to be written explicitly.

7.5.3 Functional decomposition versus type decomposi-
tion

How do we organize an ADT that is based on a type 〈T〉 with subtypes 〈T〉1, 〈T〉2,
〈T〉3 and includes a set of operations 〈F〉1, ..., 〈F〉n? In declarative programming,
Section 3.4.2 recommends to construct functions by following the type defini-
tion. In object-oriented programming, Section 7.4.2 recommends to construct
inheritance hierarchies in similar fashion, also by following the type definition.
Both sections give examples based on lists. Figure 7.23 gives a rough schematic
overview comparing the two approaches. They result in very different program
structures, which we call functional decomposition and type decomposition. In
functional decomposition, each function definition is a self-contained whole, but
the types are spread out over all functions. In type decomposition, each type is
a self-contained whole, but the function definitions are spread out over all types.
Which approach is better? It turns out that each has its uses:

• In functional decomposition, one can modify a function or add a new func-
tion without changing the other function definitions. However, changing or
adding a type requires to modify all function definitions.

• In type decomposition, one can modify a type (i.e., a class) or add a new
type (including by inheritance) without changing the other type definitions.
However, changing or adding a function requires to modify all class defini-
tions.

When designing a program, it is good to ask oneself what kind of modification
is most important. If the type is relatively simple and there are a large number
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Type definition

〈T〉 ::= 〈T〉1 | 〈T〉2 | 〈T〉3

Operations

〈F〉1, 〈F〉2, ..., 〈F〉n

Functional decomposition Type decomposition

fun { 〈F〉1 〈T〉 ...}
case 〈T〉
of 〈T〉1 then

...
[] 〈T〉2 then

...
[] 〈T〉3 then

...
end

end

fun { 〈F〉2 〈T〉 ...}
...

end

...

fun { 〈F〉n 〈T〉 ...}
...

end

class 〈T〉 ... end

class 〈T〉1 from 〈T〉
...
meth 〈F〉1(...)

...
end
meth 〈F〉2(...)

...
end
...
meth 〈F〉n(...)

...
end

end

class 〈T〉2 from 〈T〉 ... end

class 〈T〉3 from 〈T〉 ... end

Figure 7.23: Functional decomposition versus type decomposition

of operations, then the functional approach is usually clearer. If the type is
complex, with a relatively small number of operations, then the type approach
can be clearer. There are techniques that combine some of the advantages of both
approaches. See, e.g., [211], which explains some of these techniques and shows
how to use them to build extensible compilers.

7.5.4 Should everything be an object?

In the area of object-oriented programming, the principle is often invoked that
“everything should be an object”. Often, it is invoked without a precise under-
standing of what it means. For example, we saw someone define it on a mailing
list as “one should send messages to everything” (whatever that means). Let us
examine this principle and try to discover what it is really trying to say.
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Strong objects

A sensible way to define the principle is as “all language entities should be in-
stances of ADTs with as many generic properties as possible”. In its extreme
form, this implies five properties: all language entities should be defined by class-
es, be extensible with inheritance, have a unique identity, encapsulate a state,
and be accessed with a uniform syntax. The word “object” is sometimes used
for entities with all these properties. To avoid confusion, we will call them strong
objects. An object-oriented language is called pure if all its entities are strong
objects.

The desire for purity can lead to good things. For example, many languages
have the concept of “exception” to handle abnormal events during execution.
It can be quite convenient for exceptions to be objects within an inheritance
hierarchy. This allows classifying them into different categories, catching them
only if they are of a given class (or its subclasses), and possibly changing them
(adding information) if they are stateful.

Smalltalk-80 is a good example of a language for which purity was an ex-
plicit design goal [60, 89]. All data types in Smalltalk, including simple ones
like integers, are objects. However, not everything in Smalltalk is an object;
there is a concept called block that is a procedure value used for building control
abstractions.

In most languages, not all entities are strong objects. Let us give some exam-
ples in Java. An integer in Java is a pure value; it is not defined by a class and
does not encapsulate a state. An object in Java can have just final attributes,
which means that it is stateless. An array in Java cannot be extended with in-
heritance. Arrays behave as if they were defined in a final class. We summarize
this by saying that Java is object-oriented but not pure.

Should a language have only strong objects? It is clear that the answer is no,
for many reasons. First, stateless entities can play an important role. With them,
the powerful reasoning techniques of declarative programming become possible.
For this reason, many language designs allow them. We cite Objective Caml [32],
which has a functional core, and Java [10], which has immutable objects. In
addition, stateless entities are essential for making transparent distributed pro-
gramming practical (see Chapter 11). Second, not all entities need a unique
identity. For example, structured entities such as tuples in a database are iden-
tified by their contents, not by their names. Third, the simplicity of a uniform
syntax is illusory, as we explain below.

We seem to be removing each property one by one. We are left with two
principles: all language entities should be instances of ADTs and uniformity
among ADTs should be exploited when it is reasonable. Some ADTs will have
all the properties of strong objects; others will have only some of these properties
but also have some other, completely different properties. These principles are
consistent with the use of multiple computation models advocated in this book.
Building a system consists primarily in designing abstractions and realizing them
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as ADTs.

Objects and explicit state

Let us elaborate why stateless objects are a good idea. Given a particular object,
how can one predict its future behavior? It depends on two factors:

1. Its internal state, which potentially depends on all past calls. These calls
can be done from many parts of the program.

2. Its textual definition, which depends on all classes it inherits from. These
classes can be defined in many places in the program text.

We see that the semantics of an object is spread out over both time and space.
This makes an object harder to understand than a function. The semantics of
a function is all concentrated in one place, namely the textual definition of the
function. The function does not have a history; it depends only on its definition
and its arguments.

We give an example that shows why objects are harder to program with
when they have state. Assume that we are doing arithmetic with the IEEE
floating point standard and that we have implemented the standard completely.
This means, for example, that we can change the rounding mode of arithmetic
operations during execution (round to nearest even, round up, round down, etc.).
If we do not use this ability carefully, then whenever we do an addition X+Y we
have no idea what it will do unless we have followed the whole execution. Any
part of the program could have changed the rounding mode. This can wreak
havoc on numeric methods, which depend on predictable rounding to get good
results. One solution is for all numeric methods to set the rounding method
initially and on each external call.

To avoid this problem as much as possible, the language should not favor
explicit state and inheritance. That is, not using them should be easy. For
inheritance, this is almost never a problem, since it is always harder to use it
than to avoid it. For explicit state, it depends on the language. In the object-
oriented model of this chapter, defining (stateless) functions is actually slightly
easier than defining (stateful) objects. Objects need to be defined as instances of
classes, which themselves are defined with a class –end wrapping one or more
meth –end declarations. Functions just need fun –end .

In popular object-oriented languages, unfortunately, explicit state is almost al-
ways the default and functions are usually syntactically cumbersome. In Smalltalk,
all attributes are stateful but function values can be defined easily. In Java, there
is no syntactic support for functions and object attributes are stateful unless
declared to be final.
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Uniform object syntax

A language’s syntax should help and not hinder programmers in designing, writ-
ing, and reasoning about programs. An important principle in syntax design is
form mirrors content. Differences in semantics should be visible as differences in
syntax and vice versa. For example, the while loop as used in many languages
has a syntax similar to while 〈expr〉 do 〈stmt〉. By writing 〈expr〉 before 〈stmt〉,
the syntax reflects the fact that the condition 〈expr〉 is evaluated before executing
〈stmt〉. If 〈expr〉 is false, then 〈stmt〉 is not executed at all. The Cobol language
does things differently. It has the perform loop, which can be written perform

〈stmt〉 until 〈expr〉. This syntax is misleading since 〈expr〉 is tested before 〈stmt〉
yet is written after 〈stmt〉. The perform loop’s semantics are while not 〈expr〉 do
〈stmt〉.

Should all operations on language entities have the same syntax? This does
not necessarily improve readability. For example, Scheme has a uniform syntax
which does not necessarily make it more readable. We find that a uniform syntax
just moves the richness of the language away from the syntax and into the names
of objects and classes. This adds a second layer of syntax, making the language
more verbose. Let us give an example taken from symbolic programming lan-
guages. Stateless values can be given a very natural, compact syntax. A list
value can be created just by mentioning it, e.g.:

LV=[1 2 3]

This is approximately the syntax used by languages that support symbolic pro-
gramming, such as Prolog, Haskell, Erlang, and their relatives. This contrasts
with the use of a uniform object syntax:

ListClass *lv= new ConsClass(1, new ConsClass(2,

new ConsClass(3, new NilClass())));

This is C++ syntax, which is similar to Java syntax. For decomposing a list
value, there is another natural notation using pattern matching:

case LV of X|LV2 then ... end

Pattern matching is commonly used in symbolic languages. This is also cumber-
some to do in a uniform object syntax. There is a further increase in verbosity
when doing concurrent programming in the object syntax. This is because the
uniform syntax requires explicit synchronization. This is not true for the case

syntax above, which is sufficient for concurrent programming if the computation
model does implicit dataflow synchronization.

Another, more realistic example is the graphical user interface tool of Chap-
ter 10. Inspired by this tool, Christophe Ponsard built a Java prototype of a
similar tool. The Java version is more cumbersome to use than the Oz version,
primarily because Java has no syntactic support for record values. Unfortunately,
this verbosity is an inherent property of Java. There is no simple way around it.
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7.6 Implementing the object system

The complete object system can be implemented in a straightforward way from
the declarative stateful computation model. In particular, the main characteris-
tics come from the combination of higher-order programming with explicit state.
With this construction, you will understand objects and classes completely.

While the construction of this section works well and is reasonably efficient,
a real implementation will add optimizations to do even better. For example, a
real implementation can make an object invocation be as fast as a procedure call.
This section does not give these optimizations.

7.6.1 Abstraction diagram

The first step in understanding how to build an object system is to understand
how the different parts are related. Object-oriented programming defines a hier-
archy of abstractions that are related to each other by a kind of “specification-
implementation” relationship. There are many variations on this hierarchy. We
give a simple one that has most of the main ideas. Here are the abstractions, in
order from most concrete to most abstract:

• Running object. A running object is an active invocation of an object.
It associates a thread to an object. It contains a set of environment frames
(the part of the thread’s stack that is created while executing the object)
as well as an object.

• Object. An object is a procedure that encapsulates an explicit state (a
cell) and a set of procedures that reference the state.

• Class. A class is a wrapped record that encapsulates a set of procedures
named by literals and a set of attributes, which are just literals. The pro-
cedures are called methods. Methods take a state as argument for each
attribute and modify that state. Methods can only call each other indirect-
ly, through the literals that name them. Often the following distinction is
useful:

– Abstract class. An abstract class is a class in which some methods
are called that have no definition in the class.

– Concrete class. A concrete class is a class in which all methods that
are called are also defined.

If first-class messages are supported by the language, then invocations of
the form {Obj M} are possible where M is calculated at run time. If such
an invocation exists in the program, then the distinction between abstract
and concrete class disappears in the program (although it may still exist
conceptually). Executing the invocation {Obj M} raises an exception if M

does not exist in Obj .
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Figure 7.24: Abstractions in object-oriented programming

• Metaclass. A metaclass is a class with a particular set of methods that
correspond to the basic operations of a class, for example: object creation,
inheritance policy (which methods to inherit), method call, method return,
choice of method to call, attribute assignment, attribute access, self call.
Writing these methods allows to customize the semantics of objects.

Figure 7.24 shows how these concepts are related. There are three relationships,
“invocation of”, “instance of”, and “inherits from”. These relationships have the
following intuitive meanings:

• A running object is created when a thread invokes an object. The running
object exists until the thread’s execution leaves it. Multiple invocations of
the same object can exist simultaneously.

• An object can be created as an instance of a class. If the object system
distinguishes between abstract and concrete classes, then it is usually only
possible to create instances of concrete classes. The object exists forever.2

The object encapsulates a cell that was created especially for it. Multiple
instances of the same class can exist simultaneously.

• A class can be created that inherits from a list of other classes. The new
class exists forever. Inheritance takes a set of methods and a list of classes
and returns a new class with a new set of methods. Multiple classes that
inherit from the same class can exist simultaneously. If one class can inherit
from several classes, then we have multiple inheritance. Otherwise, if one
class can inherit only from one class, we have single inheritance.

2In practice, until the actively running program loses all references to it. At that point,
garbage collection can reclaim its memory and finalization can perform a last action, if necessary.
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class Counter
attr val
meth init(Value)

val:=Value
end
meth inc(Value)

val:=@val+Value
end
meth browse

{Browse @val}
end

end

Figure 7.25: An example class Counter (again)

• A class can be created as an instance of a metaclass. The new class exists
forever. The basic operations of the class are defined by particular meth-
ods of the metaclass. Multiple instances of the same metaclass can exist
simultaneously.

7.6.2 Implementing classes

We first explain the class linguistic abstraction. The Counter class of Figure 7.25
is translated internally into the definition of Figure 7.26. This figure shows that
a class is simply a value, a record, that is protected from snooping because of
the wrapper Wrap (see Section 3.7.5). (Later, when the class is used to create
objects, it will be unwrapped with the corresponding Unwrap .) The class record
contains:

• A set of methods in a method table. Each method is a three-argument pro-
cedure that takes a message M, which is always a record, an extra parameter
S representing the state of the current object, and Self , which references
the object itself.

• A set of attribute names, giving the attributes that each class instance
(object) will possess. Each attribute is a stateful cell that is accessed by
the attribute name, which is either an atom or an Oz name.

This example is slightly simplified because it does not show how to support static
binding (see exercises). The Counter class has a single attribute accessed by
the atom val . It has a method table with three methods accessed through the
features browse , init , and inc . As we can see, the method init assigns the
value Value to the attribute val , the method inc increments the attribute val ,
and the method browse browses the current value of val .
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declare Counter
local

Attrs = [val]
MethodTable = m(browse:MyBrowse init:Init inc:Inc)
proc {Init M S Self}

init(Value)=M
in

(S.val):=Value
end
proc {Inc M S Self}

X
inc(Value)=M

in
X=@(S.val) (S.val):=X+Value

end
proc {MyBrowse M S Self}

browse=M
{Browse @(S.val)}

end
in

Counter = {Wrap c(methods:MethodTable attrs:Attrs)}
end

Figure 7.26: An example of class construction

7.6.3 Implementing objects

We can use the class Counter to create objects. Figure 7.27 shows a generic
functionw Newthat creates an object from any class. It starts by unwrapping the
class. It then creates an object state, a record, from the attributes of the class. It
initializes each field of this record to a cell (with an unbound initial value). This
uses the iterator Record.forAll to iterate over all fields of a record.

The object Obj returned by Newis a one-argument procedure. When called as
{Obj M} , it looks up and calls the procedure corresponding to M in the method
table. Because of lexical scoping, the object state is visible only within Obj . One
can say that Obj is a procedure that encapsulates the state.

The definition of Figure 7.27 works correctly, but it may not be the most
efficient way to implement objects. An actual system can use a different, more
efficient implementation as long as it behaves in the same way. For example, the
Mozart system uses an implementation in which object invocations are almost as
efficient as procedure calls [74, 76].

The proof of the pudding is in the eating. Let us verify that the class works
as claimed. We now create the Counter class and try out Newas follows:

C={New Counter init(0)}
{C inc(6)} {C inc(6)}
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fun {New WClass InitialMethod}
State Obj Class={Unwrap WClass}

in
State = {MakeRecord s Class.attrs}
{Record.forAll State proc {$ A} {NewCell _ A} end }
proc {Obj M}

{Class.methods.{Label M} M State Obj}
end
{Obj InitialMethod}
Obj

end

Figure 7.27: An example of object construction

{C browse}

This behaves in exactly the same way as the example of Section 7.2.1.

7.6.4 Implementing inheritance

Inheritance calculates a new class record starting from existing class records,
which are combined according to the inheritance rules given in Section 7.3.1.
Inheritance can be defined by the function From, where the call C={From C1 C2

C3} returns a new class record whose base definition is C1 and which inherits
from C2 and C3. It corresponds to the following class syntax:

class C from C2 C3
... % The base class C1

end

Figure 7.28 shows the definition of From. It uses the set operations in the Set

module, which can be found on the book’s Web site. From first checks the method
tables and attribute lists for conflicts. If a duplicate method label or attribute is
found in C2 and C3 that is not overridden by C1, then an exception is raised. Then
From constructs the new method table and attribute lists. Overriding is handled
properly by the Adjoin function on the method tables (see Appendix B.3.2).
The definition is slightly simplified because it does not handle static binding and
because it assumes that there are exactly two superclasses.

7.7 The Java language (sequential part)

Java is a concurrent object-oriented language with a syntax that resembles C++.
This section gives a brief introduction to the sequential part of Java. We explain
how to write a simple program, how to define classes, and how to use inheritance.
We defer talking about concurrency in Java until Chapter 8. We do not talk
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fun {From C1 C2 C3}
c(methods:M1 attrs:A1)={Unwrap C1}
c(methods:M2 attrs:A2)={Unwrap C2}
c(methods:M3 attrs:A3)={Unwrap C3}
MA1={Arity M1}
MA2={Arity M2}
MA3={Arity M3}
ConfMeth={Minus {Inter MA2 MA3} MA1}
ConfAttr={Minus {Inter A1 A2} A3}

in
if ConfMeth\=nil then

raise illegalInheritance(methConf:ConfMeth) end
end
if ConfAttr\=nil then

raise illegalInheritance(attrConf:ConfAttr) end
end
{Wrap c(methods:{Adjoin {Adjoin M2 M3} M1}

attrs:{Union {Union A2 A3} A1})}
end

Figure 7.28: Implementing inheritance

about the reflection package, which lets one do much of what the object system
of this chapter can do (although in a more verbose way).

Java is almost a pure object-oriented language, i.e., almost everything is an
object. Only a small set of primitive types, namely integers, floats, booleans, and
characters, are not objects. Java is a relatively clean language with a relatively
simple semantics. Despite the syntactic similarity, there is a major difference in
language philosophy between Java and C++ [184, 10]. C++ gives access to the
machine representation of data and a direct translation to machine instructions.
It also has manual memory management. Because of these properties, C++ is
often suitable as a replacement for assembly language. In contrast, Java hides
the representation of data and does automatic memory management. It supports
distributed computing on multiple platforms. It has a more sophisticated ob-
ject system. These properties make Java better for general-purpose application
development.

7.7.1 Computation model

Java consists of statically-typed object-oriented programming with classes, pas-
sive objects, and threads. The Java computation model is close to the shared-
state concurrent model, minus dataflow variables, triggers, and names. Parameter
passing is done by value, both for primitive types and object references. Newly-
declared variables are given a default initial value that depends on their type.
There is support for single assignment: variables and object attributes can be
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