
648 Relational Programming

correct deductions from the axioms. That is, the results of all predicates are valid
tuples in the predicates’ relations. We call this deterministic logic programming.

Table 9.2 defines a translation scheme T which translates any statement 〈s〉 in
the relational kernel language into a logical formula T (〈s〉). Procedure definitions
are translated into predicate definitions. Note that exceptions are not translated.
Raising an exception signals that the normal, logical execution is no longer valid.
The logical sentence therefore does not hold in that case. Proving the correctness
of this table is beyond the scope of this chapter. We leave it as an interesting
exercise for mathematically-minded readers.

A given logical semantics can correspond to many operational semantics. For
example, the following three statements:

1. X=Y 〈s〉

2. 〈s〉 X=Y

3. if X==Y then 〈s〉 else fail end

all have the exactly same logical semantics, namely:

x = y ∧ T (〈s〉)

But their operational semantics are very different! The first statement binds X

and Y and then executes 〈s〉. The second statement executes 〈s〉 and then binds
X and Y. The third statement waits until it can determine whether or not X and
Y are equal. It then executes 〈s〉, if it determines that they are equal.

Writing a logic program consists of two parts: writing the logical semantics
and then choosing an operational semantics for it. The art of logic program-
ming consists in balancing two conflicting tensions: the logical semantics should
be simple and the operational semantics should be efficient. All the declarative
programs of Chapters 3 and 4 can be seen in this light. They are all logic pro-
grams. In the Prolog language, this has given rise to a beautiful programming
style [182, 21, 139].

Deterministic append

Let us write a simple logic program to append two lists. We have already seen
the Append function:

fun {Append A B}
case A
of nil then B
[] X|As then X|{Append As B}
end

end

Let us expand it into a procedure:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.3 Relation to logic programming 649

Relational statement Logical formula
skip true
fail false
〈s〉1 〈s〉2 T (〈s〉1) ∧ T (〈s〉2)
local X in 〈s〉 end ∃x.T (〈s〉)
X=Y x = y
X=f(l1:X1 ... ln:Xn) x = f(l1 : x1, ..., ln : xn)
if X then 〈s〉1 else 〈s〉2 end (x = true ∧ T (〈s〉1)) ∨ (x = false ∧ T (〈s〉2))
case X of f(l1:X1 ... ln:Xn) (∃x1, ..., xn.x = f(l1 : x1, ..., ln : xn) ∧ T (〈s〉1))

then 〈s〉1 else 〈s〉2 end ∨(¬∃x1, ..., xn.x = f(l1 : x1, ..., ln : xn) ∧ T (〈s〉2))
proc {P X1 ... Xn} 〈s〉 end ∀x1, ..., xn.p(x1, ..., xn)↔ T (〈s〉)
{P Y1 ... Yn} p(y1, ..., yn)
choice 〈s〉1 [] ... [] 〈s〉n end T (〈s〉1) ∨ ... ∨ T (〈s〉n)

Table 9.2: Translating a relational program to logic

proc {Append A B ?C}
case A
of nil then C=B
[] X|As then Cs in

C=X|Cs
{Append As B Cs}

end
end

According to Table 9.2, this procedure has the following logical semantics:

∀a, b, c.append(a, b, c)↔
(a = nil ∧ c = b) ∨ (∃x, a′, c′.a = x| a′ ∧ c = x| c′ ∧ append(a′, b, c′))

The procedure also has an operational semantics, given by the semantics of the
declarative model. The call:

{Append [1 2 3] [4 5] X}

executes successfully and returns X=[1 2 3 4 5] . The call’s logical meaning is
the tuple append([1, 2, 3], [4, 5], x). After the execution, the tuple becomes:

append([1, 2, 3], [4, 5], [1, 2, 3, 4, 5])

This tuple is a member of the append relation. We see that Append can be seen
as a logic program.

Another deterministic append

The above definition of Append does not always give a solution. For example,
the call {Append X [3] [1 2 3]} should return X=[1 2] , which is the logical-
ly correct solution, but the program cannot give this solution because it assumes

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

650 Relational Programming

X is bound to a value on input. The program blocks. This shows that the opera-
tional semantics is incomplete. To give a solution, we need to write a version of
Append with a different operational semantics. To calculate X from the last two
arguments, we change the definition of Append as follows:

proc {Append A B ?C}
if B==C then A=nil
else

case C of X|Cs then As in
A=X|As
{Append As B Cs}

end
end

end

This version of Append expects its last two arguments to be inputs and its first
argument to be an output. It has a different operational semantics as the previous
version, but keeps the same logical semantics. To be precise, its logical semantics
according to Table 9.2 is:

∀a, b, c.append(a, b, c)↔
(b = c ∧ a = nil) ∨ (∃x, c′, a′.c = x| c′ ∧ a = x| a′ ∧ append(a′, b, c′))

This sentence is logically equivalent to the previous one.

Nondeterministic append

We have seen two versions of Append , with the same logical semantics but differ-
ent operational semantics. Both versions return exactly one solution. But what
if we want the solutions of {Append X Y [1 2 3]} ? There are four different
solutions that satisfy the logical semantics. The declarative model is determinis-
tic, so it can only give one solution at most. To give several solutions, we can use
the choice statement to guess the right information and then continue. This is
explained in the next section.

9.3.3 Nondeterministic logic programming

We saw that the Append procedure in the declarative model has a logical se-
mantics but the operational semantics is not able to realize this logical semantics
for all patterns of inputs and outputs. In the declarative model, the operational
semantics is deterministic (it gives just one solution) and directional (it works for
only one pattern of input and output arguments). With relational programming,
we can write programs with a more flexible operational semantics, that can give
solutions when the declarative program would block. We call this nondetermin-
istic logic programming. To see how it works, let us look again at the logical
semantics of append:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.3 Relation to logic programming 651

∀a, b, c.append(a, b, c)↔
(a = nil ∧ c = b) ∨ (∃x, a′, c′.a = x| a′ ∧ c = x| c′ ∧ append(a′, b, c′))

How can we write a program that respects this logical semantics and is able to
provide multiple solutions for the call {Append X Y [1 2 3]} ? Look closely at
the logical semantics. There is a disjunction (∨) with a first alternative (a = nil ∧
c = b) and a second alternative (∃x, a′, c′.a = x| a′ ∧ c = x| c′ ∧ append(a′, b, c′)).
To get multiple solutions, the program should be able to pick both alternatives.
We implement this by using the choice statement. This gives the following
program:

proc {Append ?A ?B ?C}
choice

A=nil B=C
[] As Cs X in

A=X|As C=X|Cs {Append As B Cs}
end

end

We can search for all solutions to the call {Append X Y [1 2 3]} :

{Browse {SolveAll
proc {$ S} X#Y=S in {Append X Y [1 2 3]} end }}

To get one output, we pair the solutions X and Y together. This displays all four
solutions:

[nil#[1 2 3] [1]#[2 3] [1 2]#[3] [1 2 3]#nil]

This program can also handle the directional cases, for example:

{Browse {SolveAll
proc {$ X} {Append [1 2] [3 4 5] X} end }}

displays [[1 2 3 4 5]] (a list of one solution). The program can even handle
cases where no arguments are known at all, e.g., {Append X Y Z} . Since in that
case there are an infinity of solutions, we do not call SolveAll , but just Solve :

L={Solve proc {$ S} X#Y#Z=S in {Append X Y Z} end }

Each solution is a tuple containing all three arguments (X#Y#Z). We can display
successive solutions one by one by touching successive elements of L:

{Touch 1 L}
{Touch 2 L}
{Touch 3 L}
{Touch 4 L}
...

({Touch N L} is defined in Section 4.5.6; it simply traverses the first N elements
of L.) This displays successive solutions:

nil#B#B|
[X1]#B#(X1|B)|

[X1 X2]#B#(X1|X2|B)|

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

652 Relational Programming

[X1 X2 X3]#B#(X1|X2|X3|B)|_

All possible solutions are given in order of increasing length of the first argument.
This can seem somewhat miraculous. It certainly seemed so to the first logic
programmers, in the late 1960’s and early 1970’s. Yet it is a simple consequence
of the semantics of the choice statement, which picks its alternatives in order. Be
warned that this style of programming, while it can sometimes perform miracles,
is extremely dangerous. It is very easy to get into infinite loops or exponential-
time searches, i.e., to generate candidate solutions almost indefinitely without
ever finding a good one. We advise you to write deterministic programs whenever
possible and to use nondeterminism only in those cases when it is indispensable.
Before running the program, verify that the solution you want is one of the
enumerated solutions.

9.3.4 Relation to pure Prolog

The relational computation model provides a form of nondeterministic logic pro-
gramming that is very close to what Prolog provides. To be precise, it is a subset
of Prolog called “pure Prolog” [182]. The full Prolog language extends pure
Prolog with operations that lack a logical semantics but that are useful for pro-
gramming a desired operational semantics (see the Prolog section in Chapter 9).
Programs written in either pure Prolog or the relational computation model can
be translated in a straightforward way to the other. There are three principal
differences between pure Prolog and the relational computation model:

• Prolog uses a Horn clause syntax with an operational semantics based on
resolution. The relational computation model uses a functional syntax with
an operational semantics tailored to that syntax.

• The relational computation model allows full higher-order programming.
This has no counterpart in first-order predicate calculus but is useful for
structuring programs. Higher-order programming is not supported at all in
pure Prolog and only partially in full Prolog.

• The relational computation model distinguishes between deterministic op-
erations (which do not use choice) and nondeterministic operations (which
use choice). In pure Prolog, both have the same syntax. Deterministic op-
erations efficiently perform functional calculations, i.e., it is known which
arguments are the inputs and which are the outputs. Nondeterministic
operations perform relational calculations, i.e., it is not known which argu-
ments are inputs and outputs, and indeed the same relation can be used in
different ways.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.3 Relation to logic programming 653

9.3.5 Logic programming in other models

So far we have seen logic programming in the declarative model, possibly extended
with a choice operation. What about logic programming in other models? In
other words, in how far is it possible to have a logical semantics in other models?
To have a logical semantics means that execution corresponds to deduction, i.e.,
execution can be seen as performing inference and the results of procedure calls
give valid tuples in a simple logical model, such as a model of the predicate
calculus. The basic principle is to enrich the control: we extend the operational
semantics, which allows to calculate new tuples in the same logical model. Let
us examine some other computation models:

• Adding concurrency to the declarative model gives the data-driven and
demand-driven concurrent models. These models also do logic program-
ming, since they only change the order in which valid tuples are calculated.
They do not change the content of the tuples.

• The nondeterministic concurrent model of Section 5.7.1 does logic pro-
gramming. It adds just one operation, WaitTwo , which can be given a
logical semantics. Logically, the call {WaitTwo X Y Z} is equivalent to
z = 1∨z = 2, since Z is bound to 1 or 2. Operationally, WaitTwo waits un-
til one of its arguments is determined. WaitTwo is used to manage control
in a concurrent program, namely to pick an execution path that does not
block.

The nondeterministic concurrent model is interesting because it combines
two properties. It has a straightforward logical semantics and it is al-
most as expressive as a stateful model. For example, it allows building
a client/server program with two independent clients and one server, which
is not possible in a declarative model. This is why the model was chosen as
the basis for concurrent logic programming.

• The stateful models are another story. There is no straightforward way to
give a logical meaning to a stateful operation. However, stateful models can
do logic programming if the state is used in a limited way. For example,
it can be encapsulated inside a control abstraction or it can be used as a
parameter to part of a program. In the first case we are just enriching the
control. In the second case, as long as the state does not change, we can
reason as if it were constant.

• The constraint-based computation model of Chapter 12 is the most pow-
erful model for doing logic programming that we see in this book. It gives
techniques for solving complex combinatoric optimization problems. It is
the most powerful model in the sense that it has the most sophisticated
mechanisms both for specifying and automatically determining the control
flow. From the logic programming viewpoint, it has the strongest deduction
abilities.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

654 Relational Programming

9.4 Natural language parsing

Section 3.4.8 shows how to do parsing with a difference list. The grammar that it
parses is deterministic with a lookahead of one token: it suffices to know the next
token to know what grammar rule will apply. This is sometimes a very strong
restriction. Some languages need a much larger lookahead to be parsed. This is
certainly true for natural languages, but can also be true for widely-used formal
languages (like Cobol and Fortran, see below).

The one-token lookahead restriction can be removed by using relational pro-
gramming. Relational programs can be written to parse highly ambiguous gram-
mars. This is one of the most flexible ways to do parsing. It can parse grammars
with absolutely no restriction on the form of the grammar. The disadvantage is
that if the grammar is highly ambiguous, the parser can be extremely slow. But if
the ambiguity is localized to small parts of the input, the efficiency is acceptable.

This section gives a simple example of natural language parsing in the rela-
tional style. This style was pioneered by the Prolog language in the early 1970’s.
It is fair to say that Prolog was originally invented for this purpose [40]. This sec-
tion only scratches the surface of what can be done in this area with the relational
computation model. For further reading, we recommend [48].

Examples in Cobol and Fortran

Using relational programming to parse ambiguous grammars is quite practical.
For example, it is being used successfully by Darius Blasband of Phidani Software
to build transformation tools for programs written in Fortran and Cobol [19].
These two languages are difficult to parse with more traditional tools such as the
Unix lex/yacc family. Let us see what the problems are with these two languages.

The problem with parsing Cobol The following fragment is legal Cobol
syntax:

IF IF=THEN THEN THEN=ELSE ELSE ELSE=IF

This IF statement uses variables named IF, THEN, and ELSE. The parser has to
decide whether each occurrence of the tokens IF, THEN, and ELSE is a variable
identifier or a keyword. The only way to make the distinction is to continue the
parse until only one unambiguous interpretation remains. The problem is that
Cobol makes no distinction between keywords and variable identifiers.

The problem with parsing Fortran Fortran is even more difficult to parse
than Cobol. To see why, consider the following fragment, which is legal Fortran
syntax:

DO 5 I = 1,10

...

5 CONTINUE

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.4 Natural language parsing 655

This defines a loop that iterates its body 10 times, where I is given consecutive
values from 1 to 10. Look what happens when the comma in the DO statement is
replaced by a period:

DO 5 I = 1.10

In Fortran, this has the same meaning as:

DO5I = 1.10

where DO5I is a new variable identifier that is assigned the floating point number
1.10. In this case, the loop body is executed exactly once with an undefined
(garbage) value stored in I. The problem is that Fortran allows whitespace within
a variable identifier and does not require that variable identifiers be declared in
advance. This means that the parser has to look far ahead to decide whether
there is one token, DO5I, or three, DO, 5, and I. The parser cannot parse the DO

statement unambiguously until the . or , is encountered.
This is a famous error that caused the failure of at least one satellite launch

worth tens of millions of dollars. An important lesson for designing programming
languages is that changing the syntax of a legal program slightly should not give
another legal program.

9.4.1 A simple grammar

We use the following simple grammar for a subset of English:

〈Sentence〉 ::= 〈NounPhrase〉 〈VerbPhrase〉
〈NounPhrase〉 ::= 〈Determiner〉 〈Noun〉 〈RelClause〉 | 〈Name〉
〈VerbPhrase〉 ::= 〈TransVerb〉 〈NounPhrase〉 | 〈IntransVerb〉
〈RelClause〉 ::= who 〈VerbPhrase〉 | ε

〈Determiner〉 ::= every | a

〈Noun〉 ::= man | woman

〈Name〉 ::= john | mary

〈TransVerb〉 ::= loves

〈IntransVerb〉 ::= lives

Here ε means that the alternative is empty (nothing is chosen). Some examples
of sentences in this grammar are:

“john loves mary”
“a man lives”
“every woman who loves john lives”

Let us write a parser that generates an equivalent sentence in the predicate cal-
culus. For example, parsing the sentence “a man lives” will generate the term
exists(X and(man(X) lives(X)) in the syntax of the relational computation
model, which represents ∃x.man(x) ∧ lives(x). The parse tree is a sentence in
predicate calculus that represents the meaning of the natural language sentence.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

656 Relational Programming

9.4.2 Parsing with the grammar

The first step is to parse with the grammar, i.e., to accept valid sentences of the
grammar. Let us represent the sentence as a list of atoms. For each nonterminal
in the grammar, we write a function that takes an input list, parses part of it,
and returns the unparsed remainder of the list. For 〈TransVerb〉 this gives:

proc {TransVerb X0 X}
X0=loves|X

end

This can be called as:

{TransVerb [loves a man] X}

which parses “loves” and binds X to [a man] . If the grammar has a choice, then
the procedure uses the choice statement to represent this. For 〈Name〉 this gives:

proc {Name X0 X}
choice X0=john|X [] X0=mary|X end

end

This picks one of the two alternatives. If a nonterminal requires another nonter-
minal, then the latter is called as a procedure. For 〈VerbPhrase〉 this gives:

proc {VerbPhrase X0 X}
choice X1 in

{TransVerb X0 X1} {NounPhrase X1 X}
[] {IntransVerb X0 X}
end

end

Note how X1 is passed from TransVerb to NounPhrase . Continuing in this way
we can write a procedure for each of the grammar’s nonterminal symbols.

To do the parse, we execute the grammar with encapsulated search. We would
like the execution to succeed for correct sentences and fail for incorrect sentences.
This will not always be the case, depending on how the grammar is defined and
which search we do. For example, if the grammar is left-recursive then doing a
depth-first search will go into an infinite loop. A left-recursive grammar has at
least one rule whose first alternative starts with the nonterminal, like this:

〈NounPhrase〉 ::= 〈NounPhrase〉 〈RelPhrase〉 | 〈Noun〉

In this rule, a 〈NounPhrase〉 consists first of a 〈NounPhrase〉! This is not necessarily
wrong; it just means that we have to be careful how we parse with the grammar.
If we do a breadth-first search or an iterative deepening search instead of a depth-
first search, then we are guaranteed to find a successful parse, if one exists.

9.4.3 Generating a parse tree

We would like our parser to do more than just succeed or fail. Let us extend it to
generate a parse tree. We can do this by making our procedures into functions.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.4 Natural language parsing 657

For example, let us extend 〈Name〉 to output the name it has parsed:

fun {Name X0 X}
choice

X0=john|X john
[] X0=mary|X mary
end

end

When 〈Name〉 parses “john”, it outputs the atom john . Let us extend 〈TransVerb〉
to output the predicate loves(x, y), where x is the subject and y is the object.
This gives:

fun {TransVerb S O X0 X}
X0=loves|X
loves(S O)

end

Note that 〈TransVerb〉 also has two new inputs, S and O. These inputs will be
filled in when it is called.

9.4.4 Generating quantifiers

Let us see one more example, to show how our parser generates the quantifiers
“for all” and “there exists”. They are generated for determiners:

fun {Determiner S P1 P2 X0 X}
choice

X0=every|X
all(S imply(P1 P2))

[] X0=a|X
exists(S and(P1 P2))

end
end

The determiner “every” generates a “for all”. The sentence “every man loves
mary” gives the term all(X imply(man(X) loves(X mary))) , which corre-
sponds to ∀x.man(x) → loves(x, mary). In the call to 〈Determiner〉, P1 will be
bound to man(X) and P2 will be bound to loves(X mary) . These bindings are
done inside 〈NounPhrase〉, which finds out what the 〈Noun〉 and 〈RelClause〉 are,
and passes this information to 〈Determiner〉:

fun {NounPhrase N P1 X0 X}
choice P P2 P3 X1 X2 in

P={Determiner N P2 P1 X0 X1}
P3={Noun N X1 X2}
P2={RelClause N P3 X2 X}
P

[] N={Name X0 X}
P1

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

658 Relational Programming

fun {Determiner S P1 P2 X0 X}
choice

X0=every|X
all(S imply(P1 P2))

[] X0=a|X
exists(S and(P1 P2))

end
end

fun {Noun N X0 X}
choice

X0=man|X
man(N)

[] X0=woman|X
woman(N)

end
end

fun {Name X0 X}
choice

X0=john|X
john

[] X0=mary|X
mary

end
end

fun {TransVerb S O X0 X}
X0=loves|X
loves(S O)

end

fun {IntransVerb S X0 X}
X0=lives|X
lives(S)

end

Figure 9.5: Natural language parsing (simple nonterminals)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.4 Natural language parsing 659

fun {Sentence X0 X}
P P1 N X1 in

P={NounPhrase N P1 X0 X1}
P1={VerbPhrase N X1 X}
P

end

fun {NounPhrase N P1 X0 X}
choice P P2 P3 X1 X2 in

P={Determiner N P2 P1 X0 X1}
P3={Noun N X1 X2}
P2={RelClause N P3 X2 X}
P

[] N={Name X0 X}
P1

end
end

fun {VerbPhrase S X0 X}
choice O P1 X1 in

P1={TransVerb S O X0 X1}
{NounPhrase O P1 X1 X}

[] {IntransVerb S X0 X}
end

end

fun {RelClause S P1 X0 X}
choice P2 X1 in

X0=who|X1
P2={VerbPhrase S X1 X}
and(P1 P2)

[] X0=X
P1

end
end

Figure 9.6: Natural language parsing (compound nonterminals)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

660 Relational Programming

end

Since P1 and P2 are single-assignment variables, they can be passed to 〈Determiner〉
before they are bound. In this way, each nonterminal brings its piece of the puzzle
and the whole grammar fits together.

9.4.5 Running the parser

The complete parser is given in Figures 9.5 and 9.6. Figure 9.5 shows the simple
nonterminals, which enumerate atoms directly. Figure 9.6 shows the compound
nonterminals, which call other nonterminals. To run the parser, feed both figures
into Mozart. Let us start by parsing some simple sentences. For example:

fun {Goal}
{Sentence [mary lives] nil}

end
{Browse {SolveAll Goal}}

The SolveAll call will calculate all possible parse trees. This displays:

[lives(mary)]

This is a list of one element since there is only a single parse tree. How about
the following sentence:

fun {Goal}
{Sentence [every man loves mary] nil}

end

Parsing this gives:

[all(X imply(man(X) loves(X mary)))]

To see the unbound variable X, choose the Minimal Graph representation in the
browser. Let us try a more complicated example:

fun {Goal}
{Sentence [every man who lives loves a woman] nil}

end

Parsing this gives:

[all(X
imply(and(man(X) lives(X))

exists(Y and(woman(Y) loves(X Y)))))]

9.4.6 Running the parser “backwards”

So far, we have given sentences and parsed them. This shows only part of what
our parser can do. In general, it can take any input to Sentence that contains
unbound variables and find all the parses that are consistent with that input.
This shows the power of the choice statement. For example, let us find all
sentences of three words:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.4 Natural language parsing 661

fun {Goal}
{Sentence [_ _ _] nil}

end

Executing this goal gives the following eight parse trees:

[all(A imply(man(A) lives(A)))
all(B imply(woman(B) lives(B)))
exists(C and(man(C) lives(C)))
exists(D and(woman(D) lives(D)))
loves(john john)
loves(john mary)
loves(mary john)
loves(mary mary)]

See if you can find out which sentence corresponds to each parse tree. For exam-
ple, the first tree corresponds to the sentence “every man lives”.

The ability to compute with partial information, which is what our parser
does, is an important step in the direction of constraint programming. Chapter 12
gives an introduction to constraint programming.

9.4.7 Unification grammars

Our parser does more than just parse; it also generates a parse tree. We did
this by extending the code of the parser, “piggybacking” the generation on the
actions of the parser. There is another, more concise way to define this: by
extending the grammar so that nonterminals have arguments. For example, the
nonterminal 〈Name〉 becomes 〈Name〉(N), which means “the current name is N”.
When 〈Name〉 calls its definition, N is bound to john or mary , depending on
which rule is chosen. Other nonterminals are handled in the same way. For
example, 〈TransVerb〉 becomes 〈TransVerb〉(S O P), which means “the current
verb links subject S and object O to make the phrase P”. When 〈TransVerb〉
calls its definition, the corresponding arguments are bound together. If S and
O are inputs, 〈TransVerb〉 constructs P, which has the form loves(S O) . After
extending the whole grammar in similar fashion (following the parser code), we
get the following rules:

〈Sentence〉(P) ::= 〈NounPhrase〉(N P1 P) 〈VerbPhrase〉(N P1)
〈NounPhrase〉(N P1 P) ::= 〈Determiner〉(N P2 P1 P) 〈Noun〉(N P3)

〈RelClause〉(N P3 P2)
〈NounPhrase〉(N P1 P1) ::= 〈Name〉(N)
〈VerbPhrase〉(S P) ::= 〈TransVerb〉(S O P1) 〈NounPhrase〉(O P1 P)
〈VerbPhrase〉(S P) ::= 〈IntransVerb〉(S P)
〈RelClause〉(S P1 and(P1 P2)) ::= who 〈VerbPhrase〉(S P2)
〈RelClause〉(S P1 P1) ::= ε

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

662 Relational Programming

〈Determiner〉(S P1 P2 all(S imply(P1 P2))) ::= every

〈Determiner〉(S P1 P2 exists(S and(P1 P2)) ::= a

〈Noun〉(N man(N)) ::= man

〈Noun〉(N woman(N)) ::= woman

〈Name〉(john) ::= john

〈Name〉(mary) ::= mary

〈TransVerb〉(S O loves(S O)) ::= loves

〈IntransVerb〉(S lives(S)) ::= lives

These rules correspond exactly to the parser program we have written. You can
see the advantage of using the rules: they are more concise and easier to under-
stand than the program. They can be automatically translated into a program.
This translation is so useful that the Prolog language has a built-in preprocessor
to support it.

This kind of grammar is called a definite clause grammar, or DCG, because
each rule corresponds to a kind of Horn clause called a definite clause. Each
nonterminal can have arguments. When a nonterminal is matched with a rule,
the corresponding arguments are unified together. DCGs are a simple example
of a very general kind of grammar called unification grammar. Many different
kinds of unification grammar are used in natural language parsing. The practical
ones use constraint programming instead of relational programming.

9.5 A grammar interpreter

The previous section shows how to build simple parser and how to extend it
to return a parse tree. For each new grammar we want to parse, we have to
build a new parser. The parser is “hardwired”: its implementation is based
on the grammar it parses. Wouldn’t it be nice to have a generic parser that
would work for all grammars, simply by passing the grammar definition as an
argument? A generic parser is easier to use and more flexible than a hardwired
parser. To represent the grammar in a programming language, we encode it as
a data structure. Depending on how flexible the language is, the encoding will
look almost like the grammar’s EBNF definition.

The generic parser is an example of an interpreter. Recall that an interpreter
is a program written in language L1 that accepts programs written in another
language L2 and executes them. For the generic parser, L1 is the relational
computation model and L2 is a grammar definition.

The generic parser uses the same execution strategy as the hardwired parser.
It keeps track of two extra arguments: the token sequence to be parsed and
the rest of the sequence. It uses a choice operation to choose a rule for each
nonterminal. It is executed with encapsulated search.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.5 A grammar interpreter 663

9.5.1 A simple grammar

To keep things simple in describing the generic parser, we use a small gram-
mar that defines s-expressions. An s-expression starts with a left parenthesis,
followed by a possibly empty sequence of atoms or s-expressions, and ends in
a right parenthesis. Two examples are (a b c) and (a (b) () (d (c))). S-
expressions were originally used in Lisp to represent nested lists. Our grammar
will parse s-expressions and build the list that they represent. Here is the gram-
mar’s definition:

〈sexpr〉(s(As)) ::= ’(’ 〈seq〉(As) ’)’
〈seq〉(nil) ::= ε
〈seq〉(A|As) ::= 〈atom〉(A) 〈seq〉(As)
〈seq〉(A|As) ::= 〈sexpr〉(A) 〈seq〉(As)
〈atom〉(X) ::= X & (X is an atom different from ’(’ and ’)’)

This definition extends the EBNF notation by allowing terminals to be variables
and by adding a boolean condition to check whether a rule is valid. These exten-
sions occur in the definition of 〈atom〉(X). The argument X represents the actual
atom that is parsed. To avoid confusion between an atom and the left or right
parenthesis of an s-expression, we check that the atom is not a parenthesis.

9.5.2 Encoding the grammar

Let us encode this grammar as a data structure. We will first encode rules. A rule
is a tuple with two parts, a head and a body. The body is a list of nonterminals
and terminals. For example, the rule defining 〈sexpr〉 could be written as:

local As in
rule(sexpr(s(As)) [´ (´ seq(As) ´) ´])

end

The unbound variable As will be bound when the rule is used. This representation
is not quite right. There should be a fresh variable As each time the rule is used.
To implement this, we encode the rule as a function:

fun {$} As in
rule(sexpr(s(As)) [´ (´ seq(As) ´) ´])

end

Each time the function is called, a tuple is returned containing a fresh variable.
This is still not completely right, since we cannot distinguish nonterminals with-
out arguments from terminals. To avoid this confusion, we wrap terminals in a
tuple with label t . (This means that we cannot have a nonterminal with label
t .) This gives the final, correct representation:

fun {$} As in
rule(sexpr(s(As)) [t(´ (´) seq(As) t(´) ´)])

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

664 Relational Programming

r(sexpr:[fun {$} As in
rule(sexpr(s(As)) [t(´ (´) seq(As) t(´) ´)])

end]
seq: [fun {$}

rule(seq(nil) nil)
end
fun {$} As A in

rule(seq(A|As) [atom(A) seq(As)])
end
fun {$} As A in

rule(seq(A|As) [sexpr(A) seq(As)])
end]

atom: [fun {$} X in
rule(atom(X)

[t(X)
fun {$}

{IsAtom X} andthen X\= ´ (´ andthen X\= ´) ´
end])

end])

Figure 9.7: Encoding of a grammar

Now that we can encode rules, let us encode the complete grammar. We represent
the grammar as a record where each nonterminal has one field. This field contains
a list of the nonterminal’s rules. We have seen that a rule body is a list containing
nonterminals and terminals. We add a third kind of entry, a boolean function
that has to return true for the rule to be valid. This corresponds to the condition
we used in the definition of 〈atom〉(X).

Figure 9.7 gives the complete grammar for s-expressions encoded as a data
structure. Note how naturally this encoding uses higher-order programming:
rules are functions that themselves may contain boolean functions.

9.5.3 Running the grammar interpreter

Let us define an ADT for the grammar interpreter. The function NewParser

takes a grammar definition and returns a parser:

Parse={NewParser Rules}

Rules is a record like the grammar definition in Figure 9.7. Parse takes as
inputs a goal to be parsed, Goal , and a list of tokens, S0. It does the parse and
returns the unparsed remainder of S0 in S:

{Parse Goal S0 S}

While doing the parse, it can also build a parse tree because it unifies the argu-
ments of the nonterminal with the head of the chosen rule.

The parser is executed with encapsulated search. Here is an example:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.5 A grammar interpreter 665

{Browse {SolveOne
fun {$} E in

{Parse sexpr(E)
[´ (´ hello ´ (´ this is an sexpr ´) ´ ´) ´] nil}

E
end }}

This returns a list containing the first solution:

[s([hello s([this is an sexpr])])]

9.5.4 Implementing the grammar interpreter

Figure 9.8 gives the definition of the grammar interpreter. NewParser creates
a parser Parse that references the grammar definition in Rules . The parser is
written as a case statement. It accepts four kinds of goals:

• A list of other goals. The parser is called recursively for all goals in the list.

• A procedure, which should be a zero-argument boolean function. The func-
tion is called and its result is unified with true . If the result is false , then
the parser fails, which causes another alternative to be chosen.

• A terminal, represented as the tuple t(X) . This terminal is unified with the
next element in the input list.

• A nonterminal, represented as a record. Its label is used to look up the
rule definitions in Rules . Then a rule is chosen nondeterministically with
ChooseRule and Parse is called recursively.

This structure is typical of interpreters. They examine the input and decide what
to do depending on the input’s syntax. They keep track of extra information
(here, the arguments S0 and S) to help do the work.

Dynamic choice points

The parser calls ChooseRule to choose a rule for a nonterminal. Using the
choice statement, we could write ChooseRule as follows:

proc {ChooseRule Rs Goal Body}
case Rs of nil then fail
[] R|Rs2 then

choice
rule(Goal Body)={R}

[]
{ChooseRule Rs2 Goal Body}

end
end

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

666 Relational Programming

fun {NewParser Rules}
proc {Parse Goal S0 S}

case Goal
of nil then S0=S
[] G|Gs then S1 in

{Parse G S0 S1}
{Parse Gs S1 S}

[] t(X) then S0=X|S
else if {IsProcedure Goal} then

{Goal}= true
S0=S

else Body Rs in /* Goal is a nonterminal */
Rs=Rules.{Label Goal}
{ChooseRule Rs Goal Body}
{Parse Body S0 S}

end end
end
proc {ChooseRule Rs Goal Body}

I={Space.choose {Length Rs}}
in

rule(Goal Body)={{List.nth Rs I}}
end

in
Parse

end

Figure 9.8: Implementing the grammar interpreter

This definition creates a series of binary choice points. (Note that it calls the
rule definition R to create a fresh rule instance.) There is another, more flexible
and efficient way to write ChooseRule . Instead of using the choice statement,
which implies a statically fixed number of choices, we use another operation,
Space.choose , which works with any number of choices. Space.choose is
part of the Space module, which defines operations on computation spaces. The
curious reader can skip ahead to Chapter 12 to find out more about them. But it
is not necessary to understand computation spaces to understand Space.choose .

The call I={Space.choose N} creates a choice point with N alternatives and
returns I , the alternative that is picked by the search strategy. I ranges from
1 to N. The number of alternatives can be calculated at run-time, wherease in
the choice statement it is statically known as part of the program’s syntax. In
fact, the choice statement is a linguistic abstraction that is implemented with
Space.choose . The following statement:

choice
〈stmt〉1

[] ... []

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.6 Databases 667

〈stmt〉n
end

is translated as:

case {Space.choose N}
of 1 then 〈stmt〉1
...
[] N then 〈stmt〉n
end

So the Space.choose operation is the real basic concept and the choice state-
ment is a derived concept.

Meta-interpreters

Our interpreter is actually a special kind of interpreter called a meta-interpreter
since it uses the relational model’s unify operation directly to implement the
grammar’s unify operation. In general, any interpreter of L2 that uses opera-
tions of L1 directly to implement the same operations in L2 is called a meta-
interpreter. Writing meta-interpreters is a standard programming technique in
languages whose primitive operations are complex. It avoids having to reimple-
ment these operations and it is more efficient. A popular case is Prolog, which
has unification and search as primitives. It is easy to explore extensions to Prolog
by writing meta-interpreters.

9.6 Databases

A database is a collection of data that has a well-defined structure. Usually, it
is assumed that the data are long-lived, in some loose sense, e.g., they survive
independently of whether the applications or the computer itself is running. (The
latter property is often called persistence.)

There are many ways to organize the data in a database. One of the most
popular ways is to consider the data as a set of relations, where a relation is a
set of tuples. A database organized as a set of relations is called a relational
database. For example, a graph can be defined by one relation, which is a set of
tuples where each tuple represents one edge (see Figure 9.9):

edge(1 2) edge(2 1) edge(2 3) edge(3 4)
edge(2 5) edge(5 6) edge(4 6) edge(6 7)
edge(6 8) edge(1 5) edge(5 1)

A relational database explicitly stores these tuples so that we can calculate with
them. We can use the relational computation model of this chapter to do these
calculations. Typical operations on a relational database are query (reading the
data) and update (modifying the data):

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

668 Relational Programming

• A query is more than just a simple read, but is a logical formula whose
basic elements are the relations in the database. It is the role of the DBMS
(database management system) to find all tuples that satisfy the formula.

• An update means to add information to the database. This information
must be of the right kind and not disturb the organization of the database.
The update is usually implemented as a transaction (see Section 8.5).

This section touches on just a few parts of the area of databases. For more
information, we refer the reader to the comprehensive introduction by Date [42].

Relational programming is well-suited for exploring the concepts of relational
databases. There are several reasons for this:

• It places no restrictions on the logical form of the query. Even if the query is
highly disjunctive (it has many choices), it will be treated correctly (albeit
slowly).

• It allows to experiment with deductive databases. A deductive database
is a database whose implementation can deduce additional tuples that are
not explicitly stored. Typically, the deductive database allows defining new
relations in terms of existing relations. No tuples are stored for these new
relations, but they can be used just like any other relation.

The deep reason for these properties is that the relational computation model is
a form of logic programming.

9.6.1 Defining a relation

Let us first define an abstraction to calculate with relations. For conciseness, we
use object-oriented programming to define the abstraction as a class, RelationClass .

• A new relation is an instance of RelationClass , e.g., Rel={New RelationClass

init} creates the initially empty relation Rel .

• The following operations are possible:

– {Rel assert(T)} adds the tuple T to Rel . Assert can only be done
outside a relational program.

– {Rel assertall(Ts)} adds the list of tuples Ts to Rel . Assertall
can only be done outside a relational program.

– {Rel query(X)} binds X to one of the tuples in Rel . X can be any
partial value. If more than one tuple is compatible with X, then search
can enumerate all of them. Query can only be done inside a relational
program.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.6 Databases 669

1 2 3 4 5 6 7 8

Figure 9.9: A simple graph

These operations are similar to what a Prolog system provides. For example,
assert is a limited version of Prolog’s assert/1 that can assert facts (i.e., tu-
ples), not complete clauses. For the examples that follow, we assume that Rel

has efficiency similar to a good Prolog implementation [29]. That is, the set of
tuples is stored in a dictionary that indexes them on their first argument. This
makes it possible to write efficient programs. Without this indexing, even simple
lookups would need to do linear search. More sophisticated indexing is possible,
but in practice first-argument indexing is often sufficient. Section 9.6.3 gives an
implementation of RelationClass that does first-argument indexing.

9.6.2 Calculating with relations

An example relation

Let us show an example of this abstraction for doing calculations on graphs. We
use the example graph of Figure 9.9. We define this graph as two relations: a set
of nodes and a set of edges. Here is the set of nodes:

NodeRel={New RelationClass init}
{NodeRel

assertall([node(1) node(2) node(3) node(4)
node(5) node(6) node(7) node(8)])}

The tuple node(1) represents the node 1. Here is the set of edges:

EdgeRel={New RelationClass init}
{EdgeRel

assertall([edge(1 2) edge(2 1) edge(2 3) edge(3 4)
edge(2 5) edge(5 6) edge(4 6) edge(6 7)
edge(6 8) edge(1 5) edge(5 1)])}

The tuple edge(1 2) represents an edge from node 1 to node 2. We can query
NodeRel or EdgeRel with the message query . Let us define the procedures
NodeP and EdgeP to make this more concise:

proc {NodeP A} {NodeRel query(node(A))} end
proc {EdgeP A B} {EdgeRel query(edge(A B))} end

With these definitions of NodeP and EdgeP we can write relational programs.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

670 Relational Programming

Some queries

Let us start with a very simple query: what edges are connected to node 1? We
define the query as a one-argument procedure:

proc {Q ?X} {EdgeP 1 X} end

This calls EdgeP with first argument 1. We calculate the results by using Q as
argument to a search operation:

{Browse {SolveAll Q}}

This displays:

[2 5]

Here is another query, which defines paths of length three whose nodes are in
increasing order:

proc {Q2 ?X} A B C D in
{EdgeP A B} A<B= true
{EdgeP B C} B<C= true
{EdgeP C D} C<D=true
X=path(A B C D)

end

We list all paths that satisfy the query:

{Browse {SolveAll Q2}}

This displays:

[path(3 4 6 7) path(3 4 6 8) path(2 3 4 6)
path(2 5 6 7) path(2 5 6 8) path(1 2 3 4)
path(1 2 5 6) path(1 5 6 7) path(1 5 6 8)]

The query Q2 has two kinds of calls, generators (the calls to EdgeP) and testers
(the conditions). Generators can return several results. Testers can only fail. For
efficiency, it is a good idea to call the testers as early as possible, i.e., as soon as
all their arguments are bound. In Q2, we put each tester immediately after the
generator that binds its arguments.

Paths in a graph

Let us do a more realistic calculation. We will calculate the paths in our example
graph. This is an example of a deductive database calculation, i.e., we will perform
logical inferences on the database. We define a path as a sequence of nodes such
that there is an edge between each node and its successor and no node occurs more
than once. For example, [1 2 5 6] is a path in the graph defined by EdgeP.
We can define path as a derived relation PathP , i.e., a new relation defined in
terms of EdgeP. Figure 9.10 shows the definition.

The relation {PathP A B Path} is true if Path is a path from A to B. PathP

uses an auxiliary definition, Path2P , which has the extra argument Trace , the
list of already-encountered nodes. Trace is used to avoid using the same node

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.6 Databases 671

proc {PathP ?A ?B ?Path}
{NodeP A}
{Path2P A B [A] Path}

end

proc {Path2P ?A ?B Trace ?Path}
choice

A=B
Path={Reverse Trace}

[] C in
{EdgeP A C}
{Member C Trace}= false
{Path2P C B C|Trace Path}

end
end

Figure 9.10: Paths in a graph

twice and also to accumulate the path. Let us look more closely at Path2P . It
has two choices, each of which has a logical reading:

• In the first choice, A=B, which means the path is complete. In that case,
the path is simply the reverse of Trace .

• In the second choice, we extend the path. We add an edge from A to another
node C. The path from A to B consists of an edge from A to C and a path
from C to B. We verify that the edge C is not in Trace .

The definition of Path2P is an example of logic programming: the logical defi-
nition of Path2P is used to perform an algorithmic calculation. Note that the
definition of Path2P is written completely in the relational computation model.
It is an interesting combination of deterministic and nondeterministic calculation:
EdgeP and Path2P are both nondeterministic and the list operations Reverse

and Member are both deterministic.

9.6.3 Implementing relations

Figure 9.11 shows the implementation of RelationClass . It is quite simple:
it uses a dictionary to store the tuples and the choice statement to enumerate
query results. The choice is done in the procedure Choose , which successively
chooses all elements of a list. First-argument indexing is a performance optimiza-
tion. It is implemented by using a new operation, IsDet , to check whether the
argument is bound or unbound. If the first argument is unbound, then all tuples
are possible results. If the first argument is bound, then we can use it as an index
into a much smaller set of possible tuples.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

672 Relational Programming

proc {Choose ?X Ys}
choice Ys=X|_
[] Yr in Ys=_|Yr {Choose X Yr} end

end

class RelationClass
attr d
meth init

d:={NewDictionary}
end
meth assertall(Is)

for I in Is do { self assert(I)} end
end
meth assert(I)

if {IsDet I.1} then
Is={Dictionary.condGet @d I.1 nil} in
{Dictionary.put @d I.1 {Append Is [I]}}

else
raise databaseError(nonground(I)) end

end
end
meth query(I)

if {IsDet I} andthen {IsDet I.1} then
{Choose I {Dictionary.condGet @d I.1 nil}}

else
{Choose I {Flatten {Dictionary.items @d}}}

end
end

end

Figure 9.11: Implementing relations (with first-argument indexing)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.7 The Prolog language 673

〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| choice 〈s〉1 [] ... [] 〈s〉n end Choice
| fail Failure
| {IsDet 〈x〉 〈y〉} Boundness test
| {NewCell 〈x〉 〈y〉} Cell creation
| {Exchange 〈x〉 〈y〉 〈z〉} Cell exchange

Table 9.3: The extended relational kernel language

Extended relational computation model

The implementation in Figure 9.11 extends the relational computation model
in two ways: it uses stateful dictionaries (i.e., explicit state) and the operation
IsDet .2 This is a general observation: to implement useful relational abstrac-
tions, we need state (for modularity) and the ability to detect whether a variable
is still unbound or not (for performance optimization). Table 9.3 shows the kernel
language of this extended computation model. Because of encapsulated search,
a running relational program can only read state, not modify it. The boolean
function {IsDet X} returns true or false depending on whether X is not an un-
bound variable or is an unbound variable. A variable that is not unbound is called
determined. IsDet corresponds exactly to the Prolog operation nonvar(X).

9.7 The Prolog language

Despite many extensions and new ideas, Prolog is still the most popular language
for practical logic programming [182]. This is partly because Prolog has a quite
simple operational model that easily accommodates many extensions and partly
because no consensus has yet been reached on a successor. The computation
model of the “pure” subset of Prolog, i.e., Prolog minus its extralogical features,
is exactly the relational computation model.

Modern implementations of Prolog are efficient and provide rich functionality
for application development (e.g., [29]). It is possible to compile Prolog with
similar execution efficiency as C; the Aquarius and Parma systems are construc-

2Leaving aside exceptions, since they are only used for detecting erroneous programs.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

674 Relational Programming

tive proof of this [194, 188]. The successful series of conferences on Practical
Applications of Prolog is witness to the usefulness of Prolog in industry.

Prolog is generally used in application areas in which complex symbolic manip-
ulations are needed, such as expert systems, specialized language translators, pro-
gram generation, data transformation, knowledge processing, deductive databas-
es, and theorem proving. There are two application areas in which Prolog is still
predominant over other languages: natural language processing and constraint
programming. The latter in particular has matured from being a subfield of log-
ic programming into being a field in its own right, with conferences, practical
systems, and industrial applications.

Prolog has many advantages for such applications. The bulk of programming
can be done cleanly in its pure declarative subset. Programs are concise due to
the expressiveness of unification and the term notation. Memory management is
dynamic and implicit. Powerful primitives exist for useful non-declarative opera-
tions. The call/1 provides a form of higher-orderness (first-class procedures, but
without lexical scoping). The setof/3 provides a form of encapsulated search
that can be used as a database query language.

The two programming styles

Logic programming languages have traditionally been used in two very different
ways:

• For algorithmic problems, i.e., for which efficient algorithms are known.
Most applications written in Prolog, including expert systems, are of this
kind.

• For search problems, i.e., for which efficient algorithms are not known, but
that can be solved with search. For example, combinatoric optimization or
theorem proving. Most applications in constraint programming are of this
kind.

Prolog was originally designed as a compromise between these two styles. It
provides backtracking execution, which is just built-in depth-first search. This
compromise is not ideal. For algorithmic problems the search is not necessary. For
search problems the search is not good enough. This problem has been recognized
to some extent since the original conception of the language in 1972. The first
satisfactory solution, encapsulating search with computation spaces, was given
by the AKL language in 1990 [70, 92]. The unified model of this book simplifies
and generalizes the AKL solution (see Chapter 12).

9.7.1 Computation model

The Prolog computation model has a layered structure with three levels:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.7 The Prolog language 675

• The core consists of a simple theorem prover that uses Horn clauses and
that executes with SLDNF resolution [114]. The acronym SLDNF has a long
history; it means approximately “Selection in Linear resolution for Definite
clauses, augmented by Negation as Failure”. It defines a theorem prover
that executes like the relational computation model. Negation as failure
is a practical technique to deduce some negative information: if trying to
prove the atom 〈a〉 fails finitely, then deduce ¬〈a〉. Finite failure means
that the search tree (defined in Section 9.1.2) has only a finite number of
leaves (no infinite loops) and all are failed. This can easily be detected in
the relational model: it means simply that Solve finds no solutions and
does not loop. Negation as failure is incomplete: if the theorem prover loops
indefinitely or blocks trying to prove 〈a〉 then we cannot deduce anything.

• The second level consists of a series of extralogical features that are used to
modify and extend the resolution-based theorem prover. These features con-
sist of the freeze/2 operation (giving data-driven execution, implemented
with coroutining), the bagof/3 and setof/3 operations (giving aggregate
operations similar to database querying), the call/1 operation (giving a
limited form of higher-order programming), the cut operation “!” (used to
prune search), and the var/1 and nonvar/1 operations (also used to prune
search).

• The third level consists of the assert/1 and retract/1 operations, which
provide explicit state. This is important for program design and modularity.

The Prolog computation model is the heart of a whole family of extensions. One
of the most important extensions is constraint logic programming. It retains the
sequential search strategy of Prolog, but extends it with new data structures and
constraint solving algorithms. See Chapter 12 for more information.

There is a second family of computation models for logic programming, called
concurrent logic programming. These are centered around the nondeterministic
concurrent model, which is explained in Section 5.7.1. This model allows to write
logic programs for long-lived concurrent calculations that interact amongst each
other and with the real world. This makes it possible to write operating systems.

In the late 1980’s, the first deep synthesis of these two families was done by
Maher and Saraswat, resulting in concurrent constraint programming [117, 163].
This model was first realized practically by Haridi and Janson [70, 92]. The
general computation model of this book is a concurrent constraint model. For
more information about the history of these ideas, we recommend [196].

Future developments

There are three major directions in the evolution of logic programming languages:

• Mercury. An evolution of Prolog that is completely declarative, statically
typed and moded, and higher-order. It focuses on the algorithmic program-
ming style. It keeps the Horn clause syntax and global backtracking.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

676 Relational Programming

• Oz. An evolution of Prolog and concurrent logic programming that cleanly
separates the algorithmic and search programming styles. It also cleanly
integrates logic programming with other computation models. It replaces
the Horn clause syntax with a syntax that is closer to functional languages.

• Constraint programming. An evolution of Prolog that consists of a set
of constraint algorithms and ways to combine them to solve complex op-
timization problems. This focuses on the search programming style. Con-
straint techniques can be presented as libraries (e.g., ILOG Solver is a C++
library) or language extensions (e.g., SICStus Prolog and Oz).

9.7.2 Introduction to Prolog programming

Let us give a brief introduction to programming in Prolog. We start with a simple
program and continue with a more typical program. We briefly explain how to
write good programs, which both have a logical reading and execute efficiently.
We conclude with a bigger program that shows Prolog at its best: constructing a
KWIC index. For more information on Prolog programming, we recommend one
of many good textbooks, such as [182, 21].

A simple predicate

Let us once again define the factorial function, this time as a Prolog predicate.

factorial(0, 1).

factorial(N, F) :- N>0,

N1 is N-1, factorial(N1, F1), F is N*F1.

A Prolog program consists of a set of predicates, where each predicate consists
of a set of clauses. A predicate corresponds roughly to a function or procedure
in other languages. Each clause, when considered by itself, should express a
property of the predicate. This allows us to do purely logical reasoning about the
program. The two clauses of factorial/2 satisfy this requirement. Note that
we identify the predicate by its name and its number of arguments.

A particularity about Prolog is that all arguments are terms, i.e., tuples in our
terminology. This shows up clearly in its treatment of arithmetic. The syntax
N-1 denotes a term with label ’-’ and two arguments N and 1. To consider the
term as a subtraction, we pass it to the predicate is/2, which interprets it and
does the subtraction.3 This is why we have to use the extra variables N1 and F1.
Let us call the predicate with N bound and F unbound:

| ?- factorial(10, F).

3Most Prolog compilers examine the term at compile time and generate a sequence of in-
structions that does the arithmetic without constructing the term.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.7 The Prolog language 677

(The notation | ?- is part of the Prolog system; it means that we are perform-
ing an interactive query.) This returns with F bound to 3628800. How is this
answer obtained? The Prolog system considers the clauses as precise operational
instructions on how to execute. When calling factorial, the system tries each
clause in turn. If the clause head unifies with the caller, then the system executes
the calls in the clause body from left to right. If the clause head does not unify
or a body call fails, then the system backtracks (i.e., undoes all bindings done in
the clause) and tries the next clause. If the last clause has been tried, then the
whole predicate fails.

Calculating logically with lists

Factorial is a rather atypical Prolog predicate, since it does not use the power
of unification or search. Let us define another predicate that is more in the
spirit of the language, namely sublist(L1, L2), which is true for lists L1 and
L2 whenever L1 occurs as a contiguous part of L2:

sublist(L1, L2) :- append(V, T, L2), append(H, L1, V).

Logically, this says “L1 is a sublist of L2 if there exist lists H and T such that
appending together H, L1, and T gives L2”. These variables do not need an
explicit declaration; they are declared implicitly with a scope that covers the
whole clause. The order of the append/3 calls might seem strange, but it does
not change the logical meaning. We will see later why this order is important.
We define append/3 as follows:

append([], L2, L2).

append([X|M1], L2, [X|M3]) :- append(M1, L2, M3).

In Prolog syntax, [] denotes the empty list nil and [X|M1] denotes the list
pair X|M1. In the relational model of Chapter 9, this program can be written as
follows:

proc {Sublist L1 L2} H V T in
{Append V T L2} {Append H L1 V}

end

proc {Append L1 L2 L3}
choice

L1=nil L3=L2
[] X M1 M3 in

L1=X|M1 L3=X|M3 {Append M1 L2 M3}
end

end

Each clause is an alternative in a choice statement. All the local variables in
the clause bodies are declared explicitly.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

