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declared as final, which means that the variable can be assigned exactly once.
Final variables must be assigned before they are used.

Java introduces its own terminology for some concepts. Classes contain fields
(attributes, in our terminology), methods, other classes, or interfaces, which are
known collectively as class members. Variables are either fields, local variables
(declared in code blocks local to methods), or method parameters. Variables are
declared by giving their type, identifier, and an optional set of modifiers (e.g.,
final). The self concept is called this.

Interfaces

Java has an elegant solution to the problems of multiple inheritance (Sections 7.4.4
and 7.4.5). Java introduces the concept of interface, which syntactically looks like
a class with only method declarations. An interface has no implementation. A
class can implement an interface, which simply means that it defines all the meth-
ods in the interface. Java supports single inheritance for classes, thus avoiding
the problems of multiple inheritance. But, to preserve the advantages of multiple
inheritance, Java supports multiple inheritance for interfaces.

Java supports higher-order programming in a trivial way by means of the
encoding given in Section 7.5.2. In addition to this, Java has more direct support
for higher-order programming through inner classes. An inner class is a class
definition that is nested inside another class or inside a code block (such as a
method body). An instance of an inner class can be passed outside of the method
body or code block. An inner class can have external references, but there is a
restriction if it is nested in a code block: in that case it cannot reference non-final
variables. We could say that an instance of an inner class is almost a procedure
value. The restriction likely exists because the language designers wanted non-
final variables in code blocks to be implementable on a stack, which would be
popped when exiting the method. Without the restriction, this might create
dangling references.

7.7.2 Introduction to Java programming

We give a brief introduction to programming in Java. We explain how to write a
simple program, how to define classes, how to use inheritance, and how to write
concurrent programs with locks and monitors. We situate the Java style with
respect to the computation models of this book.

This section only scratches the surface of what is possible in Java. For more
information, we refer the reader to one of the many good books on Java program-
ming. We especially recommend [10] (on the language) and [111] (on concurrent
programming).
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A simple program

We would like to calculate the factorial function. In Java, functions are defined
as methods that return a result:

class Factorial {

public long fact(long n) {

long f=1;

for (int i=1; i<=n; i++) f=f*i;

return f;

}

}

Statements are terminated with a semicolon “;” unless they are compound state-
ments, which are delimited by braces { ...}. Variable identifiers are declared by
preceding them with their type, as in long f. Assignment is denoted by the
equals sign =. In the object system of Chapter 7 this becomes:

class Factorial
meth fact(N ?X)
F={NewCell 1} in

for I in 1..N do F:=@F*I end
X=@F

end
end

Note that i is an assignable variable (a cell) that is updated on each iteration,
whereas I is a value that is declared anew on each iteration. Factorial can also
be defined recursively:

class Factorial {

public long fact(long n) {

if (n==0) return 1;

else return n*this.fact(n-1);

}

}

In our object system this becomes:

class Factorial
meth fact(N ?F)

if N==0 then F=1
else F=N*{ self fact(N-1 $)} end

end
end

There are a few differences with the object system of Chapter 7. The Java
keyword this is the same as self in our object system. Java is statically typed.
The type of all variables is declared at compile time. Our model is dynamically
typed. A variable can be bound to an entity of any type. In Java, the visibility
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of fact is declared to be public. In our model, fact is public by default; to get
another visibility we would have to declare it as a name.

Input/output

Any realistic Java program has to do I/O. Java has an elaborate I/O subsystem
based on the notion of stream, which is an ordered sequence of data that has
a source (for an input stream) or a destination (for an output stream). Do not
confuse this with the concept of stream as used in the rest of this book: a list with
unbound tail. The Java stream concept generalizes the Unix concept of standard
I/O, i.e., the standard input (stdin) and standard output (stdout) files.

Streams can encode many types, including primitive types, objects, and object
graphs. (An object graph is an object together with the other objects it refer-
ences, directly or indirectly.) Streams can be byte streams or character streams.
Characters are not the same as bytes since Java supports Unicode. A byte in
Java is an 8-bit unsigned integer. A character in Java is a Unicode 2.0 character,
which has a 16-bit code. We do not treat I/O further in this section.

Defining classes

The Factorial class is rather atypical. It has only one method and no attributes.
Let us define a more realistic class. Here is a class to define points in two-
dimensional space:

class Point {

public double x, y;

}

The attributes x and y are public, which means they are visible from outside the
class. Public attributes are usually not a good idea; it is almost always better to
make them private and use accessor methods:

class Point {

double x, y;

Point(double x1, y1) { x=x1; y=y1; }

public double getX() { return x; }

public double getY() { return y; }

}

The method Point is called a constructor; it is used to initialize new objects
created with new, as in:

Point p=new Point(10.0, 20.0);

which creates the new Point object p. Let us add some methods to calculate
with points:
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class Point {

double x, y;

Point(double x1, y1) { x=x1; y=y1; }

public double getX() { return x; }

public double getY() { return y; }

public void origin() { x=0.0; y=0.0; }

public void add(Point p) { x+=p.getX(); y+=p.getY(); }

public void scale(double s) { x*=s; y*=s; }

}

The p argument of add is a local variable whose initial value is a reference to the
argument. In our object system we can define Point as follows:

class Point
attr x y
meth init(X Y) x:=X y:=Y end
meth getX(X) X=@x end
meth getY(Y) Y=@y end
meth origin x:=0.0 y:=0.0 end
meth add(P) x:=@x+{P getX($)} y:=@y+{P getY($)} end
meth scale(S) x:=@x*S y:=@y*S end

end

This definition is very similar to the Java definition. There are also some minor
syntactic differences, such as the operators += and *=. Both definitions have
private attributes. There is a subtle difference in the visibility of the attributes.
In Java, private attributes are visible to all objects of the same class. This means
the method add could be written differently:

public void add(Point p) { x+=p.x; y+=p.y; }

This is explained further in Section 7.3.3.

Parameter passing and main program

Parameter passing to methods is done with call by value. A copy of the value
is passed to the method and can be modified inside the method without chang-
ing the original value. For primitive values, such as integers and floats, this is
straightforward. Java also passes object references (not the objects themselves)
by value. So objects can almost be considered as using call by reference. The
difference is that, inside the method, the field can be modified to refer to another
object.

Figure 7.29 gives an example. This example is a complete standalone program;
it can be compiled and executed as is. Each Java program has one method, main,
that is called when the program is started The object reference c is passed by
value to the method sqr. Inside sqr, the assignment a=null has no effect on c.
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class MyInteger {

public int val;

MyInteger(int x) { val=x; }

}

class CallExample {

public void sqr(MyInteger a) {

a.val=a.val*a.val;

a=null;

}

public static void main(String[] args) {

int c=new MyInteger(25);

CallExample.sqr(c);

System.out.println(c.val);

}

}

Figure 7.29: Parameter passing in Java

The argument of main is an array of strings that contains the command line
arguments of the program when called from the operating system, The method
call System.out.println prints its argument to the standard output.

Inheritance

We can use inheritance to extend the Point class. For example, it can be extended
to represent a pixel, which is the smallest independently displayable area on a
two-dimensional graphics output device such as a computer screen. Pixels have
coordinates, just like points, but they also have color.

class Pixel extends Point {

Color color;

public void origin() {

super.origin();

color=null;

}

public Color getC() { return color; }

public void setC(Color c) { color=c; }

}

The extend keyword is used to denote inheritance; it corresponds to from in our
object system. We assume the class Color is defined elsewhere. The class Pixel

overrides the origin method. The new origin initializes both the point and the
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class BallGame
attr other count:0
meth init(Other)

other:=Other
end
meth ball

count:=@count+1
{@other ball}

end
meth get(X)

X=@count
end

end

B1={NewActive BallGame init(B2)}
B2={NewActive BallGame init(B1)}

{B1 ball}

Figure 7.30: Two active objects playing ball (definition)

color. It uses super to access the overridden method in the immediate ancestor
class. With respect to the current class, this class is often called the superclass.
In our object system, we can define Pixel as follows:

class Pixel from Point
attr color
meth origin

Point,origin
color:=null

end
meth getC(C) C=@color end
meth setC(C) color:=C end

end

7.8 Active objects

An active object is a port object whose behavior is defined by a class. It consists
of a port, a thread that reads messages from the port’s stream, and an object that
is a class instance. Each message that is received will cause one of the object’s
methods to be invoked.
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ball

B1 B2

ball

Figure 7.31: Two active objects playing ball (illustration)

7.8.1 An example

Let us start with an example. Consider two active objects, where each object
has a reference to the other. When each object receives the message ball , it
sends the message ball to the other. The ball will be passed back and forth
indefinitely between the objects. We define the behavior of the active objects
by means of a class. Figure 7.30 defines the objects and Figure 7.31 illustrates
how the messages pass between them. Each object references the other in the
attribute other . We also add an attribute count to count the number of times
the message ball is received. The initial call {B1 ball} starts the game. With
the method get(X) we can follow the game’s progress:

declare X in
{B1 get(X)}
{Browse X}

Doing this several times will show a sequence of numbers that increase rapidly.

7.8.2 The NewActive abstraction

The behavior of active objects is defined with a class. Each method of the class
corresponds to a message that is accepted by the active object. Figure 7.30 gives
an example. Sending a message M to an active object A is written as {A M} ,
with the same syntax as invoking a standard, passive object. In contrast to the
other objects of this chapter, which are called passive objects, the invocation of
an active object is asynchronous: it returns immediately, without waiting until
the message has been handled. We can define a function NewActive that works
exactly like New except that it creates an active object:

fun {NewActive Class Init}
Obj={New Class Init}
P

in
thread S in

{NewPort S P}
for M in S do {Obj M} end

end
proc {$ M} {Send P M} end
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Figure 7.32: The Flavius Josephus problem

end

This makes defining active objects very intuitive.

7.8.3 The Flavius Josephus problem

Let us now tackle a bigger problem. We introduce it with a well-known historical
anecdote. Flavius Josephus was a Roman historian of Jewish origin. During the
Jewish-Roman wars of the first century AD, he was in a cave with fellow soldiers,
40 men in all, surrounded by enemy Roman troops. They decided to commit
suicide by standing in a ring and counting off each third man. Each man so
designated was to commit suicide. Figure 7.32 illustrates the problem. Josephus,
not wanting to die, managed to place himself in the position of the last survivor.

In the general version of this problem, there are n soldiers numbered from 1
to n and each k-th soldier will be eliminated. The count starts from the first
soldier. What is the number of the last survivor? Let us model this problem by
representing soldiers with active objects. There is ring of active objects where
each object knows its two neighbors. Here is one possible message-passing pro-
tocol to solve the problem. A message kill(X S) circulates around the ring,
where X counts live objects traversed and S is the total number of live objects
remaining. Initially, the message kill(1 N) is given to the first object. When
object i receives the message kill(X S) it does the following:

• If it is alive and s = 1, then it is the last survivor. It signals this by binding
a global variable. No more messages are forwarded.

• If it is alive and X mod k = 0, then it becomes dead and it sends the
message kill(X+1 S-1) to the next object in the ring.
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class Victim
attr ident step last succ pred alive: true
meth init(I K L) ident:=I step:=K last:=L end
meth setSucc(S) succ:=S end
meth setPred(P) pred:=P end
meth kill(X S)

if @alive then
if S==1 then @last=@ident
elseif X mod @step==0 then

alive:= false
{@pred newsucc(@succ)}
{@succ newpred(@pred)}
{@succ kill(X+1 S-1)}

else
{@succ kill(X+1 S)}

end
else {@succ kill(X S)} end

end
meth newsucc(S)

if @alive then succ:=S
else {@pred newsucc(S)} end

end
meth newpred(P)

if @alive then pred:=P
else {@succ newpred(P)} end

end
end

fun {Josephus N K}
A={NewArray 1 N null}
Last

in
for I in 1..N do

A.I:={NewActive Victim init(I K Last)}
end
for I in 2..N do {A.I setPred(A.(I-1))} end
{A.1 setPred(A.N)}
for I in 1..(N-1) do {A.I setSucc(A.(I+1))} end
{A.N setSucc(A.1)} {A.1 kill(1 N)}
Last

end

Figure 7.33: The Flavius Josephus problem (active object version)
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• If it is alive and X mod k 6= 0, then it sends the message kill(X+1 S) to
the next object in the ring.

• If it is dead, then it forwards the message kill(X S) to the next object.3

Figure 7.33 gives a program that implements this protocol. The function Josephus

returns immediately with an unbound variable, which will be bound to the num-
ber of the last survivor as soon as it is known.

Short-circuit protocol

The solution of Figure 7.33 removes dead objects from the circle with a short-
circuit protocol. If this were not done, the traveling message would eventual-
ly spend most of its time being forwarded by dead objects. The short-circuit
protocol uses the newsucc and newpred methods. When an object dies, it sig-
nals to both its predecessor and its successor that it should be bypassed. The
short-circuit protocol is just an optimization to reduce execution time. It can be
removed and the program will still run correctly.

Without the short-circuit protocol, the program is actually sequential since
there is just a single message circulating. It could have been written as a sequen-
tial program. With the short-circuit protocol it is no longer sequential. More
than one message can be traveling in the network at any given time.

A declarative solution

As alert programmers, we remark that the solution of Figure 7.33 has no ob-
servable nondeterminism. We can therefore write it completely in the declarative
concurrent model of Chapter 4. Let us do this and compare the two programs.
Figure 7.34 shows a declarative solution that implements the same protocol as the
active object version. Like the active object version, it does short-circuiting and
eventually terminates with the identity of the last survivor. It pays to compare
the two versions carefully. The declarative version is half the size of the active
object version. One reason is that streams are first-class entities. This makes
short-circuiting very easy: just return the input stream as output.

The declarative program uses a concurrent abstraction, Pipe , that it defines
especially for this program. If l ≤ h, then the function call {Pipe X s L H F}

creates a pipeline of h−l+1 stream objects, numbered from l to h inclusive. Each
stream object is created by the call {F Is I} , which is given an input stream
Is and an integer I and returns the output stream. We create a closed ring
by feeding the output stream Zs back to the input, with the additional message
kill(1 N) to start the execution.

3The dead object is a kind of zombie.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



568 Object-Oriented Programming

fun {Pipe Xs L H F}
if L=<H then {Pipe {F Xs L} L+1 H F} else Xs end

end

fun {Josephus2 N K}
fun {Victim Xs I}

case Xs of kill(X S)|Xr then
if S==1 then Last=I nil
elseif X mod K==0 then

kill(X+1 S-1)|Xr
else

kill(X+1 S)|{Victim Xr I}
end

[] nil then nil end
end
Last Zs

in
Zs={Pipe kill(1 N)|Zs 1 N

fun {$ Is I} thread {Victim Is I} end end }
Last

end

Figure 7.34: The Flavius Josephus problem (data-driven concurrent version)

7.8.4 Other active object abstractions

Section 5.3 shows some of the useful protocols that we can build on top of message
passing. Let us take two of these protocols and make them into abstractions for
active objects.

Synchronous active objects

It is easy to extend active objects to give them synchronous behavior, like a
standard object or an RMI object. A synchronous invocation {Obj M} does not
return until the method corresponding to M is completely executed. Internal to
the abstraction, we use a dataflow variable to do the synchronization. Here is the
definition of NewSync, which creates a synchronous active object:

fun {NewSync Class Init}
Obj={New Class Init}
P

in
thread S in

{NewPort S P}
for M#X in S do {Obj M} X= unit end

end
proc {$ M} X in {Send P M#X} {Wait X} end
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end

Each message sent to the object contains a synchronization token X, which is
bound when the message is completely handled.

Active objects with exception handling

Explicitly doing exception handling for active objects can be cumbersome, since
it means adding a try in each server method and a case after each call. Let
us hide these statements inside an abstraction. The abstraction adds an extra
argument that can be used to test whether or not an exception occurred. Instead
of adding the extra argument in the method, we add it to the object invocation
itself. In this way, it automatically works for all methods. The extra argument
is bound to normal if the invocation completes normally, and to exception(E)

if the object raises the exception E. Here is the definition of NewActiveExc :

fun {NewActiveExc Class Init}
P Obj={New Class Init} in

thread S in
{NewPort S P}
for M#X in S do

try {Obj M} X=normal
catch E then X=exception(E) end

end
end
proc {$ M X} {Send P M#X} end

end

The object Obj is called as {Obj M X} , where X is the extra argument. So the
send is still asynchronous and the client can examine at any time whether the call
completed successfully or not. For the synchronous case, we can put the case

statement inside the abstraction:

proc {$ M}
X in

{Send P M#X}
case E of normal then skip
[] exception(Exc) then raise Exc end end

end

This lets us call the object exactly like a passive object.

7.8.5 Event manager with active objects

We can use active objects to implement a simple concurrent event manager. The
event manager contains a set of event handlers. Each handler is a triple Id#F#S ,
where Id uniquely identifies the handler, F defines the state update function, and
S is the handler’s state. When an event E occurs, each triple Id#F#S is replaced
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class EventManager
attr

handlers
meth init handlers:=nil end
meth event(E)

handlers:=
{Map @handlers fun {$ Id#F#S} Id#F#{F E S} end }

end
meth add(F S ?Id)

Id={NewName}
handlers:=Id#F#S|@handlers

end
meth delete(DId ?DS)

handlers:={List.partition
@handlers fun {$ Id#F#S} DId==Id end [_#_#DS]}

end
end

Figure 7.35: Event manager with active objects

by Id#F#{F E S} . That is, each event handler is a finite state machine, which
does a transition from state S to state {F E S} when the event E occurs.

The event manager was originally written in Erlang [7]. The Erlang com-
putation model is based on communicating active objects (see Chapter 5). The
translation of the original code to the concurrent stateful model was straightfor-
ward.

We define the event manager EMas an active object with four methods:

• {EM init} initializes the event manager.

• {EM event(E)} posts the event E at the event manager.

• {EM add(F S Id)} adds a new handler with update function F and initial
state S. Returns a unique identifier Id .

• {EM delete(Id S)} removes the handler with identifier Id , if it exists.
Returns the handler’s state in S.

Figure 7.35 shows how to define the event manager as a class. We show how to
use the event manager to do error logging. First we define a new event manager:

EM={NewActive EventManager init}

We then install a memory-based handler. It logs every event in an internal list:

MemH=fun {$ E Buf} E|Buf end
Id={EM add(MemH nil $)}

We can replace the memory-based handler by a disk-based handler during exe-
cution, without losing any of the already-logged events. In the following code,
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class ReplaceEventManager from EventManager
meth replace(NewF NewS OldId NewId

insert:P<= proc {$ _} skip end )
Buf=EventManager,delete(OldId $)

in
{P Buf}
NewId=EventManager,add(NewF NewS $)

end
end

Figure 7.36: Adding functionality with inheritance

we remove the memory-based handler, open a log file, write the already-logged
events to the file, and then define and install the disk-based handler:

DiskH= fun {$ E F} {F write(vs:E)} F end
File={New Open.file init(name: ´ event.log ´ flags:[write create])}
Buf={EM delete(Id $)}
for E in {Reverse Buf} do {File write(vs:E)} end
Id2={EM add(DiskH File $)}

This uses the System module Open to write the log. We could use the File

module but then the rest of the program could not use it, since it only supports
one open file at a time for writing.

Adding functionality with inheritance

The event manager of Figure 7.35 has the defect that if events occur during a
replacement, i.e., between the delete and add operations, then they will not be
logged. How can we remedy this defect? A simple solution is to add a new
method, replace to EventManager that does both the delete and add. Because
all methods are executed sequentially in the active object, this ensures no event
will occur between the delete and add. We have the choice to add the new method
directly, to EventManager , or indirectly, to a subclass by inheritance. Which
possibility is the right solution depends on several factors. First, whether we
have access to the source code of EventManager . If we do not, then inheritance
is the only possibility. If we do have the source code, inheritance may still be the
right answer. It depends on how often we need the replace functionality. If we
almost always need it in event managers, then we should modify EventManager

directly and not create a second class. If we rarely need it, then its definition
should not encumber EventManager , and we can separate it by using inheritance.

Let us use inheritance for this example. Figure 7.36 defines a new class
ReplaceEventManager that inherits from EventManager and adds a new method
replace . Instances of ReplaceEventManager have all methods of EventManager

as well as the method replace . The insert field is optional; it can be used to
insert an operation to be done between the delete and add operations. We define
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class Batcher
meth batch(L)

for X in L do
if {IsProcedure X} then {X} else { self X} end

end
end

end

Figure 7.37: Batching a list of messages and procedures

a new event manager:

EM={NewActive ReplaceEventManager init}

Now we can do the replacement as follows:

DiskH= fun {$ E S} {S write(vs:E)} S end
File={New Open.file init(name: ´ event.log ´ flags:[write create])}
Id2
{EM replace(DiskH File Id Id2

insert:
proc {$ S}

for E in {Reverse S} do
{File write(vs:E)} end

end )}

Because replace is executed inside the active object, it is serialized with all the
other messages to the object. This ensures that no events can arrive between the
delete and add methods.

Batching operations using a mixin class

A second way to remedy the defect is to add a new method that does batching,
i.e., it does a list of operations. Figure 7.37 defines a new class Batcher that has
just one method, batch(L) . The list L can contain messages or zero-argument
procedures. When batch(L) is called, the messages are passed to self and the
procedures are executed, in the order they occur in L. This is an example of using
first-class messages. Since messages are also language entities (they are records),
they can be put in a list and passed to Batcher . We define a new class that
inherits from EventManager and brings in the functionality of Batcher :

class BatchingEventManager from EventManager Batcher end

We use multiple inheritance because Batcher can be useful to any class that
needs batching, not just to event managers. Now we can define a new event
manager:

EM={NewActive BatchingEventManager init}

All instances of BatchingEventManager have all methods of EventManager as
well as the method batch . The class Batcher is an example of a mixin class: it
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adds functionality to an existing class without needing to know anything about
the class. Now we can replace the memory-based handler by a disk-based handler:

DiskH= fun {$ E S} {S write(vs:E)} S end
File={New Open.file init(name: ´ event.log ´ flags:[write create])}
Buf Id2
{EM batch([delete(Id Buf)

proc {$}
for E in {Reverse Buf} do {File write(vs:E)} end

end
add(DiskH File Id2)])}

The batch method guarantees atomicity in the same way as the replace method,
i.e., because it executes inside the active object.

What are the differences between the replacement solution and the batching
solution? There are two:

• The replacement solution is more efficient because the replace method
is hard-coded. The batch method, on the other hand, adds a layer of
interpretation.

• The batching solution is more flexible. Batching can be added to any class
using multiple inheritance. No new methods have to be defined. Further-
more, any list of messages and procedures can be batched, even a list that
is calculated at run time. However, the batching solution requires that the
language support first-class messages.

Combining computation models

The event manager is an interesting combination of the declarative, object-
oriented, and stateful concurrent computation models:

• Each event handler is defined declaratively by its state update function.
Even stronger, each method of the event manager can be seen as a declara-
tive definition. Each method takes the event manager’s internal state from
the attribute handlers , does a declarative operation on it, and stores the
result in handlers .

• All methods are executed in sequential fashion, as if they were in a stateful
model with no concurrency. All concurrency is managed by the active object
abstraction, as implemented by NewActive . This abstraction guarantees
that all object invocations are serialized. Especially, no locking or other
concurrency control is needed.

• New functionality, for example replacement or batching, is added by using
object-oriented inheritance. Because the new method executes inside the
active object, it is guaranteed to be atomic.
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The result is that event handlers are defined sequentially and declaratively, and
yet can be used in a stateful concurrent environment. This is an example of
impedance matching, as defined in Section 4.7.7. Impedance matching is a special
case of the general principle of separation of concerns. The concerns of state and
concurrency are separated from the definition of the event handlers. It is good
programming practice to separate concerns as much as possible. Using different
computation models together often helps to achieve separation of concerns.

7.9 Exercises

1. Uninitialized objects. The function Newcreates a new object when given
a class and an initial message. Write another function New2 that does not
require an initial message. That is, the call Obj={New2 Class} creates a
new object without initializing it. Hint: write New2 in terms of New.

2. Protected methods in the Java sense. A protected method in Java has
two parts: it is accessible throughout the package that defines the class
and also by descendants of the class. For this exercise, define a linguistic
abstraction that allows to annotate a method or attribute as protected in
the Java sense. Show how to encode this in the model of Section 7.3.3 by
using name values. Use functors to represent Java packages. For example,
one approach might to be to define the name value globally in the functor
and also to store it in an attribute called setOfAllProtectedAttributes .
Since the attribute is inherited, the method name is visible to all subclasses.
Work out the details of this approach.

3. Method wrapping. Section 7.3.5 shows how to do method wrapping. The
definition of TraceNew2 given there uses a class Trace that has an external
reference. This is not allowed in some object systems. For this exercise,
rewrite TraceNew2 so that it uses a class with no external references.

4. Implementing inheritance and static binding. For this exercise, gen-
eralize the implementation of the object system given in Section 7.6 to
handle static binding and to handle inheritance with any number of super-
classes (not just two).

5. Message protocols with active objects. For this exercise, redo the
message protocols of Section 5.3 with active objects instead of port objects.

6. The Flavius Josephus problem. Section 7.8.3 solves this problem in
two ways, using active objects and using data-driven concurrency. For this
exercise, do the following:

(a) Use a third model, the sequential stateful model, to solve the problem.
Write two programs: the first without short-circuiting and the second
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with it. Try to make both as concise and natural as possible in the
model. For example, without short-circuiting an array of booleans is
a natural data structure to represent the ring. Compare the structure
of both programs with the two programs in Section 7.8.3.

(b) Compare the execution times of the different versions. There are two
orthogonal analyses to be done. First, measure the advantages (if any)
of using short-circuiting for various values of n and k. This can be done
in each of the three computation models. For each model, divide the
(n, k) plane into two regions, depending on whether short-circuiting
is faster or not. Are these regions the same for each model? Second,
compare the three versions with short-circuiting. Do these versions
have the same asymptotic time complexity as a function of n and k?

7. (advanced exercise) Inheritance without explicit state. Inheritance
does not require explicit state; the two concepts are orthogonal. For this
exercise, design and implement an object system with classes and inheri-
tance but without explicit state. One possible starting point is the imple-
mentation of declarative objects in Section 6.4.2.

8. (research project) Programming design patterns. For this exercise, de-
sign an object-oriented language that allows “upwards” inheritance (defin-
ing a new superclass of a given class) as well as higher-order programming.
Upwards inheritance is usually called generalization. Implement and eval-
uate the usefulness of your language. Show how to program the design
patterns of Gamma et al [58] as abstractions in your language. Do you
need other new operations in addition to generalization?
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Chapter 8

Shared-State Concurrency

The shared-state concurrent model is a simple extension to the declarative con-
current model that adds explicit state in the form of cells, which are a kind of mu-
table variable. This model is equivalent in expressiveness to the message-passing
concurrent model of Chapter 5, because cells can be efficiently implemented with
ports and vice versa. In practice, however, the shared-state model is harder to
program than the message-passing model. Let us see what the problem is and
how we can solve it.

The inherent difficulty of the model

Let us first see exactly why the shared-state model is so difficult. Execution
consists of multiple threads, all executing independently and all accessing shared
cells. At some level, a thread’s execution can be seen as a sequence of atomic
instructions. For a cell, these are @(access), := (assignment), and Exchange .
Because of the interleaving semantics, all execution happens as if there was one
global order of operations. All operations of all threads are therefore “interleaved”
to make this order. There are many possible interleavings; their number is limited
only by data dependencies (calculations needing results of others). Any particular
execution realizes an interleaving. Because thread scheduling is nondeterministic,
there is no way to know which interleaving will be chosen.

But just how many interleavings are possible? Let us consider a simple case:
two threads, each doing k cell operations. Thread T1 does the operations a1, a2,
..., ak and thread T2 does b1, b2, ..., bk. How many possible executions are there,

interleaving all these operations? It is easy to see that the number is

(
2k
k

)
.

Any interleaved execution consists of 2k operations, of which each thread takes
k. Consider these operations as integers from 1 to 2k, put in a set. Then T1

takes k integers from this set and T2 gets the others. This number is exponential
in k.1 For three or more threads, the number of interleavings is even bigger (see
Exercises).

1Using Stirling’s formula we approximate it as 22k/
√

πk.
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It is possible to write algorithms in this model and prove their correctness
by reasoning on all possible interleavings. For example, given that the only
atomic operations on cells are @and := , then Dekker’s algorithm implements
mutual exclusion. Even though Dekker’s algorithm is short (e.g., 48 lines of code
in [43], using a Pascal-like language), the reasoning is already quite difficult. For
bigger programs, this technique rapidly becomes impractical. It is unwieldy and
interleavings are easy to overlook.

Why not use declarative concurrency?

Given the inherent difficulty of programming in the shared-state concurrent mod-
el, an obvious question is why not stick with the declarative concurrent model of
Chapter 4? It is enormously simpler to program in than the shared-state concur-
rent model. It is almost as easy to reason in as the declarative model, which is
sequential.

Let us briefly examine why the declarative concurrent model is so easy. It is
because dataflow variables are monotonic: they can be bound to just one value.
Once bound, the value does not change. Threads that share a dataflow variable,
e.g., a stream, can therefore calculate with the stream as if it were a simple value.
This is in contrast to cells, which are nonmonotonic: they can be assigned any
number of times to values that have no relation to each other. Threads that share
a cell cannot make any assumptions about its content: at any time, the content
can be completely different from any previous content.

The problem with the declarative concurrent model is that threads must com-
municate in a kind of “lock-step” or “systolic” fashion. Two threads communicat-
ing with a third thread cannot execute independently; they must coordinate with
each other. This is a consequence of the fact that the model is still declarative,
and hence deterministic.

We would like to allow two threads to be completely independent and yet
communicate with the same third thread. For example, we would like clients to
make independent queries to a common server or to independently increment a
shared state. To express this, we have to leave the realm of declarative models.
This is because two independent entities communicating with a third introduce an
observable nondeterminism. A simple way to solve the problem is to add explicit
state to the model. Ports and cells are two important ways to add explicit state.
This gets us back to the model with both concurrency and state. But reasoning
directly in this model is impractical. Let us see how we can get around the
problem.

Getting around the difficulty

Programming in the stateful concurrent model is largely a matter of managing
the interleavings. There are two successful approaches:
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• Message passing between port objects. This is the subject of Chapter 5.
In this approach, programs consist of port objects that send asynchronous
messages to each other. Internally, a port object executes in a single thread.

• Atomic actions on shared cells. This is the subject of the present chapter.
In this approach, programs consist of passive objects that are invoked by
threads. Abstractions are used to build large atomic actions (e.g., using
locking, monitors, or transactions) so that the number of possible interleav-
ings is small.

Each approach has its advantages and disadvantages. The technique of invari-
ants, as explained in Chapter 6, can be used in both approaches to reason about
programs. The two approaches are equivalent in a theoretical sense, but not in a
practical sense: a program using one approach can be rewritten to use the other
approach, but it may not be as easy to understand [109].

Structure of the chapter

The chapter consists of seven main sections:

• Section 8.1 defines the shared-state concurrent model.

• Section 8.2 brings together and compares briefly all the different concur-
rent models that we have introduced in the book. This gives a balanced
perspective on how to do practical concurrent programming.

• Section 8.3 introduces the concept of lock, which is the basic concept used to
create coarse-grained atomic actions. A lock defines an area of the program
inside of which only a single thread can execute at a time.

• Section 8.4 extends the concept of lock to get the concept of monitor, which
gives better control on which threads are allowed to enter and exit the
lock. Monitors make it possible to program more sophisticated concurrent
programs.

• Section 8.5 extends the concept of lock to get the concept of transaction,
which allows a lock to be either committed or aborted. In the latter case,
it is as if the lock had never executed. Transactions allow to program
concurrent programs that can handle rare events and non-local exits.

• Section 8.6 summarizes how concurrency is done in Java, a popular concur-
rent object-oriented language.
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... Multiple semantic stacks
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c1:W

Y=c1

Figure 8.1: The shared-state concurrent model

〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| thread 〈s〉 end Thread creation
| {ByNeed 〈x〉 〈y〉} Trigger creation
| {NewName〈x〉} Name creation
| 〈y〉=!! 〈x〉 Read-only view
| try 〈s〉1 catch 〈x〉 then 〈s〉2 end Exception context
| raise 〈x〉 end Raise exception
| {FailedValue 〈x〉 〈y〉} Failed value
| {IsDet 〈x〉 〈y〉} Boundness test
| {NewCell 〈x〉 〈y〉} Cell creation
| {Exchange 〈x〉 〈y〉 〈z〉} Cell exchange

Table 8.1: The kernel language with shared-state concurrency
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8.1 The shared-state concurrent model

Chapter 6 adds explicit state to the declarative model. This allows to do object-
oriented programming. Chapter 4 adds concurrency to the declarative model.
This allows to have multiple active entities that evolve independently. The next
step is to add both explicit state and concurrency to the declarative model. One
way to do this is given in Chapter 5: by adding ports. This chapter gives an
alternative way: by adding cells.

The resulting model, called the shared-state concurrent model, is shown in
Figure 8.1. Its kernel language is defined in Table 8.1. If we consider the subset
of operations up to ByNeed then we have the declarative concurrent model. We
add names, read-only variables, exceptions, and explicit state to this model.

8.2 Programming with concurrency

By now, we have seen many different ways to write concurrent programs. Before
diving into programming with shared-state concurrency, let us make a slight
detour and put all these ways into perspective. We first give a brief overview of
the main approaches. We then examine more closely the new approaches that
become possible with shared-state concurrency.

8.2.1 Overview of the different approaches

For the programmer, there are four main practical approaches to writing concur-
rent programs:

• Sequential programming (Chapters 3, 6, and 7). This is the baseline
approach that has no concurrency. It can be either eager or lazy.

• Declarative concurrency (Chapter 4). This is concurrency in the declar-
ative model, which gives the same results as a sequential program but can
give them incrementally. This model is usable when there is no observable
nondeterminism. It can be either eager (data-driven concurrency) or lazy
(demand-driven concurrency).

• Message-passing concurrency (Chapter 5 and Section 7.8). This is mes-
sage passing between port objects, which are internally sequential. This
limits the number of interleavings. Active objects (Section 7.8) are a vari-
ant of port objects where the object’s behavior is defined by a class.

• Shared-state concurrency (this chapter). This is threads updating shared
passive objects using coarse-grained atomic actions. This is another ap-
proach to limit the number of interleavings.
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Order−determining concurrency
Coroutining
Lazy evaluation

Sequential programming

Demand−driven concurrency

Use the model directly
Message−passing concurrency
Shared−state concurrency

Stream objects with merge

Approaches

Sequential

Nondeterministic concurrent

Stateful concurrent

Declarative concurrent

(declarative or stateful)

Model

Data−driven concurrency

Figure 8.2: Different approaches to concurrent programming

Figure 8.2 gives a complete list of these approaches and some others. Previous
chapters have already explained sequential programming and concurrent declara-
tive programming. In this chapter we look at the others. We first give an overview
of the four main approaches.

Sequential programming

In a sequential model, there is a total order among all operations. This is the
strongest order invariant a program can have. We have seen two ways that this
order can be relaxed a little, while still keeping a sequential model:

• “Order-determining” concurrency (Section 4.4.1). In this model, all
operations execute in a total order, like with sequential execution, but the
order is unknown to the programmer. Concurrent execution with dataflow
finds the order dynamically.

• Coroutining (Section 4.4.2). In this model, preemption is explicit, i.e., the
program decides when to pass control to another thread. Lazy evaluation,
in which laziness is added to a sequential program, does coroutining.

Both of these variant models are still deterministic.

Declarative concurrency

The declarative concurrent models of Chapter 4 all add threads to the declarative
model. This does not change the result of a calculation, but only changes the
order in which the result is obtained. For example, the result might be given
incrementally. This allows to build a dynamic network of concurrent stream
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objects connected with streams. Because of concurrency, adding an element to
its input stream allows a stream object to produce an output immediately.

These models have nondeterminism in the implementation, since the system
chooses how to advance the threads. But, to stay declarative, the nondetermin-
ism must not be observable to the program. The declarative concurrent models
guarantee this as long as no exceptions are raised (since exceptions are witness-
es to an observable nondeterminism). In practice, this means that each stream
object must know at all times from which stream its next input will come.

The demand-driven concurrent model, also known as lazy execution (Sec-
tion 4.5), is a form of declarative concurrency. It does not change the result of
a calculation, but only affects how much calculation is done to obtain the result.
It can sometimes give results in cases where the data-driven model would go into
an infinite loop. This is important for resource management, i.e., controlling how
many computational resources are needed. Calculations are initiated only when
their results are needed by other calculations. Lazy execution is implemented
with by-need triggers.

Message-passing concurrency

Message passing is a basic programming style of the stateful concurrent model. It
is explained in Chapter 5 and Section 7.8. It extends the declarative concurrent
model with a simple kind of communication channel, a port. It defines port objects,
which extend stream objects to read from ports. A program is then a network
of port objects communicating with each other through asynchronous message
passing. Each port object decides when to handle each messages. The port
object processes the messages sequentially. This limits the possible interleavings
and allows us to reason using invariants. Sending and receiving messages between
port objects introduces a causality between events (send, receive, and internal).
Reasoning on such systems requires reasoning on the causality chains.

Shared-state concurrency

Shared state is another basic programming style in the stateful concurrent model.
It is explained in the present chapter. It consists of a set of threads accessing
a set of shared passive objects. The threads coordinate among each other when
accessing the shared objects. They do this by means of coarse-grained atomic
actions, e.g., locks, monitors, or transactions. Again, this limits the possible
interleavings and allows us to reason using invariants.

Relationship between ports and cells

The message-passing and shared-state models are equivalent in expressiveness.
This follows because ports can be implemented with cells and vice versa. (It is
an amusing exercise to implement the Send operation using Exchange and vice
versa.) It would seem then that we have the choice whether to add ports or cells
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to the declarative concurrent model. However, in practice this is not so. The
two computation models emphasize a quite different programming style that is
appropriate for different classes of applications. The message-passing style is of
programs as active entities that coordinate with one another. The shared-state
style is of programs as passive data repositories that are modified in a coherent
way.

Other approaches

In addition to these four approaches, there are two others worth mentioning:

• Using the stateful concurrent model directly. This consists in pro-
gramming directly in the stateful concurrent model, either in message-
passing style (using threads, ports, and dataflow variables, see Section 5.5),
in shared-state style (using threads, cells, and dataflow variables, see Sec-
tion 8.2.2), or in a mixed style (using both cells and ports).

• Nondeterministic concurrent model (Section 5.7.1). This model adds
a nondeterministic choice operator to the declarative concurrent model. It
is a stepping stone to the stateful concurrent model.

They are less common, but can be useful in some circumstances.

Which concurrent model to use?

How do we decide which approach to use when writing a concurrent program?
Here are a few rules of thumb:

• Stick with the least concurrent model that suffices for your program. For
example, if using concurrency does not simplify the architecture of the pro-
gram, then stick with a sequential model. If your program does not have any
observable nondeterminism, such as independent clients interacting with a
server, then stick with the declarative concurrent model.

• If you absolutely need both state and concurrency, then use either the
message-passing or the shared-state approach. The message-passing ap-
proach is often the best for multi-agent programs, i.e., programs that con-
sist of autonomous entities (“agents”) that communicate with each other.
The shared-state approach is often the best for data-centered programs,
i.e., programs that consist of a large repository of data (“database”) that is
accessed and updated concurrently. Both approaches can be used together
for different parts of the same application.

• Modularize your program and concentrate the concurrency aspects in as
few places as possible. Most of the time, large parts of the program can
be sequential or use declarative concurrency. One way to implement this
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is with impedance matching, which is explained in Section 4.7.7. For ex-
ample, active objects can be used as front ends to passive objects. If the
passive objects are all called from the same active object then they can use
a sequential model.

Too much concurrency is bad

There is a model, the maximally concurrent model, that has even more concur-
rency than the stateful concurrent model. In the maximally concurrent model,
each operation executes in its own thread. Execution order is constrained only
by data dependencies. This has the greatest possible concurrency.

The maximally concurrent model model has been used as the basis for exper-
imental parallel programming languages. But it is both hard to program in and
hard to implement efficiently (see Exercise). This is because operations tend to
be fine-grained compared to the overhead of scheduling and synchronizing. The
shared-state concurrent model of this chapter does not have this problem because
thread creation is explicit. This allows the programmer to control the granularity.
We do not present the maximally concurrent model in more detail in this chapter.
A variant of this model is used for constraint programming (see Chapter 12).

8.2.2 Using the shared-state model directly

As we saw in the beginning of this chapter, programming directly in the shared-
state model can be tough. This is because there are potentially an enormous
number of interleavings, and the program has to work correctly for all of them.
That is the main reason why more high-level approaches, like active objects and
atomic actions, were developed. Yet, it is sometimes useful to use the model
directly. Before moving on to using atomic actions, let us see what can be done
directly in the shared-state concurrent model. Practically, it boils down to pro-
gramming with threads, procedures, cells, and dataflow variables. This section
gives some examples.

Concurrent stack

A concurrent ADT is an ADT where multiple threads can execute the ADT
operations simultaneously. The first and simplest concurrent ADT we show is a
stack. The stack provides nonblocking push and pop operations, i.e., they never
wait, but succeed or fail immediately. Using exchange, its implementation is very
compact, as Figure 8.3 shows. The exchange does two things: it accesses the cell’s
old content and it assigns a new content. Because exchange is atomic, it can be
used in a concurrent setting. Because the push and pop operations each do just
one exchange, they can be interleaved in any way and still work correctly. Any
number of threads can access the stack concurrently, and it will work correctly.
The only restriction is that a pop should not be attempted on an empty stack.
An exception can be raised in that case, e.g., as follows:
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fun {NewStack}
Stack={NewCell nil}
proc {Push X}
S in

{Exchange Stack S X|S}
end
fun {Pop}
X S in

{Exchange Stack X|S S}
X

end
in

stack(push:Push pop:Pop)
end

Figure 8.3: Concurrent stack

fun {Pop}
X S in

try {Exchange Stack X|S S}
catch failure(...) then raise stackEmpty end end
X

end

The concurrent stack is simple because each operation does just a single exchange.
Things become much more complex when an ADT operation does more than one
cell operation. For the ADT operation to be correct in general, these opera-
tions would have to be done atomically. To guarantee this in a simple way, we
recommend using the active object or atomic action approach.

Simulating a slow network

The object invocation {Obj M} calls Obj immediately and returns when the
call is finished. We would like to modify this to simulate a slow, asynchronous
network, where the object is called asynchronously after a delay that represents
the network delay. Here is a simple solution that works for any object:

fun {SlowNet1 Obj D}
proc {$ M}

thread
{Delay D}
{Obj M}

end
end

end

The call {SlowNet1 Obj D} returns a “slow” version of Obj . When the slow
object is invoked, it waits at least Dmilliseconds before calling the original object.
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Preserving message order with token passing The above solution does
not preserve message order. That is, if the slow object is invoked several times
from within the same thread, then there is no guarantee that the messages will
arrive in the same order as they are sent. Moreover, if the object is invoked
from several threads, different executions of the object can overlap in time which
could result in an inconsistent object state. Here is a solution that does preserve
message order and guarantees that only one thread at a time can execute inside
the object:

fun {SlowNet2 Obj D}
C={NewCell unit }

in
proc {$ M}
Old New in

{Exchange C Old New}
thread

{Delay D}
{Wait Old}
{Obj M}
New=unit

end
end

end

This solution uses a general technique, called token passing, to extract an execu-
tion order from one part of a program and impose it on another part. The token
passing is implemented by creating a sequence of dataflow variables X0, X1, X2, ...,
and passing consecutive pairs (X0, X1), (X1, X2), ... to the operations that should
be done in the same order. An operation that receives the pair (Xi, Xi+1) does
the following steps in order:

1. Wait until the token arrives, i.e., until Xi is bound ({Wait X i} ).

2. Do the computation.

3. Send the token to the next pair, i.e., bind Xi+1 (Xi+1=unit ).

In the definition of SlowNet2 , each time the slow object is called, a pair of
variables (Old , New) is created. This is inserted into the sequence by the call
{Exchange C Old New} . Because Exchange is atomic, this works also in a
concurrent setting where many threads call the slow object. Each pair shares one
variable with the previous pair (Old ) and one with the next pair (New). This
effectively puts the object call in an ordered queue. Each call is done in a new
thread. It first waits until the previous call has terminated ({Wait Old} ), then
invokes the object ({Obj M} ), and finally signals that the next call can continue
(New=unit ). The {Delay D} call must be done before {Wait Old} ; otherwise
each object call would take at least D milliseconds, which is incorrect.
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