
618 Shared-State Concurrency

(We use procedure syntax since we are not interested in the output.) We can
repeat this transaction several times in different threads. Because transactions
are atomic, we are sure that @C1+ @C2= 0 will always be true. It is an invariant
of our system. This would not be the case if the increment and decrement were
executed outside a transaction. To read the contents of C1 and C2, we have to
use another transaction:

{Browse {Trans fun {$ T} {T.access C1}#{T.access C2} end _}}

Another example

The previous example does not show the real advantages of transactions. The
same result could have been achieved with locks. Our transaction ADT has two
advantages with respect to locks: aborting causes the original cell states to be
restored and the locks can be requested in any order without leading to deadlock.
Let us give a more sophisticated example that exploits these two advantages. We
will create a tuple with 100 cells and do transactional calculations with it. We
start by creating and initializing the tuple:

D={MakeTuple db 100}
for I in 1..100 do D.I={NewCellT I} end

(We use a tuple of cells instead of an array because our transaction ADT only
handles cells.) We now define two transactions, Mix and Sum. Sumcalculates the
sum of all cell contents. Mix “mixes up” the cell contents in random fashion but
keeps the total sum unchanged. Here is the definition of Mix :

fun {Rand} {OS.rand} mod 100 + 1 end
proc {Mix} {Trans

proc {$ T _}
I={Rand} J={Rand} K={Rand}
A={T.access D.I} B={T.access D.J} C={T.access D.K}

in
{T.assign D.I A+B-C}
{T.assign D.J A-B+C}
if I==J orelse I==K orelse J==K then {T.abort} end
{T.assign D.K ˜A+B+C}

end _ _}
end

The random number generator Rand is implemented with the OS module. The
mix-up function replaces the contents a, b, c of three randomly-picked cells by
a + b − c, a − b + c, and −a + b + c. To guarantee that three different cells are
picked, Mix aborts if any two are the same. The abort can be done at any point
inside the transaction. Here is the definition of Sum:

S={NewCellT 0}
fun {Sum}

{Trans
fun {$ T} {T.assign S 0}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.5 Transactions 619

(active object)

TM

T

T

Sync=ok

abort(T)

savestate(T C ?Sync)

commit(T)

getlock(T C ?Sync)

Sync=ok
Sync=halt

..

.

Sequential
transactions

Asynchronous messages manager
Transaction

Figure 8.21: Architecture of the transaction system

for I in 1..100 do
{T.assign S {T.access S}+{T.access D.I}} end

{T.access S}
end _}

end

Sumuses the cell S to hold the sum. Note that Sum is a big transaction since it
simultaneously locks all cells in the tuple. Now we can do some calculations:

{Browse {Sum}} % Displays 5050
for I in 1..1000 do thread {Mix} end end
{Browse {Sum}} % Still displays 5050

5050 is the sum of the integers from 1 to 100. You can check that the values of
individual cells are well and truly mixed:

{Browse {Trans fun {$ T} {T.access D.1}#{T.access D.2} end _}}

This initially displays 1#2 , but will subsequently display very different values.

8.5.4 Implementing transactions on cells

Let us show how to build a transaction system that implements our optimistic
two-phase locking algorithm. The implementation consists of a transaction man-
ager and a set of running transactions. (Transaction managers come in many
varieties and are sometimes called transaction processing monitors [64].) The
transaction manager and the running transactions each execute in its own thread.
This allows terminating a running transaction without affecting the transaction

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

620 Shared-State Concurrency

manager. A running thread sends four kinds of messages to the transaction man-
ager: to get a lock (getlock), to save a cell’s state (savestate), to commit
(commit), and to abort (abort). Figure 8.21 shows the architecture.

The transaction manager is always active and accepts commands from the
running transactions’ threads. When a transaction is restarted, it restarts in a
new thread. It keeps the same timestamp, though. We implement the transaction
manager as an active object using the NewActive function of Section 7.8. The
active object has two internal methods, Unlockall and Trans , and five external
methods, newtrans , getlock , savestate , commit , and abort . Figures 8.22
and 8.23 show the implementation of the transaction system. Together with
NewActive and the priority queue, this is a complete working implementation.
Each active transaction is represented by a record with five fields:

• stamp : This is the transaction’s timestamp, a unique integer that identifies
the transaction and its priority. This number is incremented for successive
transactions. High priority therefore means a small timestamp.

• save : This is a dictionary indexed by cell name (see below) that contains
entries of the form save(cell:C state:S) , where C is a cell record (as
represented below) and S is the cell’s original state.

• body : This is the function fun {$ T} 〈expr〉 end that represents the trans-
action body.

• state : This is a cell containing running , probation , or waiting_on(C) .
If probation , it means that the transaction will be restarted the next time
it tries to obtain a lock. If waiting_on(C) , it means that the transaction
will be restarted immediately if a higher priority transaction needs C.

• result : This is a dataflow variable that will be bound to commit(Res) ,
abort(Exc) , or abort when the transaction completes.

Each cell is represented by a record with four fields:

• name: This is a name value that is the cell’s unique identifier.

• owner : This is either unit , if no transaction is currently locking the cell,
or the transaction record if a transaction is locking the cell.

• queue : This is a priority queue containing pairs of the form Sync#T , where
T is a transaction record and Sync is the synchronization variable on which
the transaction is currently blocked. The priority is the transaction’s time-
stamp. Sync will always eventually be bound by the transaction manager
to ok or halt .

• state : This is a cell that contains the transactional cell’s content.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.5 Transactions 621

class TMClass
attr timestamp tm
meth init(TM) timestamp:=0 tm:=TM end

meth Unlockall(T RestoreFlag)
for save(cell:C state:S) in {Dictionary.items T.save} do

(C.owner):= unit
if RestoreFlag then (C.state):=S end
if {Not {C.queue.isEmpty}} then
Sync2#T2={C.queue.dequeue} in

(T2.state):=running
(C.owner):=T2 Sync2=ok

end
end

end

meth Trans(P ?R TS) /* See next figure */ end
meth getlock(T C ?Sync) /* See next figure */ end

meth newtrans(P ?R)
timestamp:=@timestamp+1 { self Trans(P R @timestamp)}

end
meth savestate(T C ?Sync)

if {Not {Dictionary.member T.save C.name}} then
(T.save).(C.name):=save(cell:C state:@(C.state))

end Sync=ok
end
meth commit(T) { self Unlockall(T false)} end
meth abort(T) { self Unlockall(T true)} end

end

proc {NewTrans ?Trans ?NewCellT}
TM={NewActive TMClass init(TM)} in

fun {Trans P ?B} R in
{TM newtrans(P R)}
case R of abort then B=abort unit
[] abort(Exc) then B=abort raise Exc end
[] commit(Res) then B=commit Res end

end
fun {NewCellT X}

cell(name:{NewName} owner:{NewCell unit }
queue:{NewPrioQueue} state:{NewCell X})

end
end

Figure 8.22: Implementation of the transaction system (part 1)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

622 Shared-State Concurrency

meth Trans(P ?R TS)
Halt={NewName}
T=trans(stamp:TS save:{NewDictionary} body:P

state:{NewCell running} result:R)
proc {ExcT C X Y} S1 S2 in

{@tm getlock(T C S1)}
if S1==halt then raise Halt end end
{@tm savestate(T C S2)} {Wait S2}
{Exchange C.state X Y}

end
proc {AccT C ?X} {ExcT C X X} end
proc {AssT C X} {ExcT C _ X} end
proc {AboT} {@tm abort(T)} R=abort raise Halt end end

in
thread try Res={T.body t(access:AccT assign:AssT

exchange:ExcT abort:AboT)}
in {@tm commit(T)} R=commit(Res)
catch E then

if E\=Halt then {@tm abort(T)} R=abort(E) end
end end

end

meth getlock(T C ?Sync)
if @(T.state)==probation then

{ self Unlockall(T true)}
{ self Trans(T.body T.result T.stamp)} Sync=halt

elseif @(C.owner)== unit then
(C.owner):=T Sync=ok

elseif T.stamp==@(C.owner).stamp then
Sync=ok

else /* T.stamp\=@(C.owner).stamp */ T2=@(C.owner) in
{C.queue.enqueue Sync#T T.stamp}
(T.state):=waiting_on(C)
if T.stamp<T2.stamp then

case @(T2.state) of waiting_on(C2) then
Sync2#_={C2.queue.delete T2.stamp} in

{ self Unlockall(T2 true)}
{ self Trans(T2.body T2.result T2.stamp)}
Sync2=halt

[] running then
(T2.state):=probation

[] probation then skip end
end

end
end

Figure 8.23: Implementation of the transaction system (part 2)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.5 Transactions 623

When a transaction T does an exchange operation on cell C, it executes the
ExcT procedure defined in Trans . This first sends getlock(T C Sync1) to the
transaction manager to request a lock on the cell. The transaction manager replies
with Sync1=ok if the transaction successfully gets the lock and Sync1=halt if
the current thread should be terminated. In the latter case, getlock ensures
that the transaction is restarted. If the transaction gets the lock, then it calls
savestate(T C Sync2) to save the original cell state.

Priority queue

The transaction manager uses priority queues to make sure that high priority
transactions get the first chance to lock cells. A priority queue is a queue whose
entries are always ordered according to some priority. In our queue, the priorities
are integers and the lowest value has the highest priority. We define the ADT as
follows:

• Q={NewPrioQueue} creates an empty priority queue.

• {Q.enqueue X P} inserts X with priority P, where P is an integer.

• X={Q.dequeue} returns the entry with the smallest integer value and re-
moves it from the queue.

• X={Q.delete P} returns the entry with priority P and removes it from the
queue.

• B={Q.isEmpty} returns true or false depending on whether Q is empty or
not.

Figure 8.24 shows a simple implementation of the priority queue. The priority
queue is represented internally as a cell containing a list of pairs pair(X P) ,
which are ordered according to increasing P. The dequeue operation executes in
O(1) time. The enqueue and delete operations execute in O(s) time where s
is the size of the queue. More sophisticated implementations are possible with
better time complexities.

8.5.5 More on transactions

We have just scratched the surface of transaction processing. Let us finish by
mentioning some of the most useful extensions [64]:

• Durability. We have not shown how to make a state change persistent.
This is done by putting state changes on stable storage, such as a disk.
Techniques for doing this are carefully designed to maintain atomicity, no
matter at what instant in time a system crash happens.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

624 Shared-State Concurrency

fun {NewPrioQueue}
Q={NewCell nil}
proc {Enqueue X Prio}

fun {InsertLoop L}
case L of pair(Y P)|L2 then

if Prio<P then pair(X Prio)|L
else pair(Y P)|{InsertLoop L2} end

[] nil then [pair(X Prio)] end
end

in Q:={InsertLoop @Q} end

fun {Dequeue}
pair(Y _)|L2=@Q

in
Q:=L2 Y

end

fun {Delete Prio}
fun {DeleteLoop L}

case L of pair(Y P)|L2 then
if P==Prio then X=Y L2
else pair(Y P)|{DeleteLoop L2} end

[] nil then nil end
end X

in
Q:={DeleteLoop @Q}
X

end

fun {IsEmpty} @Q==nil end
in

queue(enqueue:Enqueue dequeue:Dequeue
delete:Delete isEmpty:IsEmpty)

end

Figure 8.24: Priority queue

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.6 The Java language (concurrent part) 625

• Nested transactions. It often happens that we have a long-lived transaction
that contains a series of smaller transactions. For example, a complex bank
transaction might consist of a large series of updates to many accounts.
Each of these updates is a transaction. The series itself should also be a
transaction: if something goes wrong in the middle, it is canceled. There
is a strong relationship between nested transactions, encapsulation, and
modularity.

• Distributed transactions. It often happens that a database is spread over
several physical sites, either for performance or organizational reasons. We
would still like to perform transactions on the database.

8.6 The Java language (concurrent part)

The introduction of Section 7.7 only talked about the sequential part of Java.
We now extend this to the concurrent part. Concurrent programming in Java is
supported by two concepts: threads and monitors. Java is designed for shared-
state concurrency. Threads are too heavyweight to support an active object
approach efficiently. Monitors have the semantics of Section 8.4. Monitors are
lightweight constructs that are associated to individual objects.

Each program starts with one thread, the one that executes main. New threads
can be created in two ways, by instantiating a subclass of the Thread class or by
implementing the Runnable interface. By default, the program terminates when
all its threads terminate. Since threads tend to be heavyweight in current Ja-
va implementations, the programmer is encouraged not to create many of them.
Using the Thread class gives more control, but might be overkill for some appli-
cations. Using the Runnable interface is lighter. Both techniques assume that
there is a method run:

public void run();

that defines the thread’s body. The Runnable interface consists of just this single
method.

Threads interact by means of shared objects. To control the interaction, any
Java object can be a monitor, as defined in Section 8.4. Methods can execute
inside the monitor lock with the keyword synchronized. Methods without this
keyword are called non-synchronized. They execute outside the monitor lock but
can still see the object attributes. This ability has been strongly criticized because
the compiler can no longer guarantee that the object attributes are accessed
sequentially [24]. Non-synchronized methods can be more efficient, but they
should be used extremely rarely.

We give two examples. The first example uses synchronized methods just
for locking. The second example uses the full monitor operations. For further
reading, we recommend [111].

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

626 Shared-State Concurrency

8.6.1 Locks

The simplest way to do concurrent programming in Java is with multiple threads
that access shared objects. Let us extend the class Point as an example:

class Point {

double x, y;

Point(double x1, y1) { x=x1; y=y1; }

public double getX() { return x; }

public double getY() { return y; }

public synchronized void origin() { x=0.0; y=0.0; }

public synchronized void add(Point p)

{ x+=p.getX(); y+=p.getY(); }

public synchronized void scale(double s) { x*=s; y*=s; }

public void draw(Graphics g) {

double lx, ly;

synchronized (this) { lx=x; ly=y; }

g.drawPoint(lx, ly);

}

}

Each instance of Point has its own lock. Because of the keyword synchronized,
the methods origin, add, and scale all execute within the lock. The method
draw is only partly synchronized. This is because it calls an external method,
g.drawPoint (not defined in the example). Putting the external method inside
the object lock would increase the likelihood of deadlocking the program. Instead,
g should have its own lock.

8.6.2 Monitors

Monitors are an extension of locks that give more control over how threads enter
and exit. Monitors can be used to do more sophisticated kinds of cooperation
between threads accessing a shared object. Section 8.4.1 shows how to write a
bounded buffer using monitors. The solution given there can easily be translated
to Java, giving Figure 8.25. This defines a bounded buffer of integers. It uses
an array of integers, buf, which is allocated when the buffer is initialized. The
percent sign % denotes the modulo operation, i.e., the remainder after integer
division.

8.7 Exercises

1. Number of interleavings. Generalize the argument used in the chapter
introduction to calculate the number of possible interleavings of n threads,
each doing k operations. Using Stirling’s formula for the factorial function,
n! ≈

√
2πnn+1/2e−n, calculate a closed form approximation to this function.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.7 Exercises 627

class Buffer

int[] buf;

int first, last, n, i;

public void init(int size) {

buf=new int[size];

n=size; i=0; first=0; last=0;

}

public synchronized void put(int x) {

while (i<n) wait();

buf[last]=x;

last=(last+1)%n;

i=i+1;

notifyAll();

}

public synchronized int get() {

int x;

while (i==0) wait();

x=buf[first];

first=(first+1)%n;

i=i-1;

notifyAll();

return x;

}

}

Figure 8.25: Bounded buffer (Java version)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

628 Shared-State Concurrency

2. Concurrent counter. Let us implement a concurrent counter in the sim-
plest possible way. The counter has an increment operation. We would
like this operation to be callable from any number of threads. Consider the
following possible implementation that uses one cell and an Exchange :

local X in {Exchange C X X+1} end

This attempted solution does not work.

• Explain why the above program does not work and propose a simple
fix.

• Would your fix still be possible in a language that did not have dataflow
variables? Explain why or why not.

• Give a solution (perhaps the same one as in the previous point) that
works in a language without dataflow variables.

3. Maximal concurrency and efficiency. In between the shared-state con-
current model and the maximally concurrent model, there is an interesting
model called the job-based concurrent model. The job-based model is identi-
cal to the shared-state concurrent model, except that whenever an operation
would block, a new thread is created with only that operation (this is called
a job) and the original thread continues execution.4 Practically speaking,
the job-based model has all the concurrency of the maximally concurrent
model, and in addition it can easily be implemented efficiently. For this ex-
ercise, investigate the job-based model. Is it a good choice for a concurrent
programming language? Why or why not?

4. Simulating slow networks. Section 8.2.2 defines a function SlowNet2

that creates a “slow” version of an object. But this definition imposes
a strong order constraint. Each slow object defines a global order of its
calls and guarantees that the original objects are called in this order. This
constraint is often too strong. A more refined version would only impose
order among object calls within the same thread. Between different threads,
there is no reason to impose an order. Define a function SlowNet3 that
creates slow objects with this property.

5. The MVar abstraction. An MVar is a box that can be full or empty. It
comes with two procedures, Put and Get . Doing {Put X} puts X in the
box if it is empty, thus making it full. If the box is full, Put waits until it is
empty. Doing {Get X} binds X to the boxes’ content and empties the box.
If the box is empty, Get waits until it is full. For this exercise, implement
the MVar abstraction. Use whatever concurrency approach is most natural.

4The initial Oz language used the job-based model [180].

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.7 Exercises 629

6. Communicating Sequential Processes (CSP). The CSP language con-
sists of independent threads (called “processes” in CSP terminology) com-
municating through synchronous channels [83, 165]. The channels have two
operations, send and receive, with rendezvous semantics. That is, a send
blocks until a receive is present and vice versa. When send and receive are
simultaneously present, then they both complete atomically, transferring
information from send to receive. The Ada language also uses rendezvous
semantics. In addition, there is a nondeterministic receive operation which
listens to several channels simultaneously. As soon as a message is received
on one of the channels, then the nondeterministic receive completes. For
this exercise, implement these CSP operations as the following control ab-
straction:

• C={Channel.new} creates a new channel C.

• {Channel.send C M} sends message Mon channel C.

• {Channel.mreceive [C1#S1 C2#S2 ... Cn#Sn]} listens nondeter-
ministically on channels C1, C2, ..., and Cn. Si is a one-argument
procedure proc {$ M} 〈stmt〉 end that is executed when message M

is received on channel Ci .

Now extend the Channel.mreceive operation with guards:

• {Channel.mreceive [C1#B1#S1 C2#B2#S2 ... Cn#Bn#Sn]} , where
Bi is a one-argument boolean function fun {$ M} 〈expr〉 end that
must return true for a message to be received on channel Ci .

7. Comparing Linda with Erlang. Linda has a read operation that can
selectively retrieve tuples according to a pattern (see Section 8.3.2). Erlang
has a receive operation that can selectively receive messages according to
a pattern (see Section 5.6.3). For this exercise, compare and contrast these
two operations and the abstractions that they are part of. What do they
have in common and how do they differ? For what kinds of application is
each best suited?

8. Termination detection with monitors. This exercise is about detecting
when a group of threads are all terminated. Section 4.4.3 gives an algorithm
that works for a flat thread space, where threads are not allowed to create
new threads. Section 5.5.3 gives an algorithm that works for a hierarchical
thread space, where threads can create new threads to any nesting level.
The second algorithm uses a port to collect the termination information.
For this exercise, write an algorithm that works for a hierarchical thread
space, like the second algorithm, but that uses a monitor instead of a port.

9. Monitors and conditions. Section 8.4.4 gives an alternative semantics for
monitors in which there can be several wait sets, which are called conditions.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

630 Shared-State Concurrency

The purpose of this exercise is to study this alternative and compare it with
main approach given in the text.

• Reimplement the bounded buffer example of Figure 8.16 using moni-
tors with conditions.

• Modify the monitor implementation of Figure 8.19 to implement mon-
itors with conditions. Allow the possibility to create more than one
condition for a monitor.

10. Breaking up big transactions. The second example in Section 8.5.3
defines the transaction Sum that locks all the cells in the tuple while it
is calculating their sum. While Sum is active, no other transaction can
continue. For this exercise, rewrite Sum as a series of small transactions.
Each small transaction should only lock a few cells. Define a representation
for a partial sum, so that a small transaction can see what has already been
done and determine how to continue. Verify your work by showing that you
can perform transactions while a sum calculation is in progress.

11. Lock caching. In the interest of simplicity, the transaction manager of
Section 8.5.4 has some minor inefficiencies. For example, getlock and
savestate messages are sent on each use of a cell by a transaction. It is
clear that they are only really needed the first time. For this exercise, opti-
mize the getlock and savestate protocols so they use the least possible
number of messages.

12. Read and write locks. The transaction manager of Section 8.5 locks a
cell upon its first use. If transactions T1 and T2 both want to read the
same cell’s content, then they cannot both lock the cell simultaneously. We
can relax this behavior by introducing two kinds of locks, read locks and
write locks. A transaction that holds a read lock is only allowed to read the
cell’s content, not change it. A transaction that holds a write lock can do
all cell operations. A cell can either be locked with exactly one write lock
or with any number of read locks. For this exercise, extend the transaction
manager to use read and write locks.

13. Concurrent transactions. The transaction manager of Section 8.5 cor-
rectly handles any number of transactions that execute concurrently, but
each individual transaction must be sequential. For this exercise, extend the
transaction manager so that the individual transactions can themselves be
concurrent. Hint: add the termination detection algorithm of Section 5.5.3.

14. Combining monitors and transactions. Design and implement a con-
currency abstraction that combines the abilities of monitors and transac-
tions. That is, it has the ability to wait and notify, and also the ability to
abort without changing any state. Is this a useful abstraction?

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.7 Exercises 631

15. (research project) Transactional computation model. Extend the shared-
state concurrent model of this chapter to allow transactions, as suggested
in Section 8.5. Your extension should satisfy the following properties:

• It should have a simple formal semantics.

• It should be efficient, i.e., only cause overhead when transactions are
actually used.

• It should preserve good properties of the model, e.g., compositionality.

This will allow programs to use transactions without needing costly and
cumbersome encodings. Implement a programming language that uses your
extension and evaluate it for realistic concurrent programs.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

632 Shared-State Concurrency

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Chapter 9

Relational Programming

“Toward the end of the thirteenth century, Ramón Llull (Raimundo
Lulio or Raymond Lully) invented the thinking machine. [...] The
circumstances and objectives of this machine no longer interest us,
but its guiding principle–the methodical application of chance to the
resolution of a problem–still does.”
– Ramón Llull’s Thinking Machine, Jorge Luis Borges (1899–1986)

“In retrospect it can now be said that the ars magna Lulli was the
first seed of what is now called “symbolic logic,” but it took a long
time until the seed brought fruit, this particular fruit.”
– Postscript to the “Universal Library”, Willy Ley (1957)

A procedure in the declarative model uses its input arguments to calculate
the values of its output arguments. This is a functional calculation, in the math-
ematical sense: the outputs are functions of the inputs. For a given set of input
argument values, there is only one set of output argument values. We can gen-
eralize this to become relational. A relational procedure is more flexible in two
ways than a functional procedure. First, there can be any number of results to a
call, either zero (no results), one, or more. Second, which arguments are inputs
and which are outputs can be different for each call.

This flexibility makes relational programming well-suited for databases and
parsers, in particular for difficult cases such as deductive databases and parsing
ambiguous grammars. It can also be used to enumerate solutions to complex
combinatoric problems. We have used it to automatically generate diagnostics
for a RISC microprocessor, the VLSI-BAM [84, 193]. The diagnostics enumerate
all possible instruction sequences that use register forwarding. Relational pro-
gramming has also been used in artificial intelligence applications such as David
Warren’s venerable WARPLAN planner [39].

From the programmer’s point of view, relational programming extends declar-
ative programming with a new kind of statement called “choice”. Conceptually,
the choice statement nondeterministically picks one among a set of alternatives.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

634 Relational Programming

During execution, the choice is implemented with search, which enumerates the
possible answers. We call this don’t know nondeterminism, although the search
algorithm is almost always deterministic.

Introducing a choice statement is an old idea. E. W. Elcock [52] used it in
1967 in the Absys language and Floyd [53] used it in the same year. The Prolog
language uses a choice operation as the heart of its execution model, which was
defined in 1972 [40]. Floyd gives a lucid account of the choice operation. He
first extends a simple Algol-like language with a function called choice(n), which
returns an integer from 1 to n. He then shows how to implement a depth-first
search strategy using flow charts to give the operational semantics of the extended
language.

Watch out for efficiency

The flexibility of relational programming has a reverse side. It can easily lead
to highly inefficient programs, if not used properly. This cannot be avoided in
general since each new choice operation multiplies the size of the search space by
the number of alternatives. The search space is the set of candidate solutions to a
problem. This means the size is exponential in the number of choice operations.
However, relational programming is sometimes practical:

• When the search space is small. This is typically the case for database
applications. Another example is the above-mentioned VLSI-BAM diagnos-
tics generator, which generated all combinations of instructions for register
forwarding, condition bit forwarding, and branches in branch delay slots.
This gave a total of about 70,000 lines of VLSI-BAM assembly language
code. This was small enough to be used as input to the gate-level simula-
tor.

• As an exploratory tool. If used on small examples, relational program-
ming can give results even if it is impractical for bigger examples. The
advantage is that the programs can be much shorter and easier to write:
no algorithm has to be devised since search is a brute force technique that
avoids the need for algorithms. This is an example of nonalgorithmic pro-
gramming. This kind of exploration gives insight into the problem structure.
This insight is often sufficient to design an efficient algorithm.

To use search in other cases, more sophisticated techniques are needed, e.g., pow-
erful constraint-solving algorithms, optimizations based on the problem structure,
and search heuristics. We leave these until Chapter 12. The present chapter
studies the use of nondeterministic programming as a tool for the two classes of
problems for which it works well. For more information and techniques, we rec-
ommend any good book on Prolog, which has good support for nondeterministic
programming [182, 39].

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.1 The relational computation model 635

〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| choice 〈s〉1 [] ... [] 〈s〉n end Choice
| fail Failure

Table 9.1: The relational kernel language

Structure of the chapter

The chapter consists of four parts:

• Section 9.1 explains the basic concepts of the relational computation model,
namely choice and encapsulated search. Section 9.2 continues with some
more examples to introduce programming in the model.

• Section 9.3 introduces logic and logic programming. It introduces a new
kind of semantics for programs, the logical semantics. It then explains how
both the declarative and relational computation models are doing logic
programming.

• Sections 9.4–9.6 give large examples in three areas that are particularly
well-suited to relational programming, namely natural language parsing,
interpreters, and deductive databases.

• Section 9.7 gives an introduction to Prolog, a programming language based
on relational programming. Prolog was originally designed for natural lan-
guage processing, but has become one of the main programming languages
in all areas that require symbolic programming.

9.1 The relational computation model

9.1.1 The choice and fail statements

The relational computation model extends the declarative model with two new
statements, choice and fail :

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

636 Relational Programming

• The choice statement groups together a set of alternative statements. Ex-
ecuting a choice statement provisionally picks one of these alternatives. If
the alternative is found to be wrong later on, then another one is picked.

• The fail statement indicates that the current alternative is wrong. A
fail is executed implicitly when trying to bind two incompatible values, for
example 3=4 . This is a modification of the declarative model, which raises
an exception in that case. Section 2.7.2 explains the binding algorithm in
detail for all partial values.

Table 9.1 shows the relational kernel language.

An example for clothing design

Here is a simple example of a relational program that might interest a clothing
designer:

fun {Soft} choice beige [] coral end end
fun {Hard} choice mauve [] ochre end end

proc {Contrast C1 C2}
choice C1={Soft} C2={Hard} [] C1={Hard} C2={Soft} end

end

fun {Suit}
Shirt Pants Socks

in
{Contrast Shirt Pants}
{Contrast Pants Socks}
if Shirt==Socks then fail end
suit(Shirt Pants Socks)

end

This program is intended to help a clothing designer pick colors for a man’s
casual suit. Soft picks a soft color and Hard picks a hard color. Contrast picks
a pair of contrasting colors (one soft and one hard). Suit returns a complete set
including shirt, pants, and socks such that adjacent garments are in contrasting
colors and such that shirt and socks are of different colors.

9.1.2 Search tree

A relational program is executed sequentially. The choice statements are exe-
cuted in the order that they are encountered during execution. When a choice

is first executed, its first alternative is picked. When a fail is executed, exe-
cution “backs up” to the most recent choice statement, which picks its next
alternative. If there are none, then the next most recent choice picks another
alternative, and so forth. Each choice statement picks alternatives in order from
left to right.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.1 The relational computation model 637

......

......

Shirt=beige
Pants=ochre

Shirt=beige
Pants=mauve

Shirt=coral
Pants=mauve

Shirt=coral
Pants=ochre

Pants={Hard}
Shirt=beige

Pants={Hard}
Shirt=coral

Pants={Hard}
Shirt={Soft}

{Suit}

Shirt={Hard}
Pants={Soft}

Pants={Soft}
Socks={Hard}

Pants=mauve
Shirt=beige

Pants={Hard}
Socks={Soft}

Shirt=beige
Pants=mauve

Shirt=beige Shirt=beige
Pants=mauve

Shirt=beige
Pants=mauve
Pants=beige
Socks={Hard}

Shirt=beige
Pants=mauve
Pants=coral
Socks={Hard}

(fail) (fail)

Pants=mauve
Pants=ochrePants=mauve

Socks={Soft} Socks={Soft}

Shirt=beige
Pants=mauve
Socks=coral
Shirt\=Socks

Shirt=beige
Pants=mauve
Socks=beige
Shirt\=Socks

(fail)

(fail) (succeed)

... ...

choice

choice

choice

choice

choice

choice

choice

Figure 9.1: Search tree for the clothing design example

This execution strategy can be illustrated with a tree called the search tree.
Each node in the search tree corresponds to a choice statement and each subtree
corresponds to one of the alternatives. Figure 9.1 shows part of the search tree for
the clothing design example. Each path in the tree corresponds to one possible
execution of the program. The path can lead either to no solution (marked “fail”)
or to a solution (marked “succeed”). The search tree shows all paths at a glance,
including both the failed and successful ones.

9.1.3 Encapsulated search

A relational program is interesting because it can potentially execute in many
different ways, depending on the choices it makes. We would like to control
which choices are made and when they are made. For example, we would like to
specify the search strategy: depth-first search, breadth-first search, or some other
strategy. We would like to specify how many solutions are calculated: just one
solution, all solutions right away, or new solutions on demand. Briefly, we would
like the same relational program to be executed in many different ways.

One way to exercise this control is to execute the relational program with
encapsulated search. Encapsulation means that the relational program runs inside
a kind of “environment”. The environment controls which choices are made by
the relational program and when they are made. The environment also protects
the rest of the application from the effects of the choices. This is important

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

638 Relational Programming

because the relational program can do multiple bindings of the same variable
when different choices are made. These multiple bindings should not be visible to
the rest of the application. Encapsulated search is important also for modularity
and compositionality:

• For modularity: with encapsulated search there can be more than one re-
lational program running concurrently. Since each is encapsulated, they
do not interfere with each other (except that they can influence each oth-
er’s performance because they share the same computational resources).
They can be used in a program that communicates with the external world,
without interfering with that communication.

• For compositionality: an encapsulated search can run inside another encap-
sulated search. Because of encapsulation, this is perfectly well-defined.

Early logic languages with search such as Prolog have global backtracking, in
which multiple bindings are visible everywhere. This is bad for program mod-
ularity and compositionality. To be fair to Prolog, it has a limited form of en-
capsulated search, the bagof/3 and setof/3 operations. This is explained in
Section 9.7.

9.1.4 The Solve function

We provide encapsulated search by adding one function, Solve , to the com-
putation model. The call {Solve F} is given a zero-argument function F (or
equivalently, a one-argument procedure) that returns a solution to a relational
program. The call returns a lazy list of all solutions, ordered according to a
depth-first search strategy. For example, the call:

L={Solve fun {$} choice 1 [] 2 [] 3 end end }

returns the lazy list [1 2 3] . Because Solve is lazy, it only calculates the
solutions that are needed. Solve is compositional, i.e., it can be nested: the
function F can contain calls to Solve . Using Solve as a basic operation, we can
define both one-solution and all-solutions search. To get one-solution search, we
look at just the first element of the list and never look at the rest:

fun {SolveOne F}
L={Solve F}

in
if L==nil then nil else [L.1] end

end

This returns either a list [X] containing the first solution X or nil if there are
no solutions. To get all-solutions search, we look at the whole list:

fun {SolveAll F}
L={Solve F}
proc {TouchAll L}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.2 Further examples 639

if L==nil then skip else {TouchAll L.2} end
end

in
{TouchAll L}
L

end

This returns a list of all solutions.

Computation spaces

We have introduced choice and fail statements and the Solve function. These
new operations can be programmed by extending the declarative model with just
one new concept, the computation space. Computation spaces are part of the
constraint-based computation model, which is explained in Chapter 12. They
were originally designed for constraint programming, a powerful generalization of
relational programming. Chapter 12 explains how to implement choice , fail ,
and Solve in terms of computation spaces. The definition of Solve is also given
in the supplements file on the book’s Web site.

Solving the clothing design example

Let us use Solve to find answers to the clothing design example. To find all
solutions, we do the following query:

{Browse {SolveAll Suit}}

This displays a list of the eight solutions:

[suit(beige mauve coral) suit(beige ochre coral)
suit(coral mauve beige) suit(coral ochre beige)
suit(mauve beige ochre) suit(mauve coral ochre)
suit(ochre beige mauve) suit(ochre coral mauve)]

Figure 9.1 gives enough of the search tree to show how the first solution suit(beige

mauve coral) is obtained.

9.2 Further examples

We give some simple examples to show how to program in the relational compu-
tation model.

9.2.1 Numeric examples

Let us show some simple examples using numbers, to show how to program with
the relational computation model. Here is a program that uses choice to count
from 0 to 9:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

640 Relational Programming

... 96 97 98 99

{Digit}

{Digit}

(second digit)

(first digit)

0 1 2 3 4 ...

Figure 9.2: Two digit counting with depth-first search

fun {Digit}
choice 0 [] 1 [] 2 [] 3 [] 4 [] 5 [] 6 [] 7 [] 8 [] 9 end

end
{Browse {SolveAll Digit}}

This displays:

[0 1 2 3 4 5 6 7 8 9]

(Note that the zero-argument function Digit is the same as a one-argument
procedure.) We can combine calls to Digit to count with more than one digit:

fun {TwoDigit}
10*{Digit}+{Digit}

end
{Browse {SolveAll TwoDigit}}

This displays:

[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... 98 99]

This shows what it means to do a depth-first search: when two choices are done,
the program first makes the first choice and then makes the second. Here the func-
tion chooses first the tens digit and then the ones digit. Changing the definition
of TwoDigit to choose digits in the opposite order will give unusual results:

fun {StrangeTwoDigit}
{Digit}+10*{Digit}

end
{Browse {SolveAll StrangeTwoDigit}}

This displays:

[0 10 20 30 40 50 60 70 80 90 1 11 21 31 41 ... 89 99]

In this case, the tens digit is chosen second and therefore changes quicker than
the ones digit.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.2 Further examples 641

Palindrome product problem

Using Digit , we can already solve some interesting puzzles, like the “palindrome
product” problem. We would like to find all four-digit palindromes that are prod-
ucts of two-digit numbers. A palindrome is a number that reads the same forwards
and backwards, when written in decimal notation. The following program solves
the puzzle:

proc {Palindrome ?X}
X=(10*{Digit}+{Digit})*(10*{Digit}+{Digit}) % Generate
(X>0)= true % Test 1
(X>=1000)= true % Test 2
(X div 1000) mod 10 = (X div 1) mod 10 % Test 3
(X div 100) mod 10 = (X div 10) mod 10 % Test 4

end

{Browse {SolveAll Palindrome}}

This displays all 118 palindrome products. Why do we have to write the condition
X>0 as (X>0)= true ? If the condition returns false , then the attempted binding
false =true will fail. This ensures the relational program will fail when the
condition is false.

Palindrome product is an example of a generate-and-test program: it generates
a set of possibilities and then it uses tests to filter out the bad ones. The tests use
unification failure to reject bad alternatives. Generate-and-test is a very naive
way to explore a search space. It generates all the possibilities first and only
filters out the bad ones afterwards. In palindrome product, 10000 possibilities
are generated.

Chapter 12 introduces a much better way to explore a search space, called
propagate-and-search. This approach does the filtering during the generation, so
that many fewer possibilities are generated. If we extend palindrome product
to 6-digit numbers then the naive solution takes 45 seconds.1 The propagate-
and-search solution of Chapter 12 takes less than 0.4 second to solve the same
problem.

9.2.2 Puzzles and the n-queens problem

The n-queens problem is an example of a combinatoric puzzle. This kind of puzzle
can be easily specified in relational programming. The resulting solution is not
very efficient; for more efficiency we recommend using constraint programming
instead, as explained in Chapter 12. Using relational programming is a precursor
to constraint programming.

The problem is to place n queens on an n × n chessboard so that no queen
attacks another. There are many ways to solve this problem. The solution given
in Figure 9.4 is noteworthy because it uses dataflow variables. We can get the

1On a 500 MHz Pentium III processor running Mozart 1.1.0.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

642 Relational Programming

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Cs (columns)

Us Ds
(down diagonals)(up diagonals)

Figure 9.3: The n-queens problem (when n = 4)

first solution of an 8-queens problem as follows:

{Browse {SolveOne fun {$} {Queens 8} end }}

This uses higher-order programming to define a zero-argument function from the
one-argument function Queens . The answer displayed is:

[[1 7 5 8 2 4 6 3]]

This list gives the placement of the queens on the chessboard. It assumes there
is one queen per column. The solution lists the eight columns and gives for each
column the queen’s position (first square of first column, seventh square of second
column, etc.). How many solutions are there to the 8-queens problem (counting
reflections and rotations as separate)? This is easy to calculate:

{Browse {Length {SolveAll fun {$} {Queens 8} end }}}

This displays the number 92, which is the answer. Queens is not the best possible
program for solving the n-queens problem. It is not practical for large n. Much
better programs can be gotten by using constraint programming or by design-
ing specialized algorithms (which amounts almost to the same thing). But this
program is simple and elegant.

How does this magical program work? We explain it by means of Figure 9.3.
Each column, up diagonal, and down diagonal has one dataflow variable. The
lists Cs, Us, and Ds contain all the column variables, up variables, and down
variables, respectively. Each column variable “guards” a column, and similarly

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.2 Further examples 643

fun {Queens N}
fun {MakeList N}

if N==0 then nil else _|{MakeList N-1} end
end

proc {PlaceQueens N ?Cs ?Us ?Ds}
if N>0 then Ds2

Us2=_|Us
in

Ds=_|Ds2
{PlaceQueens N-1 Cs Us2 Ds2}
{PlaceQueen N Cs Us Ds}

else skip end
end

proc {PlaceQueen N ?Cs ?Us ?Ds}
choice

Cs=N|_ Us=N|_ Ds=N|_
[] _|Cs2=Cs _|Us2=Us _|Ds2=Ds in

{PlaceQueen N Cs2 Us2 Ds2}
end

end
Qs={MakeList N}

in
{PlaceQueens N Qs _ _}
Qs

end

Figure 9.4: Solving the n-queens problem with relational programming

for the variables of the up and down diagonals. Placing a queen on a square
binds the three variables to the queen’s number. Once the variables are bound,
no other queen can bind the variable of the same column, up diagonal, or down
diagonal. This is because a dataflow variable can only have one value. Trying to
bind to another value gives a unification failure, which causes that alternative to
be rejected.

The procedure PlaceQueens traverses a column from top to bottom. It keeps
the same Cs, but “shifts” the Us one place to the right and the Ds one place to
the left. At each iteration, PlaceQueens is at one row. It calls PlaceQueen ,
which tries to place a queen in one of the columns of that row, by binding one
entry in Cs, Us, and Ds.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

644 Relational Programming

9.3 Relation to logic programming

Both the declarative computation model of Chapter 2 and the relational com-
putation model of this chapter are closely related to logic programming. This
section examines this relationship. Section 9.3.1 first gives a brief introduction
to logic and logic programming. Sections 9.3.2 and 9.3.3 then show how these
ideas apply to the declarative and relational computation models. Finally, Sec-
tion 9.3.4 briefly mentions pure Prolog, which is another implementation of logic
programming.

The advantage of logic programming is that programs have two semantics,
a logical and an operational semantics, which can be studied separately. If the
underlying logic is chosen well, then the logical semantics is much simpler than
the operational. However, logic programming cannot be used for all computation
models. For example, there is no good way to design a logic for the stateful
model. For it we can use the axiomatic semantics of Section 6.6.

9.3.1 Logic and logic programming

A logic program is a statement of logic that is given an operational semantics, i.e.,
it can be executed on a computer. If the operational semantics is well-designed,
then the execution has two properties: it is correct, i.e., it respects the logical
semantics (all consequences of the execution are valid logical consequences of the
program considered as a set of logical axioms) and it is efficient, i.e., it allows to
write programs that execute with the expected time and space complexity. Let
us examine more closely the topics of logic and logic programming. Be warned
that this section gives only a brief introduction to logic and logic programming.
For more information we refer interested readers to other books [114, 182].

Propositional logic

What is an appropriate logic in which to write logic programs? There are many
different logics. For example, there is propositional logic. Propositional formulas
consist of expressions combining symbols such as p, q, r, and so forth together
with the connectors ∧ (“and”), ∨ (“or”), ↔ (“if and only if”), → (“implies”),
and ¬ (“not”). The symbols p, q, r, and so forth are called atoms in logic. An
atom in logic is the smallest indivisible part of a logical formula. This should
not be confused with an atom in a programming language, which is a constant
uniquely determined by its print representation.

Propositional logic allows to express many simple laws. The contrapositive
law (p→ q) ↔ (¬q → ¬p) is a formula of propositional logic, as is De Morgan’s
law ¬(p∧ q)↔ (¬p∨¬q). To assign a truth value to a propositional formula, we
have to assign a truth value to each of its atoms. We then evaluate the formula
using the usual rules for ∧, ∨, ↔, →, and ¬:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.3 Relation to logic programming 645

a b a ∧ b a ∨ b a↔ b a→ b ¬a
false false false false true true true
false true false true false true true
true false false true false false false
true true true true true true false

If the formula is true for all possible assignments of its atoms, then it is called
a tautology. Both the contrapositive law and De Morgan’s law are examples of
tautologies. They are true for all four possible truth assignments of p and q.

First-order predicate calculus

Propositional logic is rather weak as a base for logic programming, principally be-
cause it does not allow expressing data structures. First-order predicate calculus
is much better-suited for this. The predicate calculus generalizes propositional
logic with variables, terms, and quantifiers. A logical formula in the predicate
calculus has the following grammar, where 〈a〉 is an atom and 〈f〉 is a formula:

〈a〉 ::= p(〈x〉1, ..., 〈x〉n)
〈f〉 ::= 〈a〉

| 〈x〉 = f(l1 : 〈x〉1, ..., ln : 〈x〉n)
| 〈x〉1 = 〈x〉2
| 〈f〉1 ∧ 〈f〉2 | 〈f〉1 ∨ 〈f〉2 | 〈f〉1 ↔ 〈f〉2 | 〈f〉1 → 〈f〉2 | ¬〈f〉
| ∀〈x〉.〈f〉 | ∃〈x〉.〈f〉

Atoms in predicate calculus are more general than propositional atoms since they
can have arguments. Here 〈x〉 is a variable symbol, p is a predicate symbol, f is a
term label, and the li are term features. The symbols ∀ (“for all”) and ∃ (“there
exists”) are called quantifiers. In like manner as for program statements, we
can define the free identifier occurrences of a logical formula. Sometimes these
are called free variables, although strictly speaking they are not variables. A
logical formula with no free identifier occurrences is called a logical sentence. For
example, p(x, y) ∧ q(y) is not a logical sentence because it has two free variables
x and y. We can make it a sentence by using quantifiers, giving for instance
∀x.∃y.p(x, y) ∧ q(y). The free variables x and y are captured by the quantifiers.

Logical semantics of predicate calculus

To assign a truth value to a sentence of the predicate calculus, we have to do a bit
more work than for the propositional calculus. We have to define a model. The
word “model” here means a logical model, which is a very different beast than a
computation model! A logical model consists of two parts: a domain of discourse
(all possible values of the variables) and a set of relations (where a relation is a
set of tuples). Each predicate has a relation, which gives the tuples for which the
predicate is true. Among all predicates, equality (=) is particularly important.
The equality relation will almost always be part of the model. The quantifiers

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

646 Relational Programming

∀x (“for all x”) and ∃x (“there exists x”) range over the domain of discourse.
Usually the logical model is chosen so that a special set of sentences, called the
axioms, are all true. Such a model is called a logical semantics of the axioms.
There can be many models for which the axioms are true.

Let us see how this works with an example. Consider the following two axioms:

∀x, y.grandfather(x, y)↔ ∃z.father(x, z) ∧ father(z, y)
∀x, y, z.father(x, z) ∧ father(y, z)→ x = y

There are many possible models of these axioms. Here is one possible model:

Domain of discourse: {george, tom, bill}
Father relation: {father(george, tom), father(tom, bill)}
Grandfather relation: {grandfather(george, bill)}
Equality relation: {george = george, tom = tom, bill = bill}

The relations contain only the true tuples; all other tuples are assumed to be false.
With this model, we can give truth values to sentences of predicate calculus. For
example, the sentence ∃x, y.father(x, y)→ father(y, x) can be evaluated as being
false. Note that the equality relation is part of this model, even though the
axioms might not mention it explicitly.

Logic programming

Now we can state more precisely what a logic program is. For our purposes, a
logic program consists of a set of axioms in the first-order predicate calculus, a
sentence called the query, and a theorem prover, i.e., a system that can perform
deduction using the axioms in an attempt to prove or disprove the query. Per-
forming deductions is called executing the logic program. Can we build a practical
programming system based on the idea of executing logic programs? We still need
to address three issues:

• Theoretically, a theorem prover is limited in what it can do. It is only guar-
anteed to find a proof or disproof for queries that are true in all models. If
we are only interested in some particular models, then there might not exist
a proof or disproof, even though the query is true. We say that the theo-
rem prover is incomplete. For example, we might be interested in number
theory, so we use the model of integers with integer arithmetic. There is a
famous result in mathematics called Gödel’s Incompleteness Theorem, from
which it follows that there exist statements of number theory that cannot
be proved or disproved within any finite set of axioms.

• Even in those cases where the theorem prover could theoretically find a
result, it might be too inefficient. The search for a proof might take expo-
nential time. A theorem prover intended for practical programming should
have a simple and predictable operational semantics, so that the program-
mer can define algorithms and reason about their complexity.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.3 Relation to logic programming 647

• A final point is that the deduction done by the theorem prover should be
constructive. That is, if the query states that there exists an x that satisfies
some property, then the system should construct a witness to the existence.
In other words, it should build a data structure as an output of the logic
program.

Two approaches are taken to overcome these problems:

• We place restrictions on the form of the axioms so that an efficient con-
structive theorem prover is possible. The Prolog language, for example, is
based on Horn clauses, which are axioms of the form:

∀x1, ..., xk . 〈a〉1 ∧ ... ∧ 〈a〉n → 〈a〉,

where {x1, ..., xk} are chosen so that the axiom has no free variables. Horn
clauses are interesting because there is an efficient constructive theorem
prover for them using an inference rule called resolution [114]. The rela-
tional computation model of this chapter also does logic programming, but
without using resolution. It uses a different set of axioms and theorem
prover, which are discussed in the next section.

• We give the programmer the possibility of helping the theorem prover with
operational knowledge. This operational knowledge is essential for writing
efficient logic programs. For example, consider a logic program to sort
a list of integers. A naive program might consist of axioms defining a
permutation of a list and a query that states that there exists a permutation
whose elements are in ascending order. Such a program would be short but
inefficient. Much more efficient would be to write axioms that express the
properties of an efficient sorting algorithm, such as mergesort.

A major achievement of computer science is that practical logic programming
systems have been built by combining these two approaches. The first popular
language to achieve this goal was Prolog; it was subsequently followed by many
other languages. High-performance Prolog implementations are amazingly fast;
they can even rival the speed of imperative language implementations [195].

9.3.2 Operational and logical semantics

There are two ways to look at a logic program: the logical view and the op-
erational view. In the logical view, it is simply a statement of logic. In the
operational view, it defines an execution on a computer. Before looking at the
relational model, let us look first at the declarative model of Chapter 2. We will
see that programs in the declarative model have a logical semantics as well as an
operational semantics. It is straightforward to translate a declarative program
into a logical sentence. If the program terminates correctly, i.e., it does not block,
go into an infinite loop, or raise an exception, then all the bindings it does are

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

