
588 Shared-State Concurrency

Simple lock

(gating mechanism) (can be aborted)

(ACID properties)
... ...

Reentrant lock

Monitor Light transaction

Full transaction

Figure 8.4: The hierarchy of atomic actions

8.2.3 Programming with atomic actions

Starting with the next section, we give the programming techniques for shared-
state concurrency using atomic actions. We introduce the concepts gradually,
starting with locks. We refine locks into monitors and transactions. Figure 8.4
shows the hierarchical relationships between these three concepts.

• Locks allow to group little atomic operations together into big atomic oper-
ations. With a reentrant lock, the same lock can guard discontiguous parts
of the program. A thread that is inside one part can reenter the lock at any
part without suspending.

• Monitors refine locks with wait points. A wait point is a pair of an exit and
a corresponding entry with no code in between. (Wait points are sometimes
called delay points [6].) Threads can park themselves at a wait point, just
outside the lock. Exiting threads can wake up parked threads.

• Transactions refine locks to have two possible exits: a normal one (called
commit) and an exceptional one (called abort). The exceptional exit can be
taken at any time during the transaction. When it is taken, the transaction
leaves the execution state unchanged, i.e., as it was upon entry.

Figure 8.5 summarizes the principal differences between the three concepts. There
are many variations of these concepts that are designed to solve specific problems.
This section only gives a brief introduction to the basic ideas.

Reasoning with atomic actions

Consider a program that uses atomic actions throughout. Proving that the pro-
gram is correct consists of two parts: proving that each atomic action is correct
(when considered by itself) and proving that the program uses them correctly.
The first step is to show that each atomic action, e.g., lock, monitor, or transac-
tion, is correct. Each atomic action defines an ADT. The ADT should have an

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.2 Programming with concurrency 589

Lock Transaction

enter

exit
commit abort

Monitor

wait

wait

Figure 8.5: Differences between atomic actions

invariant assertion, i.e., an assertion that is true when there is no thread inside
the ADT. This is similar to reasoning with stateful programs and active objects,
except that the ADT can be accessed concurrently. Because only one thread can
be inside the atomic action at a time, we can still use mathematical induction to
show that the assertion is an invariant. We have to prove two things:

• When the ADT is first defined, the assertion is satisfied.

• Whenever a thread exits from the ADT, the assertion is satisfied.

The existence of the invariant shows that the atomic action is correct. The next
step is to show that the program using the atomic actions is correct.

8.2.4 Further reading

There are many good books on concurrent programming. The following four
are particularly well-suited as companions to this book. They give more practi-
cal techniques and theoretical background for the two concurrent paradigms of
message-passing and shared-state concurrency. At the time of writing, we know of
no books that deal with the third concurrent paradigm of declarative concurrency.

Concurrent Programming in Java

The first book deals with shared-state concurrency: Concurrent Programming
in Java, Second Edition, by Doug Lea [111]. This book presents a rich set of
practical programming techniques that are particularly well-suited to Java, a
popular concurrent object-oriented language (see Chapters 7 and 8). However,
they can be used in many other languages including the shared-state concurrent
model of this book. The book is targeted towards the shared-state approach;
message passing is mentioned only in passing.

The major difference between the Java book and this chapter is that the Java
book assumes threads are expensive. This is true for current Java implementa-
tions. Because of this, the Java book adds a conceptual level between threads and

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

590 Shared-State Concurrency

procedures, called tasks, and advises the programmer to schedule multiple tasks
on one thread. If threads are lightweight this conceptual level is not needed. The
range of practical programming techniques is broadened and simpler solutions
are often possible. For example, having lightweight threads makes it easier to use
active objects, which often simplifies program structure.2

Concurrent Programming in Erlang

The second book deals with message-passing concurrency: Concurrent Program-
ming in Erlang, by Joe Armstrong, Mike Williams, Claes Wikström, and Robert
Virding [9]. This book is complementary to the book by Doug Lea. It presents a
rich set of practical programming techniques, all based on the Erlang language.
The book is entirely based on the message-passing approach.

Concurrent Programming: Principles and Practice

The third book is Concurrent Programming: Principles and Practice, by Gregory
Andrews [6]. This book is more rigorous than the previous two. It explains both
shared state and message passing. It gives a good introduction to formal reasoning
with these concepts, using invariant assertions. The formalism is presented at
just the right level of detail so that it is both precise and usable by programmers.
The book also surveys the historical evolution of these concepts and includes
some interesting intermediate steps that are no longer used.

Transaction Processing: Concepts and Techniques

The final book is Transaction Processing: Concepts and Techniques, by Jim Gray
and Andreas Reuter [64]. This book is a successful blend of theoretical insight and
hard-nosed practical information. It gives insight into various kinds of transaction
processing, how they are used, and how they are implemented in practice. It gives
a modicum of theory, carefully selected to be relevant to the practical information.

8.3 Locks

It often happens that threads wish to access a shared resource, but that the
resource can only be used by one thread at a time. To help manage this situation,
we introduce a language concept called lock, to help control access to the resource.
A lock dynamically controls access to part of the program, called a critical region.
The basic operation of the lock is to ensure exclusive access to the critical region,
i.e., that only one thread at a time can be executing inside it. If the shared
resource is only accessed from within the critical region, then the lock can be
used to control access to the resource.

2Special cases of active objects are possible if threads are expensive, see e.g., Section 5.5.1.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.3 Locks 591

fun {NewQueue}
X in

q(0 X X)
end

fun {Insert q(N S E) X}
E1 in

E=X|E1 q(N+1 S E1)
end

fun {Delete q(N S E) X}
S1 in

S=X|S1 q(N-1 S1 E)
end

Figure 8.6: Queue (declarative version)

The shared resource can be either inside the program (e.g., an object) or
outside it (e.g., an operating system resource). Locks can help in both cases. If
the resource is inside the program, then the programmer can guarantee that it
cannot be referenced outside the critical region, using lexical scoping. This kind
of guarantee can in general not be given for resources outside of the program.
For those resources, locks are an aid to the programmer, but he must follow the
discipline of only referencing the resource inside the critical region.

There are many different kinds of locks that provide different kinds of access
control. Most of them can be implemented in Oz using language entities we have
already seen (i.e., cells, threads, and dataflow variables). However, a particu-
larly useful kind of lock, the thread-reentrant lock, is directly supported by the
language. The following operations are provided:

• {NewLock L} returns a new lock.

• {IsLock X} returns true if and only if X references a lock.

• lock X then 〈S〉 end guards 〈S〉 with lock X. If no thread is currently
executing any statement guarded by lock X, then any thread can enter. If
a thread is currently executing a guarded statement, then the same thread
can enter again, if it encounters the same lock in a nested execution. A
thread suspends if it attempts to enter a guarded statement while there is
another thread in a statement guarded by the same lock.

Note that lock X then ... end can be called many times with the same lock
X. That is, the critical section does not have to be contiguous. The lock will
ensure that at most one thread is inside any of the parts that it guards.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

592 Shared-State Concurrency

fun {NewQueue}
X C={NewCell q(0 X X)}
proc {Insert X}
N S E1 in

q(N S X|E1)=@C
C:=q(N+1 S E1)

end
fun {Delete}
N S1 E X in

q(N X|S1 E)=@C
C:=q(N-1 S1 E)
X

end
in

queue(insert:Insert delete:Delete)
end

Figure 8.7: Queue (sequential stateful version)

8.3.1 Building stateful concurrent ADTs

Now that we have introduced locks, we are ready to program stateful concurrent
ADTs. Let us approach this in steps. We give a systematic way to transform
a declarative ADT to become a stateful concurrent ADT. We also show how to
modify a sequential stateful ADT to become concurrent.

We illustrate the different techniques by means of a simple example, a queue.
This is not a limitation since these techniques work for any ADT. We start from
a declarative implementation and show how to convert this to a stateful imple-
mentation that can be used in a concurrent setting:

• Figure 8.6 is essentially the declarative queue of Section 3.4.4. (For brevity
we leave out the function IsEmpty .) Delete operations never block: if the
queue is empty when an element is deleted, then a dataflow variable is
returned which will be bound to the next inserted element. The size N is
positive if there are more inserts than deletes and negative otherwise. All
functions have the form Qout={QueueOp Qin ...} , taking an input queue
Qin and returning an output queue Qout . This queue will work correctly
in a concurrent setting, insofar as it can be used there. The problem is that
the order of the queue operations is explicitly determined by the program.
Doing these queue operations in different threads will ipso facto cause the
threads to synchronize. This is almost surely an undesired behavior.

• Figure 8.7 shows the same queue, but in a stateful version that encapsulates
the queue’s data. This version cannot be used in a concurrent setting
without some changes. The problem is that encapsulating the state requires
to read the state (@), do the operation, and then to write the new state (:=).

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.3 Locks 593

fun {NewQueue}
X C={NewCell q(0 X X)}
L={NewLock}
proc {Insert X}
N S E1 in

lock L then
q(N S X|E1)=@C
C:=q(N+1 S E1)

end
end
fun {Delete}
N S1 E X in

lock L then
q(N X|S1 E)=@C
C:=q(N-1 S1 E)

end
X

end
in

queue(insert:Insert delete:Delete)
end

Figure 8.8: Queue (concurrent stateful version with lock)

If two threads each do an insert, then both reads may be done before both
writes, which is incorrect. A correct concurrent version requires the read-
operation-write sequence to be atomic.

• Figure 8.8 shows a concurrent version of the stateful queue, using a lock to
ensure atomicity of the read-operation-write sequence. Doing queue opera-
tions in different threads will not impose any synchronization between the
threads. This property is a consequence of using state.

• Figure 8.9 shows the same version, written with object-oriented syntax. The
cell is replaced by the attribute queue and the lock is implicitly defined by
the locking property.

• Figure 8.10 shows another concurrent version, using an exchange to en-
sure atomicity. Since there is only a single state operation (the exchange),
no locks are needed. This version is made possible because of the single-
assignment property of dataflow variables. An important detail: the arith-
metic operations N-1 and N+1 must be done after the exchange (why?).

We discuss the advantages and disadvantages of these solutions:

• The declarative version of Figure 8.6 is the simplest, but it cannot be used
as a shared resource between independent threads.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

594 Shared-State Concurrency

class Queue
attr queue
prop locking

meth init
queue:=q(0 X X)

end

meth insert(X)
lock N S E1 in

q(N S X|E1)=@queue
queue:=q(N+1 S E1)

end
end

meth delete(X)
lock N S1 E in

q(N X|S1 E)=@queue
queue:=q(N-1 S1 E)

end
end

end

Figure 8.9: Queue (concurrent object-oriented version with lock)

• Both concurrent versions of Figure 8.8 and 8.10 are reasonable. Figure 8.8’s
use of a lock is more general, since a lock can be used to make atomic any set
of operations. This version can be written with an object-oriented syntax,
as shown in Figure 8.9. Figure 8.10’s version with exchange is compact but
less general; it is only possible for operations that manipulate a single data
sequence.

8.3.2 Tuple spaces (“Linda”)

Tuple spaces are a popular abstraction for concurrent programming. The first
tuple space abstraction, called Linda, was introduced by David Gelernter in
1985 [59, 30, 31]. This abstraction plays two very different roles. From a theoret-
ical viewpoint, it is one of the first models of concurrent programming. From a
practical viewpoint, it is a useful abstraction for concurrent programs. As such, it
can be added to any language, thus giving a concurrent version of that language
(e.g., C with Linda is called C-Linda). A tuple space abstraction is sometimes
called a coordination model and a programming language that contains a tuple
space abstraction is sometimes called a coordination language. In its basic form,
the abstraction is simple to define. It consists of a multiset TS of tuples with
three basic operations:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.3 Locks 595

fun {NewQueue}
X C={NewCell q(0 X X)}
proc {Insert X}
N S E1 N1 in

{Exchange C q(N S X|E1) q(N1 S E1)}
N1=N+1

end
fun {Delete}
N S1 E N1 X in

{Exchange C q(N X|S1 E) q(N1 S1 E)}
N1=N-1
X

end
in

queue(insert:Insert delete:Delete)
end

Figure 8.10: Queue (concurrent stateful version with exchange)

• {TS write(T)} adds the tuple T to the tuple space.

• {TS read(L T)} waits until the tuple space contains at least one tuple
with label L. It then removes one such tuple and binds it to T.

• {TS readnonblock(L T B)} does not wait, but immediately returns. It
returns with B=false if the tuple space contains no tuple with label L.
Otherwise, it returns with B=true , removes one tuple with label L and
binds it to T.

This slightly simplifies the usual formulation of Linda, in which the read oper-
ation can do pattern matching. This abstraction has two important properties.
The first property is that it provides a content-addressable memory: tuples are
identified only by their labels. The second property is that the readers are decou-
pled from the writers. The abstraction does no communication between readers
and writers other than that defined above.

Example execution

We first create a new tuple space:

TS={New TupleSpace init}

In TS we can read and write any tuples in any order. The final result is always
the same: the reads see the writes in the order they are written. Doing {TS

write(foo(1 2 3))} adds a tuple with label foo and three arguments. The
following code waits until a tuple with label foo exists, and when it does, it
removes and displays it:

thread {Browse {TS read(foo $)}} end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

596 Shared-State Concurrency

fun {NewQueue}
X TS={New TupleSpace init}
proc {Insert X}
N S E1 in

{TS read(q q(N S X|E1))}
{TS write(q(N+1 S E1))}

end
fun {Delete}
N S1 E X in

{TS read(q q(N X|S1 E))}
{TS write(q(N-1 S1 E))}
X

end
in

{TS write(q(0 X X))}
queue(insert:Insert delete:Delete)

end

Figure 8.11: Queue (concurrent version with tuple space)

The following code immediately checks if a tuple with label foo exists:

local T B in {TS readnonblock(foo T B)} {Browse T#B} end

This does not block, so it does not need to be put in its own thread.

Implementing a concurrent queue

We can show yet another implementation of a concurrent queue, using tuple
spaces instead of cells. Figure 8.11 shows how it is done. The tuple space TS

contains a single tuple q(N S E) that represents the state of the queue. The tuple
space is initialized with the tuple q(0 X X) that represents an empty queue. No
locking is needed because the read operation atomically removes the tuple from
the tuple space. This means that the tuple can be considered as a unique token,
which is passed between the tuple space and the queue operations. If there are
two concurrent Insert operations, only one will get the tuple and the other
will wait. This is another example of the token passing technique introduced in
Section 8.2.2.

Implementing tuple spaces

A tuple space can be implemented with a lock, a dictionary, and a concurrent
queue. Figure 8.12 shows a simple implementation in object-oriented style. This
implementation is completely dynamic; at any moment it can read and write
tuples with any labels. The tuples are stored in a dictionary. The key is the
tuple’s label and the entry is a queue of tuples with that label. The capitalized
methods EnsurePresent and Cleanup are private to the TupleSpace class and

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.3 Locks 597

class TupleSpace
prop locking
attr tupledict

meth init tupledict:={NewDictionary} end

meth EnsurePresent(L)
if {Not {Dictionary.member @tupledict L}}
then @tupledict.L:={NewQueue} end

end

meth Cleanup(L)
if {@tupledict.L.size}==0
then {Dictionary.remove @tupledict L} end

end

meth write(Tuple)
lock L={Label Tuple} in

{ self EnsurePresent(L)}
{@tupledict.L.insert Tuple}

end
end

meth read(L ?Tuple)
lock

{ self EnsurePresent(L)}
{@tupledict.L.delete Tuple}
{ self Cleanup(L)}

end
{Wait Tuple}

end

meth readnonblock(L ?Tuple ?B)
lock

{ self EnsurePresent(L)}
if {@tupledict.L.size}>0 then

{@tupledict.L.delete Tuple} B= true
else B=false end
{ self Cleanup(L)}

end
end

end

Figure 8.12: Tuple space (object-oriented version)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

598 Shared-State Concurrency

fun {SimpleLock}
Token={NewCell unit }
proc {Lock P}
Old New in

{Exchange Token Old New}
{Wait Old}
{P}
New=unit

end
in

´ lock ´ (´ lock ´ :Lock)
end

Figure 8.13: Lock (non-reentrant version without exception handling)

fun {CorrectSimpleLock}
Token={NewCell unit }
proc {Lock P}
Old New in

{Exchange Token Old New}
{Wait Old}
try {P} finally New=unit end

end
in

´ lock ´ (´ lock ´ :Lock)
end

Figure 8.14: Lock (non-reentrant version with exception handling)

invisible to users of tuple space objects (see Section 7.3.3). The implementation
does correct memory management: a new entry is added upon the first occurrence
of a particular label; and when the queue is empty, the entry is removed.

The tuple space implementation uses a concurrent stateful queue which is a
slightly extended version of Figure 8.8. We add just one operation, a function
that returns the size of the queue, i.e., the number of elements it contains. Our
queue extends Figure 8.8 like this:

fun {NewQueue}
...
fun {Size}

lock L then @C.1 end
end

in
queue(insert:Insert delete:Delete size:Size)

end

We will extend this queue again for implementing monitors.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.3 Locks 599

fun {NewLock}
Token={NewCell unit }
CurThr={NewCell unit }
proc {Lock P}

if {Thread.this}==@CurThr then
{P}

else Old New in
{Exchange Token Old New}
{Wait Old}
CurThr:={Thread.this}
try {P} finally

CurThr:= unit
New=unit

end
end

end
in

´ lock ´ (´ lock ´ :Lock)
end

Figure 8.15: Lock (reentrant version with exception handling)

8.3.3 Implementing locks

Locks can be defined in the concurrent stateful model by using cells and dataflow
variables. We first show the definition of a simple lock, then a simple lock that
handles exceptions correctly, and finally a thread-reentrant lock. The built-in
locks provided by the system are thread-reentrant locks with the semantics given
here, but they have a more efficient low-level implementation.

A simple lock is a procedure {L P} that takes a zero-argument procedure P

as argument and executes P in a critical section. Any thread that attempts to
enter the lock while there is still one thread inside will suspend. The lock is
called simple because a thread that is inside a critical section cannot enter any
other critical section protected by the same lock. It first has to leave the initial
critical section. Simple locks can be created by the function SimpleLock defined
in Figure 8.13. If multiple threads attempt to access the lock body, then only
one is given access and the others are queued. When a thread leaves the critical
section, access is granted to the next thread in the queue. This uses the token
passing technique of in Section 8.2.2.

But what happens if the lock body {P} raises an exception? The lock of Fig-
ure 8.13 does not work since New will never be bound. We can fix this problem
with a try statement. Figure 8.14 gives a version of the simple lock that han-
dles exceptions. The try 〈stmt〉1 finally 〈stmt〉2 end is syntactic sugar that
ensures 〈stmt〉2 is executed in both the normal and exceptional cases, i.e., an
exception will not prevent the lock from being released.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

600 Shared-State Concurrency

A thread-reentrant lock extends the simple lock to allow the same thread to
enter other critical sections protected by the same lock. It is even possible to
nest critical sections protected by the same lock. Other threads trying to acquire
the lock will queue until P is completed. When the lock is released, it is granted
to the thread standing first in line. Figure 8.15 shows how to define thread-
reentrant locks. This assumes that each thread has a unique identifier T that
is different from the literal unit and that is obtained by calling the procedure
{Thread.this T} . The assignments to CurThr have to be done in exactly the
places shown. What can go wrong if {Wait Old} and CurThr:={Thread.this}

are switched or if CurThr:= unit and New=unit are switched?

8.4 Monitors

Locks are an important tool for building concurrent abstractions in a stateful
model, but they are not sufficient. For example, consider the simple case of a
bounded buffer. A thread may want to put an element in the buffer. It is not
enough to protect the buffer with a lock. What if the buffer is full: the thread
enters and can do nothing! What we really want is a way for the thread to wait
until the buffer is not full, and then continue. This cannot be done with just
locks. It needs a way for threads to coordinate among each other. For example,
a thread that puts an element in the buffer can be notified that the buffer is not
full by another thread which removes an element from the buffer.

The standard way for coordinating threads in a stateful model is by using
monitors. Monitors were introduced by Brinch Hansen [22, 23] and further de-
veloped by Hoare [82]. They continue to be widely used; for example they are
a basic concept in the Java language [111]. A monitor is a lock extended with
program control over how waiting threads enter and exit the lock. This control
makes it possible to use the monitor as a resource that is shared among concur-
rent activities. There are several ways to give this control. Typically, a monitor
has either one set of waiting threads or several queues of waiting threads. The
simplest case is when there is one set; let us consider it first.

The monitor adds a wait and a notify operation to the lock entry and exit
operations. (notify is sometimes called signal.) The wait and notify are only
possible from inside the monitor. When inside a monitor, a thread can explicitly
do a wait; thereupon the thread suspends, is entered in the monitor’s wait set,
and releases the monitor lock. When a thread does a notify, it lets one thread
in the wait set continue. This thread attempts to get the monitor lock again. If
it succeeds, it continues running from where it left off.

We first give an informal definition of monitors. We then program some
examples both with monitors and in the declarative concurrent model. This
will let us compare both approaches. We conclude the section by giving an
implementation of monitors in the shared-state concurrent model.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.4 Monitors 601

Definition

There exist several varieties of monitors, with slightly different semantics. We
first explain the Java version because it is simple and popular. (Section 8.4.4
gives an alternative version.) The following definition is taken from [110]. In
Java, a monitor is always part of an object. It is an object with an internal lock
and wait set. Object methods can be protected by the lock by annotating them
as synchronized. There are three operations to manage the lock: wait, notify,
and notifyAll. These operations can only be called by threads that hold the
lock. They have the following meaning:

• The wait operation does the following:

– The current thread is suspended.

– The thread is placed in the object’s internal wait set.

– The lock for the object is released.

• The notify operation does the following:

– If one exists, an arbitrary thread T is removed from the object’s internal
wait set.

– T proceeds to get the lock, just as any other thread. This means that T

will always suspend for a short time, until the notifying thread releases
the lock.

– T resumes execution at the point it was suspended.

• The notifyAll operation is similar to notify except that it does the above
steps for all threads in the internal wait set. The wait set is then emptied.

For the examples that follow, we suppose that a function NewMonitor exists with
the following specification:

• M={NewMonitor} creates a monitor with operations {M. ´ lock ´ } (monitor
lock procedure), {M.wait} (wait operation), {M.notify} (notify opera-
tion), and {M.notifyAll} (notifyAll operation).

In the same way as for locks, we assume that the monitor lock is thread-reentrant
and handles exceptions correctly. Section 8.4.3 explains how the monitor is im-
plemented.

Monitors were designed for building concurrent ADTs. To make it easier to
build ADTs with monitors, some languages provide them as a linguistic abstrac-
tion. This makes it possible for the compiler to guarantee that the wait and notify
operations are only executed inside the monitor lock. This can also make it easy
for the compiler to ensure safety properties, e.g., that shared variables are only
accessed through the monitor [24].

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

602 Shared-State Concurrency

8.4.1 Bounded buffer

In Chapter 4, we showed how to implement a bounded buffer declaratively in two
ways, with both eager and lazy stream communication. In this section we imple-
ment it with a monitor. We then compare this solution with the two declarative
implementations. The bounded buffer is an ADT with three operations:

• B={New Buffer init(N)} : create a new bounded buffer B of size N.

• {B put(X)} : put the element X in the buffer. If the buffer is full, this will
block until the buffer has room for the element.

• {B get(X)} : remove the element X from the buffer. If the buffer is empty,
this will block until there is at least one element.

The idea of the implementation is simple: the put and get operations will each
wait until the buffer is not full and not empty, respectively. This gives the fol-
lowing partial definition:

class Buffer
attr

buf first last n i

meth init(N)
buf:={NewArray 0 N-1 null}
first:=0 last:=0 n:=N i:=0

end

meth put(X)
... % wait until i<n
% now add an element:
@buf.@last:=X
last:=(@last+1) mod @n
i:=@i+1

end

meth get(X)
... % wait until i>0
% now remove an element:
X=@buf.@first
first:=(@first+1) mod @n
i:=@i-1

end
end

The buffer uses an array of n elements, indexed by first and last . The array
wraps around: after element n− 1 comes element 0. The buffer’s maximum size
is n of which i elements are used. Now let’s code it with a monitor. The naive
solution is the following (where M is a monitor record):

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.4 Monitors 603

meth put(X)
{M. ´ lock ´ proc {$}

if @i>=@n then {M.wait} end
@buf.@last:=X
last:=(@last+1) mod @n
i:=@i+1
{M.notifyAll}

end }
end

That is, if the buffer is full, then {M.wait} simply waits until it is no longer full.
When get(X) removes an element, it does a {M.notifyAll} , which wakes up the
waiting thread. This naive solution is not good enough, since there is no guarantee
that the buffer will not fill up just after the wait. When the thread releases
the monitor lock with {M.wait} , other threads can slip in to add and remove
elements. A correct solution does {M.wait} as often as necessary, checking the
comparison @i>=@neach time. This gives the following code:

meth put(X)
{M. ´ lock ´ proc {$}

if @i>=@n then
{M.wait}
{ self put(X)}

else
@buf.@last:=X
last:=(@last+1) mod @n
i:=@i+1
{M.notifyAll}

end
end }

end

After the wait, this calls the put method again to do the check again. Since the
lock is reentrant, it will let the thread enter again. The check is done inside the
critical section, which eliminates any interference from other threads. Now we can
put the pieces together. Figure 8.16 gives the final solution. The init method
creates the monitor and stores the monitor procedures in object attributes. The
put and get methods use the technique we gave above of waiting in a loop.

Let us compare this version with the declarative concurrent versions of Chap-
ter 4. Figure 4.15 gives the eager version and Figure 4.28 gives the lazy version.
The lazy version is the simplest. Either of the declarative concurrent versions
can be used whenever there is no observable nondeterminism, for example, in
point-to-point connections to connect one writer with one reader. Another case
is when there are multiple readers that all read the same items. The monitor
version can be used when the number of independent writers is more than one or
when the number of independent readers is more than one.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

604 Shared-State Concurrency

class Buffer
attr m buf first last n i

meth init(N)
m:={NewMonitor}
buf:={NewArray 0 N-1 null}
n:=N i:=0 first:=0 last:=0

end

meth put(X)
{@m.́ lock ´ proc {$}

if @i>=@n then
{@m.wait}
{ self put(X)}

else
@buf.@last:=X
last:=(@last+1) mod @n
i:=@i+1
{@m.notifyAll}

end
end }

end

meth get(X)
{@m.́ lock ´ proc {$}

if @i==0 then
{@m.wait}
{ self get(X)}

else
X=@buf.@first
first:=(@first+1) mod @n
i:=@i-1
{@m.notifyAll}

end
end }

end
end

Figure 8.16: Bounded buffer (monitor version)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.4 Monitors 605

8.4.2 Programming with monitors

The technique we used in the bounded buffer is a general one for programming
with monitors. Let us explain it in the general setting. For simplicity, assume that
we are defining a concurrent ADT completely in a single class. The idea is that
each method is a critical section that is guarded, i.e., there is a boolean condition
that must be true for a thread to enter the method body. If the condition is false,
then the thread waits until it becomes true. A guarded method is also called a
conditional critical section.

Guarded methods are implemented using the wait and notifyAll operations.
Here is an example in a simple pseudocode:

meth methHead
lock

while not 〈expr〉 do wait;
〈stmt〉
notifyAll;

end
end

In this example, 〈expr〉 is the guard and 〈stmt〉 is the guarded body. When the
method is called, the thread enters the lock and waits for the condition in a
while loop. If the condition is true then it immediately executes the body. If
the condition is false then it waits. When the wait continues then the loop is
repeated, i.e., the condition is checked again. This guarantees that the condition
is true when the body is executed. Just before exiting, the method notifies all
other waiting threads that they might be able to continue. They will all wake up
and try to enter the monitor lock to test their condition. The first one that finds
a true condition is able to continue. The others will wait again.

8.4.3 Implementing monitors

Let us show how to implement monitors in the shared-state concurrent model.
This gives them a precise semantics. Figure 8.19 shows the implementation.
It is thread-reentrant and correctly handles exceptions. It implements mutual
exclusion using the get-release lock of Figure 8.18. It implements the wait set
using the extended queue of Figure 8.17. Implementing the wait set with a queue
avoids starvation because it gives the longest-waiting thread the first chance to
enter the monitor.

The implementation only works if M.wait is always executed inside an active
lock. To be practical, the implementation should be extended to check this at
run-time. We leave this simple extension up to the reader. Another approach is to
embed the implementation inside a linguistic abstraction that statically enforces
this.

When writing concurrent programs in the shared-state concurrent model, it is
usually simpler to use the dataflow approach rather than monitors. The Mozart

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

606 Shared-State Concurrency

fun {NewQueue}
...
fun {Size}

lock L then @C.1 end
end
fun {DeleteAll}

lock L then
X q(_ S E)=@C in

C:=q(0 X X)
E=nil S

end
end
fun {DeleteNonBlock}

lock L then
if {Size}>0 then [{Delete}] else nil end

end
end

in
queue(insert:Insert delete:Delete size:Size

deleteAll:DeleteAll deleteNonBlock:DeleteNonBlock)
end

Figure 8.17: Queue (extended concurrent stateful version)

implementation therefore does no special optimizations to improve monitor per-
formance. However, the implementation of Figure 8.19 can be optimized in many
ways, which is important if monitor operations are frequent.

Extended concurrent queue

For the monitor implementation, we extend the concurrent queue of Figure 8.8
with the three operations Size , DeleteAll , and DeleteNonBlock . This gives
the definition of Figure 8.17.

This queue is a good example of why reentrant locking is useful. Just look
at the definition of DeleteNonBlock : it calls Size and Delete . This will only
work if the lock is reentrant.

Reentrant get-release lock

For the monitor implementation, we extend the reentrant lock of Figure 8.15 to
a get-release lock. This exports the actions of getting and releasing the lock as
separate operations, Get and Release . This gives the definition of Figure 8.18.
The operations have to be separate because they are used in both LockM and
WaitM .

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.4 Monitors 607

fun {NewGRLock}
Token1={NewCell unit }
Token2={NewCell unit }
CurThr={NewCell unit }

proc {GetLock}
if {Thread.this}\=@CurThr then Old New in

{Exchange Token1 Old New}
{Wait Old}
Token2:=New
CurThr:={Thread.this}

end
end

proc {ReleaseLock}
CurThr:= unit
unit =@Token2

end
in

´ lock ´ (get:GetLock release:ReleaseLock)
end

Figure 8.18: Lock (reentrant get-release version)

8.4.4 Another semantics for monitors

In the monitor concept we introduced above, notify has just one effect: it causes
one waiting thread to leave the wait set. This thread then tries to obtain the
monitor lock. The notifying thread does not immediately release the monitor
lock. When it does, the notified thread competes with other threads for the lock.
This means that an assertion satisfied at the time of the notify might no longer
be satisfied when the notified thread enters the lock. This is why an entering
thread has to check the condition again.

There is a variation that is both more efficient and easier to reason about. It
is for notify to do two operations atomically: it first causes one waiting thread
to leave the wait set (as before) and it then immediately passes the monitor lock
to that thread. The notifying thread thereby exits from the monitor. This has
the advantage that an assertion satisfied at the time of the notify will still be true
when the notified thread continues. The notifyAll operation no longer makes
any sense in this variation, so it is left out.

Languages that implement monitors this way usually allow to declare several
wait sets. A wait set is seen by the programmer as an instance of a special
ADT called a condition. The programmer can create new instances of conditions,
which are called condition variables. Each condition variable c has two operations,
c.wait and c.notify.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

608 Shared-State Concurrency

fun {NewMonitor}
Q={NewQueue}
L={NewGRLock}

proc {LockM P}
{L.get} try {P} finally {L.release} end

end

proc {WaitM}
X in

{Q.insert X} {L.release} {Wait X} {L.get}
end

proc {NotifyM}
U={Q.deleteNonBlock} in

case U of [X] then X=unit else skip end
end

proc {NotifyAllM}
L={Q.deleteAll} in

for X in L do X=unit end
end

in
monitor(´ lock ´ :LockM wait:WaitM notify:NotifyM

notifyAll:NotifyAllM)
end

Figure 8.19: Monitor implementation

We can reimplement the bounded buffer using this variation. The new bound-
ed buffer has two conditions, which we can call nonempty and nonfull. The put

method waits for a nonfull and then signals a nonempty. The get method waits
for a nonempty and then signals a nonfull. This is more efficient than the pre-
vious implementation because it is more selective. Instead of waking up all the
monitor’s waiting threads with notifyAll, only one thread is woken up, in the
right wait set. We leave the actual coding to an exercise.

8.5 Transactions

Transactions were introduced as a basic concept for the management of large
shared databases. Ideally, databases must sustain a high rate of concurrent up-
dates while keeping the data coherent and surviving system crashes. This is not
an easy problem to solve. To see why, consider a database represented as a large
array of cells. Many clients wish to update the database concurrently. A naive
implementation is to use a single lock to protect the whole array. This solution is

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.5 Transactions 609

impractical for many reasons. One problem is that a client that takes one minute
to perform an operation will prevent any other operation from taking place during
that time. This problem can be solved with transactions.

The term “transaction” has acquired a fairly precise meaning: it is any oper-
ation that satisfies the four ACID properties [16, 64]. ACID is an acronym:

• A stands for atomic: no intermediate states of a transaction’s execution are
observable. It is as if the transaction happened instantaneously or did not
happen at all. The transaction can complete normally (it commits) or it
can be canceled (it aborts).

• C stands for consistent: observable state changes respect the system in-
variants. Consistency is closely related to atomicity. The difference is that
consistency is the responsibility of the programmer, whereas atomicity is
the responsibility of the implementation of the transaction system.

• I stands for isolation: several transactions can execute concurrently without
interfering with each other. They execute as if they were sequential. This
property is also called serializability. It means that the transactions have
an interleaving semantics, just like the underlying computation model. We
have “lifted” the interleaving semantics up from the model to the level of
the transactions.

• D stands for durability: observable state changes survive across system shut-
downs. Durability is often called persistence. Implementing durability re-
quires a stable storage (such as a disk) that stores the observable state
changes.

This chapter only gives a brief introduction to transaction systems. The classic
reference on transactions is Bernstein et al [16]. This book is clear and precise
and introduces the theory of transactions with just the right amount of formalism
to aid intuition. Unfortunately, this book is out of print. Good libraries will often
have a copy. Another good book on transactions is Gray & Reuter [64]. An exten-
sive and mathematically rigorous treatment is given by Weikum & Vossen [204].

Lightweight (ACI) transactions

Outside of database applications all four ACID properties are not always needed.
This section uses the term “transaction” in a narrower sense that is closer to the
needs of general-purpose concurrent programming. Whenever there is a risk of
confusion, we will call it a light transaction. A lightweight transaction is simply
an abortable atomic action. It has all ACID properties except for D (durability).
A lightweight transaction can commit or abort. The abort can be due to a cause
internal to the program (e.g., because of conflicting access to shared data) or
external to the program (e.g., due to failure of part of the system, like a disk or
the network).

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

610 Shared-State Concurrency

Motivations

We saw that one motivation for transactions was to increase the throughput of
concurrent accesses to a database. Let us look at some other motivations. A sec-
ond motivation is concurrent programming with exceptions. Most routines have
two possible ways to exit: either they exit normally or they raise an exception.
Usually the routine behaves atomically when it exits normally, i.e., the caller sees
the initial state and the result but nothing in between. When there is an excep-
tion this is not the case. The routine might have put part of the system in an
inconsistent state. How can we avoid this undesirable situation? There are two
solutions:

• The caller can clean up the called routine’s mess. This means that the
called routine has to be carefully written so that its mess is always limited
in extent.

• The routine can be inside a transaction. This solution is harder to im-
plement, but can make the program much simpler. Raising an exception
corresponds to aborting the transaction.

A third motivation is fault tolerance. Lightweight transactions are important for
writing fault-tolerant applications. When a fault occurs, a fault-tolerant applica-
tion has to take three steps: (1) detect the fault, (2) contain the fault in a limited
part of the application, and (3) handle the fault. Lightweight transactions are a
good mechanism for fault confinement.

A fourth motivation is resource management. Lightweight transactions allow
to acquire multiple resources without causing a concurrent application to stop
because of an undesirable situation called deadlock. This situation is explained
below.

Kernel language viewpoint Let us make a brief detour and examine trans-
actions from the viewpoint of computation models. The transactional solution
satisfies one of our criteria for adding a concept to the computation model, namely
that programs in the extended model are simpler. But what exactly is the con-
cept to be added? This is still an open research subject. In our view, it is a very
important one. Some day, the solution to this question will be an important part
of all general-purpose programming languages. In this section we do not solve
this problem. We will implement transactions as an abstraction in the concurrent
stateful model without changing the model.

8.5.1 Concurrency control

Consider a large database accessed by many clients at the same time. What does
this imply for transactions? It means that they are concurrent yet still satisfy
serializability. The implementation should allow concurrent transactions and yet

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.5 Transactions 611

it has to make sure that they are still serializable. There is a strong tension
between these two requirements. They are not easy to satisfy simultaneously.
The design of transaction systems that satisfy both has led to a rich theory and
many clever algorithms [16, 64].

Concurrency control is the set of techniques used to build and program con-
current systems with transactional properties. We introduce these techniques and
the concepts they are based on and we show one practical algorithm. Technically
speaking, our algorithm does optimistic concurrency control with strict two-phase
locking and deadlock avoidance. We explain what all these terms mean and why
they are important. Our algorithm is interesting because it is both practical and
simple. A complete working implementation takes just two pages of code.

Locks and timestamps

The two most widely-used approaches to concurrency control are locks and time-
stamps:

• Lock-based concurrency control. Each stateful entity has a lock that controls
access to the entity. For example, a cell might have a lock that permits only
one transaction to use it at a time. In order to use a cell, the transaction
must have a lock on it. Locks are important to enforce serializability. This
is a safety property, i.e., an assertion that is always true during execution.
A safety property is simply a system invariant. In general, locks allow to
restrict the system’s behavior so that it is safe.

• Timestamp-based concurrency control. Each transaction is given a time-
stamp that gives it a priority. The timestamps are taken from an ordered
set, something like the numbered tickets used in shops to ensure that cus-
tomers are served in order. Timestamps are important to ensure that exe-
cution makes progress. For example, that each transaction will eventually
commit or abort. This is a liveness property, i.e., an assertion that always
eventually becomes true.

Safety and liveness properties describe how a system behaves as a function of
time. To reason with these properties, it is important to be careful about the
exact meanings of the terms “is always true” and “eventually becomes true”.
These terms are relative to the current execution step. A property is always true
if it is true at every execution step starting from the current step. A property
eventually becomes true if there exists at least one execution step in the future
where it is true. We can combine always and eventually to make more complicated
properties. For example, a property that always eventually becomes true means
that at every step starting from the current step it will eventually become true.
The property “an active transaction will eventually abort or commit” is of this
type. This style of reasoning can be given a formal syntax and semantics. This
results in a variety of logic called temporal logic.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

612 Shared-State Concurrency

Optimistic and pessimistic scheduling

There are many algorithms for concurrency control, which vary on different axes.
One of these axes is the degree of optimism or pessimism of the algorithm. Let
us introduce this with two examples taken from real life. Both examples concern
traveling, by airplane or by train.

Airlines often overbook flights, that is, sell more tickets than there is room
on the flight. At boarding time, there have usually been enough cancellations
that this is not a problem (all passengers have a seat). But occasionally some
passengers have no seat, and these have to be accommodated in some way (e.g.,
by booking them on a later flight and reimbursing their discomfort). This is
an example of optimistic scheduling: a passenger requesting a ticket is given the
ticket right away even if the flight is already completely booked, as long as the
overbooking is less than some ratio. Occasional problems are tolerated since
overbooking allows to increase the average number of filled seats on a flight and
because problems are easily repaired.

Railways are careful to ensure that there are never two trains traveling towards
each other on the same track segment. A train is only allowed to enter a track
segment if at that moment there is no other train on the same segment. Protocols
and signaling mechanisms have been devised to ensure this. This is an example
of pessimistic scheduling: a train requesting to enter a segment may have to wait
until the segment is known to be clear. Unlike the case of overbookings, accidents
are not tolerated because they are extremely costly and usually irreparable in
terms of people’s lives lost.

Let us see how these approaches apply to transactions. A transaction requests
a lock on a cell. This request is given to a scheduler. The scheduler decides when
and if the request should be fulfilled. It has three possible responses: to satisfy
the request immediately, to reject the request (causing a transaction abort), or to
postpone its decision. An optimistic scheduler tends to give the lock right away,
even if this might cause problems later on (deadlocks and livelocks, see below).
A pessimistic scheduler tends to delay giving the lock, until it is sure that no
problems can occur. Depending on how often transactions work on shared data,
an optimistic or pessimistic scheduler might be more appropriate. For example,
if transactions mostly work on independent data, then an optimistic scheduler
may give higher performance. If transactions often work on shared data, then a
pessimistic scheduler may give higher performance. The algorithm we give below
is an optimistic one; it sometimes has to repair mistakes due to past choices.

Two-phase locking

Two-phase locking is the most popular technique for doing locking. It is used
by almost all commercial transaction processing systems. It can be proved that
doing two-phase locking guarantees that transactions are serializable. In two-
phase locking a transaction has two phases: a growing phase, in which it acquires
locks but does not release them, and a shrinking phase, in which it releases locks

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.5 Transactions 613

but does not acquire them. A transaction is not allowed to release a lock and
then acquire another lock afterwards. This restriction means that a transaction
might hold a lock longer than it needs to. Experience shows that this is not a
serious problem.

A popular refinement of two-phase locking used by many systems is called
strict two-phase locking. In this refinement, all locks are released simultaneously
at the end of the transaction, after it commits or aborts. This avoids a problem
called cascading abort. Consider the following scenario. Assume that standard
two-phase locking is used with two transactions T1 and T2 that share cell C. First
T1 locks C and changes C’s content. Then T1 releases the lock in its shrinking
phase but continues to be active. Finally T2 locks C, does a calculation with
C, and commits. What happens if T1, which is still active, now aborts? If T1
aborts then T2 has to abort too, since it has read a value of C modified by T1.
T2 could be linked in a similar way to another transaction T3, and so forth. If
T1 aborts then all the others have to abort as well, in cascade, even though they
already committed. If locks are released only after transactions commit or abort
then this problem does not occur.

8.5.2 A simple transaction manager

Let us design a simple transaction manager. It will do optimistic concurrency
control with strict two-phase locking. We first design the algorithm using stepwise
refinement. We then show how to implement a transaction manager that is based
on this algorithm.

A naive algorithm

We start the design with the following simple idea. Whenever a transaction
requests the lock of an unlocked cell, let it acquire the lock immediately without
any further conditions. If the cell is already locked, then let the transaction wait
until it becomes unlocked. When a transaction commits or aborts, then it releases
all its locks. This algorithm is optimistic because it assumes that getting the lock
will not give problems later on. If problems arise (see next paragraph!) then the
algorithm has to fix them.

Deadlock

Our naive algorithm has a major problem: it suffers from deadlocks. Consider
two concurrent transactions T1 and T2 where each one uses cells C1 and C2. Let
transaction T1 use C1 and C2, in that order, and transaction T2 use C2 and C1,
in the reverse order. Because of concurrency, it can happen that T1 has C1’s
lock and T2 has C2’s lock. When each transaction tries to acquire the other lock
it needs, it waits. Both transactions will therefore wait indefinitely. This kind
of situation, in which active entities (transactions) wait for resources (cells) in a
cycle, such that no entity can continue, is called a deadlock.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

614 Shared-State Concurrency

How can we ensure that our system never suffers from the consequences of
deadlock? Like for ailments in general, there are two basic approaches: prevention
and cure. The goal of deadlock prevention (also called avoidance) is to prevent a
deadlock from ever happening. A transaction is prevented from locking an object
that might lead to a deadlock. The goal of deadlock cure (also called detection &
resolution) is to detect when a deadlock occurs and to take some action to reverse
its effects.

Both approaches are based on a concept called the wait-for graph. This is a
directed graph that has nodes for active entities (e.g., transactions) and resources
(e.g., cells). There is an edge from each active entity to the resource it is waiting
for (if any) but does not yet have. There is an edge from each resource to
the active entity (if any) that has it. A deadlock corresponds to a cycle in the
wait-for graph. Deadlock avoidance forbids adding an edge that would make a
cycle. Deadlock detection detects the existence of a cycle and then removes one
of its edges. The algorithm we give below does deadlock avoidance. It keeps a
transaction from getting a lock that might result in a deadlock.

The correct algorithm

We can avoid deadlocks in the naive algorithm by giving earlier transactions high-
er priority than later transactions. The basic idea is simple. When a transaction
tries to acquire a lock, it compares its priority with the priority of the transaction
already holding the lock. If the latter has lower priority, i.e., it is a more recent
transaction, then it is restarted and the former gets the lock. Let us define an
algorithm based on this idea. We assume that transactions perform operations on
cells and that each cell comes with a priority queue of waiting transactions, i.e.,
the transactions wait in order of their priorities. We use timestamps to implement
the priorities. Here is the complete algorithm:

• A new transaction is given a priority that is lower than all active transac-
tions.

• When a transaction tries to acquire a lock on a cell, then it does one of the
following:

– If the cell is currently unlocked, then the transaction immediately takes
the lock and continues.

– If the cell is already locked by the transaction, then the transaction
just continues.

– If the cell is locked by a transaction with higher priority, then the
current transaction waits, i.e., it enqueues itself on the cell’s queue.

– If the cell is locked by a transaction with lower priority, then restart
the latter and give the lock to the transaction with higher priority.
A restart consists of two actions: first to abort the transaction and
second to start it again with the same priority.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.5 Transactions 615

Done

already taken
Ask for lock

Ask for & obtain lock

Waiting

Running

Restart

Probation
Obtain lock

Done

Ask for lock

needs one of my locks
High priority transaction

High priority transaction
needs one of my locks

Start
Commit

or
Abort

Figure 8.20: State diagram of one incarnation of a transaction

• When a transaction commits, then it releases all its locks and dequeues one
waiting transaction per released lock (if there is one waiting).

• When a transaction aborts (because it raises an exception or explicitly does
an abort operation) then it unlocks all its locked cells, restores their states,
and dequeues one waiting transaction per unlocked cell (if there is one
waiting).

Restarting at a well-defined point

There is a small problem with the above algorithm. It terminates running trans-
actions at an arbitrary point during their execution. This can give problems. It
can lead to inconsistencies in the run-time data structures of the transaction.
It can lead to complications in the implementation of the transaction manager
itself.

A simple solution to these problems is to terminate the transaction at a well-
defined point in its execution. A well-defined point is, for example, the instant
when a transaction asks the transaction manager for a lock. Let us refine the
above algorithm to restart only at such points. Again, we start with a simple
basic idea: instead of restarting a low priority transaction, we mark it. Later,
when it tries to acquire a lock, the transaction manager notices that it is marked
and restarts it. To implement this idea, we extend the algorithm as follows:

• Transactions can be in one of three states (the marks):

– running : this is the unmarked state. The transaction is running freely
and is able to acquire locks as before.

– probation : this is the marked state. The transaction still runs freely,
but the next time it tries to acquire a lock, it will be restarted. If it
asks for no more locks, it will eventually commit.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

616 Shared-State Concurrency

– waiting_on(C) : this means that the transaction is waiting for the
lock on cell C. It will obtain the lock when it becomes available. How-
ever, if a high priority transaction wants a lock held by this one while
it is waiting, it will be restarted.

Figure 8.20 gives the state diagram of one incarnation of a transaction
according to this scheme. By incarnation we mean part of the lifetime of
a transaction, from its initial start or a restart until it commits, aborts, or
again restarts.

• When a transaction tries to acquire a lock, then it checks its state before
attempting to acquire locks. If it is in the state probation then it is
restarted immediately. This is fine, since the transaction is at a well-defined
point.

• When a transaction tries to acquire a lock and the cell is locked by a trans-
action with lower priority, then do the following. Enqueue the high priority
transaction and take action depending on the state of the low priority trans-
action:

– running : change the state to probation and continue.

– probation : do nothing.

– waiting_on(C) : remove the low priority transaction from the queue
it is waiting on and restart it immediately. This is fine, since it is at a
well-defined point.

• When a transaction is enqueued on a cell C, change its state to waiting_on(C) .
When a transaction is dequeued, change its state to running .

8.5.3 Transactions on cells

Let us define an ADT for doing transactions on cells that uses the algorithm of
the previous section.3 We define the ADT as follows:

• {NewTrans ?Trans ?NewCellT} creates a new transaction context and
returns two operations: Trans for creating transactions and NewCellT for
creating new cells.

• A new cell is created by calling NewCellT in the same way as with the
standard NewCell :

{NewCellT X C}

3A similar ADT can be defined for objects, but the implementation is a little more compli-
cated since we have to take into account classes and methods. For simplicity we will therefore
limit ourselves to cells.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.5 Transactions 617

This creates a new cell in the transaction context and binds it to C The cell
can only be used inside transactions of this context. The initial value of the
cell is X.

• A new transaction is created by calling the function Trans as follows:

{Trans fun {$ T} 〈expr〉 end B}

The sequential expression 〈expr〉 can interact with its environment in only
the following ways: it can read values (including procedures and functions)
and it can perform operations on cells created with NewCellT . The Trans

call executes 〈expr〉 in a transactional manner and completes when 〈expr〉
completes. If 〈expr〉 raises an exception then the transaction will abort and
raise the same exception. If the transaction commits, then it has the same
effect as an atomic execution of 〈expr〉 and it returns the same result. If the
transaction aborts, then it is as if 〈expr〉 were not executed at all (all its
state changes are undone). B is bound to commit or abort , respectively,
depending on whether the transaction commits or aborts.

• There are four operations that can be performed inside 〈expr〉:

– T.access , T.assign , and T.exchange have the same semantics as
the standard three cell operations. They must only use cells created
by NewCellT .

– T.abort is a zero-argument procedure that when called causes the
transaction to abort immediately.

• There are only two ways a transaction can abort: either it raises an excep-
tion or it calls T.abort . In all other cases, the transaction will eventually
commit.

An example

Let us first create a new transaction environment:

declare Trans NewCellT in
{NewTrans Trans NewCellT}

We first define two cells in this environment:

C1={NewCellT 0}
C2={NewCellT 0}

Now let us increment C1 and decrement C2 in the same transaction:

{Trans proc {$ T _}
{T.assign C1 {T.access C1}+1}
{T.assign C2 {T.access C2}-1}

end _ _}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

