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R={New Remote.manager init}

creates a remote process and a local object R which is the remote process’s “man-
ager”. If no arguments are given, then the remote process is created on the same
machine as the caller process. With the right arguments it is possible to create
processes on other machines. For example, the call:

R={New Remote.manager init(host: ´ norge.info.ucl.ac.be ´ )}

creates a remote process on the host norge.info.ucl.ac.be. By default, the
remote process will be created using rsh (remote shell). In order for this to work,
the host must have been set up properly beforehand. The remote process can
also be created with ssh (secure shell). For information on this and other aspects
of Remote , please see the Mozart documentation [129].

Once a remote process has been created, it can be controlled through the
manager object R. This object has an interface that closely resembles that of
Module , i.e., it controls the instantiation of functors at the remote process. Call-
ing the manager with {R apply(F X)} installs functor F on the remote process
and returns the module in X.

There is a kind of “master-slave” relationship between the original process and
the new process. The original process can observe the new process’s behavior,
for example, to keep track of its resource consumption. The original process can
change the new process’s process priority, put it to sleep, and even terminate it if
necessary. The original process can give the new process limited versions of some
critical system modules, so that the new process behaves like a sand box.

11.7 Distribution protocols

We now briefly summarize the distribution protocols implemented in Mozart.
We first give an overview of all the different protocols for the different language
entities. We then focus on two particularly interesting protocols: the mobile state
protocol (used for cached cells and objects) and the distributed binding protocol
(used for dataflow variables). We end with a quick look at the distributed garbage
collector.

11.7.1 Language entities

Each language entity is implemented by one or more distributed algorithms. Each
algorithm respects the entity’s semantics if distribution is disregarded. The lan-
guage entities have the following protocols:

• Stateful entities are implemented with one of the following three protocols:

– Stationary state. All operations always execute on the process
where the state resides, called the target process. Remote invocations
send messages to this process. Conceptually, it is as if the invoking
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thread moves to the target process. When seen in this way, distribut-
ed exceptions and reentrant locking work correctly. Operations are
synchronous. Asynchronous operations require explicit programming,
e.g., by using thread ... end .

– Mobile state. In this case the invoking thread is stationary. The
right to update the state moves from one process to another. We call
this right the state pointer or content edge. An exchange operation will
first cause the state pointer to move to the executing process, so that
the exchange is always local [201, 197]. The mobile state protocol can
be seen as implementing a cache, i.e., it is a cache coherence protocol.

– Invalidation. This protocol optimizes the mobile state protocol when
reading is much more frequent than updating. A process that wants
to read the state sends a message to the target process and gets the
state in reply, thus creating a local replica of the state. A process
that wants to update the state must first explicitly invalidate all these
replicas by sending them an invalidation message. This guarantees
that the interleaving semantics of state updates is maintained. The
right to update the state still moves from one process to another.

• Single-assignment entities are implemented with a distributed unification
algorithm [71]. The key operation of this algorithm is a distributed bind
operation, which replaces the variable by whatever it is bound to, on all the
processes that know the variable. There are two variants of this algorithm:

– Lazy binding (on demand). The replacement is done on a process
only when the process needs the variable. This variant reduces the
number of network messages, but increases latency and keeps a depen-
dency on the variable’s home process.

– Eager binding (on supply). The replacement is done on a process
as soon as the variable is bound, whether or not the process needs the
variable.

The Mozart system currently implements just the eager binding algorithm.

• Stateless entities are implemented with one of the following three proto-
cols [3]:

– Lazy copying (on demand). The value is copied to a process only
when the process needs it. This reduces the number of network mes-
sages, but increases latency and keeps a dependency on the original
process.

– Eager copying (on supply, sent if not present). The value is not
sent as part of the message, but if upon reception of the message the
value is not present, then an immediate request is made for it. In most
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Kind of entity Algorithm Entity
Stateless Eager immediate copying record, integer

Eager copying procedure, class, functor
Lazy copying object-record

Single assignment Eager binding dataflow variable, stream
Stateful Stationary state port, thread, object-state

Mobile state cell, object-state

Table 11.1: Distributed algorithms

cases, this is the optimal protocol, since the value will be present on
the receiving process for all except the first message referencing it.

– Eager immediate copying (on supply, always sent). The value is
sent as part of the message. This has minimum latency, but can over-
load the network since values will be repeatedly sent to processes. It
is used to send record structures.

• In addition to these algorithms, there is a distributed garbage collection
algorithm. This algorithm works alongside the local garbage collection. The
algorithm does no global operations and is able to remove all garbage except
for cross-process cycles between stateful entities. The algorithm consists of
two parts: a credit mechanism and a time-lease mechanism. The credit
mechanism works well when there are no failures. It is a kind of weighted
reference counting [151]. Each language entity with remote references has a
supply of “credits”. Each remote reference to the entity must have at least
one credit. When a local garbage collection reclaims a remote reference,
then its credits are sent back. When the entity has no outstanding remote
credits and no local references, then it can be reclaimed. In the time-lease
mechanism, each distributed entity exists only for a limited time unless it
is periodically renewed by a message sent from a remote reference. This
handles the case of partial failure.

Table 11.1 shows the algorithms used by the current system for each language
entity. In this table, an object consists of two parts, the object-record (which
contains the class) and the object-state (the object’s internal cell). We conclude
that network operations6 are predictable for all language entities, which gives the
programmer the ability to manage network communications.

11.7.2 Mobile state protocol

The mobile state protocol is one of the distributed algorithms used to implement
stateful entities. Objects, cells, and locks are implemented with this protocol.
This section gives the intuition underlying the protocol and explains the network

6In terms of the number of network hops.
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operations it does. A formal definition of the protocol and a proof that it respects
the language semantics are given in [201]. An extension that is well-behaved in
case of network and process failure is given together with proof in [20]. The
Mozart system implements this extended protocol.

We use a graph notation to describe the protocol. Each (centralized) language
entity, i.e., record, procedure value, dataflow variable, thread, and cell, is repre-
sented by a node in the graph. To represent a distributed computation, we add
two additional nodes, called proxy and manager. Each language entity that has
remote references is represented by a star-like structure, with one manager and a
set of proxies. The proxy is the local reference of a remote entity. The manager
coordinates the protocol that implements the distribution behavior of the entity.
The manager is also called the coordinator.

Figure 11.6 shows a cell that has remote references on three processes. The cell
consists of three proxies P and one manager M. The cell content X is accessible
from the first proxy through the state pointer. A thread T on the third process
references the cell, which means that it references the third proxy.

What happens when T does an exchange operation? The state pointer is on a
different process from T, so the mobile state protocol is initiated to bring the state
pointer to T’s process. Once the state pointer is local to T, then the exchange
is performed. This implies the remarkable property that all cell operations are
always performed locally in the thread that initiates them.

The protocol to move the state pointer consists of three messages: get, put,
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and forward. Figure 11.7 shows how they are sent. The third proxy initiates the
move by sending a get request to M. The manager M plays the role of a serializer:
all requests pass through it. After receiving the get, M sends a forward message
to the first proxy. When the first proxy receives the forward, it sends a put to
the third proxy. This atomically transfers the state pointer from the first to the
third proxy.

11.7.3 Distributed binding protocol

The distributed binding protocol is used to bind dataflow variables that have
references on several processes. The general binding algorithm is called unifi-
cation; the distributed version does distributed unification. A formal definition
of the protocol and a proof that it respects the language semantics are given
in [71]. The Mozart system implements an extended version of this protocol that
is well-behaved in case of network and process failure.

When unification is made distributed it turns out that the whole algorithm
remains centralized except for one operation, namely binding a variable. To give
the intuition underlying distributed unification it is therefore sufficient to explain
distributed binding.

Figure 11.8 shows a dataflow variable V that has remote references on three
processes. Like the distributed cell, there are three proxies P and one manager
M. The manager has references to all proxies. On the first process, thread T1

references V and is suspended on the operation W=V+1. On the third process,
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thread T2 also references V and is about to do the binding V=10.

The protocol to bind V consists of two messages: request(X) and binding(X).
Figure 11.9 shows how they are sent. The third proxy initiates the protocol
by sending request(10) to M. The first such request received by M causes a
binding(10) to be sent to all proxies. This action is the heart of the algorithm.
The rest is details to make it work in all cases. If M is already bound when it
receives the request, then it simply ignores the request. This is correct since the
proxy that sent the request will receive a binding in due course. If a new proxy is
created on a fourth process, then it must register itself with the manager. There
are a few more such cases; they are all explained in [71].

This algorithm has several good properties. In the common case where the
variable is on just two processes, for example where the binding is used to return
the result of a computation, the algorithm’s latency is a single round trip. This is
the same as explicit message passing. A binding conflict (an attempt to bind the
same variable to two incompatible values) will cause an exception to be raised on
the process that is responsible for the conflict.

11.7.4 Memory management

When distribution is taken into account, the Mozart system has three levels of
garbage collection:

• A local garbage collector per process. This collector coordinates its work
with the distributed collectors.

• A distributed garbage collector that uses weighted reference counting.

• A distributed garbage collector based on a time-lease mechanism.

Weighted reference counting The first level of distributed garbage collec-
tion uses weighted reference counting [151]. This collector works when there are
no failures. It can rapidly remove all distributed garbage except for cross-process
cycles between stateful entities on different owner processes. Each remote ref-
erence has a nonzero amount of credit, that implies the continued aliveness of
the entity. When the remote reference is reclaimed, the credit is returned to the
owner. When the owner sees there is no longer any outstanding credit, then the
entity can be reclaimed if there are no more local references.

Weighted reference counting is efficient and scalable. First, creating a new
remote reference requires essentially zero network messages in addition to the
messages sent by the application. Second, each remote process does not need to
know any other process except the owner process. Third, the owner process does
not need to know any remote process.
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Time-lease mechanism The second level of distributed garbage collection
uses a time-lease mechanism. This collector works when there are permanent or
long-lived temporary failures. Each remote reference has only a limited lifetime (a
“lease on life”), and must periodically send a “lease renewal” message to the owner
process. If the owner process does not receive any lease renewal messages after a
given (long) time period, then it assumes that the reference may be considered
dead.

The time-lease mechanism is complementary to weighted reference counting.
The latter reclaims garbage rapidly in the case when there are no failures. The
former is much slower, but it is guaranteed in finite time to reclaim all garbage
created because of failure. This plugs the memory leaks due to failure.

Programmer responsibility The main problem with distributed garbage col-
lection is to collect cycles of data that exist on several processes and that contain
stateful entities. As far as we know, there does not exist an efficient and simple
distributed garbage collector that can collect these cycles.

This means that distributed memory management is not completely auto-
matic; the application has to do a little bit of work. For example, consider a
client/server application. Each client has a reference to the server. Often, the
server has references to the clients. This creates a cycle between each client and
the server. If the client and server are on different processes, they cannot be
reclaimed. To reclaim a client or a server, it is necessary to break the cycle. This
has to be done by the application. There are two ways to do it: either the server
has to remove the client reference or the client has to remove the server reference.

Creating a ticket with {Connection.offerUnlimited X T} makes X a per-
manent reference. That is, X is added to the root set and is never reclaimed.
Once-only tickets, i.e., those created with {Connection.offer X T} , can only
be taken once. As soon as they are taken, X is no longer a permanent reference
and is potentially reclaimable again.

It is possible to use distribution to reduce the time needed by local garbage
collection. With Remote , create a small process that runs the time-critical part
of the application. Since the process is small, local garbage collection in it will
be very fast.

11.8 Partial failure

Let us now extend the distribution model with support for partial failure. We
first explain the kinds of failures we detect and how we detect them. Then we
show some simple ways to use this detection in applications to handle partial
failure.
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11.8.1 Fault model

The fault model defines the kinds of failures that can occur in the system and
how they are reflected in the language by a failure detection mechanism. We have
designed a simple fault model that captures the most common kinds of failures on
the Internet. The Mozart system can detect just two kinds of failures, permanent
process failure and network inactivity:

• Permanent process failure is commonly known as fail-silent with failure
detection. It is indicated by the failure mode permFail . That is, a process
stops working instantaneously, does not communicate with other processes
from that point onwards, and the stop can be detected from the outside.
Permanent process failure cannot in general be detected on a WAN (e.g.,
the Internet), but only on a LAN.

• Network inactivity is a kind of temporary failure. It can be either temporary
or permanent, but even when it is supposedly permanent, one could imagine
the network being repaired. It is different from process failure because the
network does not store any state. Network inactivity is indicated by the
failure mode tempFail . The Mozart system assumes that it is always
potentially temporary, i.e., it never times out by default.

These failures are reflected in the language in two ways, either synchronously or
asynchronously:

• Synchronous (i.e., lazy) detection is done when attempting to do an oper-
ation on a language entity. If the entity is affected by a failure, then the
operation is replaced by another, which is predefined by the program. For
example, the operation can be replaced by a raised exception.

• Asynchronous (i.e., eager) detection is done independent of any operations.
A program first posts a “watcher” on an entity, before any problems occur.
Later, if the system detects a problem, then it enables the watcher, which
executes a predefined operation in a new thread. Watchers use the well-
known heart-beat mechanism for failure detection.

The two failure modes, detected either synchronously or asynchronously, are suf-
ficient for writing fault-tolerant distributed applications. They are provided by
Mozart’s primitive failure detection module Fault .

Network inactivity

The network inactivity failure mode allows the application to react quickly to
temporary network problems. It is raised by the system as soon as a network
problem is recognized. It is therefore fundamentally different from a time out. A
time out happens when a part of the system that is waiting for an event abandons
the wait. The default behavior of TCP is to give a time out after some minutes.
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This duration has been chosen to be very long, approximating infinity from the
viewpoint of the network connection. After the time out, one can be sure that
the connection is no longer working.

The purpose of tempFail is to inform the application of network problems,
not to mark the end of a connection. For example, if an application is connected
to a server and if there are problems with the server, then the application would
like to be informed quickly so that it can try connecting to another server. A
tempFail failure mode can therefore be relatively frequent, much more frequent
than a time out. In most cases, a tempFail fault state will eventually go away.

It is possible for a tempFail state to last forever. For example, if a user
disconnects the network connection of a laptop machine, then only he or she
knows whether the problem is permanent. The application cannot in general
know this. The decision whether to continue waiting or to stop the wait can cut
through all levels of abstraction to appear at the top level (i.e., the user). The
application might then pop up a window to ask the user whether to continue
waiting or not. The important thing is that the network layer does not make this
decision; the application is completely free to decide or to let the user decide.

Where to do time outs

A surprisingly large number of existing systems (both programming platforms
and applications) incorrectly handle prolonged network inactivity. When there
is a prolonged network inactivity during an operation, they do a time out: they
abort the waiting operation and invoke an error handling routine. Often, this
abort is irrevocable: it is impossible to continue the operation. Many operating
system utilities are of this type, e.g., ftp and ssh.

The mistake in this approach is that the decision to time out is made at the
wrong level. For example, assume there is a time out in a lower layer, e.g., the
transport layer (TCP protocol) of the network interface. This time out crosses
all abstraction boundaries to appear directly at the top level, i.e., to the user.
The user is informed in some way: the application stops, or at best a window is
opened asking confirmation to abort the application. The user does not have the
possibility to communicate back to the timed-out layer. This limits the flexibility
of the system.

The right approach is not to time out by default but to let the application
decide. The application might decide to wait indefinitely (avoiding an abort),
to abort immediately without waiting, or to let the user decide what to do.
This greatly increases the perceived quality of the system. For example, a hard-
mounted resource in the NFS file system offers the first possibility. The Stop
button in recent Web browsers offers the third possibility.
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11.8.2 Simple cases of failure handling

We show how to handle two cases, namely disconnected operation and failure
detection. We show how to use the Fault module in either case.

Disconnected operation

Assume that you are running part of an application locally on your machine
through a dialup connection. These connections are not meant to last for very
long times; they are made for conversations, which usually are short. There are
many ways a connection can be broken. For example, you might want to hang
up to make an urgent phone call, or you are connected in an airport and your
calling card runs out of cash, or the phone company just drops your connection
unexpectedly.

You would like your application to be impervious to this kind of fickleness.
That is, you would like the application to wait patiently until you reconnect and
then continue working as if nothing went wrong. In Mozart, this can be achieved
by setting the default failure detection to detect only permanent process failures:

% Each process executes this on startup:
{Fault.defaultEnable [permFail] _}

This means that operations will only raise exceptions on permanent process fail-
ures; on network inactivity they will wait indefinitely until the network problem
goes away.

Detecting a problem and taking action

On many computers, booting up is an infuriating experience. How many times
have you turned on a laptop, only to wait several minutes because the oper-
ating system expects a network connection, and has to time out before going
on? Mozart cannot fix your operating system, but it can make sure that your
application will not have the same brainless behavior.

Assume you want to use a remote port. If the remote port has problems
(intermittent or no access) then the application should be informed of this fact.
This is easy to set up:

% Get a reference to the port:
X={Take tickfile}

% Signal as soon as a problem is detected:
{Fault.installWatcher X [tempFail permFail]

proc {$ _ _}
{Browse X# ´ has problems! Its use is discouraged. ´ }

end _}

The procedure passed to Fault.installWatcher is called a watcher; it will be
called in its own thread as soon as the system detects a problem. It’s up to you to
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fun {NewStat Class Init}
Obj={New Class Init}
P

in
thread S in

{NewPort S P}
for M#X in S do

try {Obj M} X=normal
catch E then

try X=exception(E)
catch system(dp(...) ...) then

skip /* client failure detected */
end

end
end

end
proc {$ M}
X in

try {Send P M#X} catch system(dp(...) ...) then
raise serverFailure end

end
case X of normal then skip
[] exception(E) then raise E end end

end
end

Figure 11.10: A resilient server

do what’s necessary, e.g., set an internal flag to indicate that no communication
will be done.

If the problem was tempFail , then it is possible that communication with
X will be restored. If that happens, Mozart allows you to continue using X as if
nothing wrong had happened.

11.8.3 A resilient server

We saw the NewStat operation for creating stationary objects. Let us show how
to extend it to be resilient to client failure and at the same time protect the client
against server failure. We use the exception-handling mechanism. Attempting to
perform an operation on an entity that requires coordination with a remote failed
process will raise an exception. We use this behavior to protect both the server
and the client from failures. We protect the server by using a try statement:

try {Obj M} X=normal catch ... end

This protects the server against a client that shares a variable with the server (in
this case X). We need a second try statement:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



11.9 Security 749

try X=exception(E) catch _ then skip end

since the statement X=exception(E) also binds X. We protect the client:

proc {$ M}
X in

try {Send P M#X}
catch _ then raise serverFailure end end
case X of normal then skip
[] exception(E) then raise E end end

end

The try {Send P M#X} ... end signals to the client that the server has failed.
In general, any operation on a distributed entity has to be wrapped in a try . The
complete definition of NewStat is given in Figure 11.10. Note that distribution
faults show up as exceptions of the form system(dp(...) ...) .

If tempFail detection is enabled, the stationary server defined here will be
will be slowed down if there are communication problems with the client, i.e., it
will wait until tempFail is raised (for example when try X=exception(E) is
executed). One way around this problem is to provide mutiple server objects to
allow serving multiple clients simultaneously.

11.8.4 Active fault tolerance

Applications sometimes need active fault tolerance, i.e., part of the application
is replicated on several processes and a replication algorithm is used to keep
the parts coherent with each other. Building ADTs to provide this is an active
research topic. For example, in Mozart we have built a replicated transactional
object store, called GlobalStore [128]. This keeps copies of a set of objects on
several processes and gives access to them through a transactional protocol. The
copies are kept coherent through the protocol. As long as at least one process is
alive, the GlobalStore will survive.

Because of the failure detection provided by the Fault module, the Mozart
system lets the GlobalStore and other fault-tolerant ADTs be written complete-
ly in Oz without recompiling the system. Ongoing research involves building
abstractions for active fault tolerance and improved failure detection.

11.9 Security

An application is secure if it can continue to fulfill its specification despite inten-
tional (i.e., malicious) failures of its components. Security is a global problem:
a weakness in any part of the system can potentially be exploited. Security is a
relative concept: no system is absolutely secure since with sufficient effort it can
always be compromised. All we can do is increase the effort required to break
the security, until it is not cost-effective for an adversary to attempt it. Security
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issues appear at each layer of a distributed system. We identify the following
layers [72]:

• Application security. This is a property of the application program. The
application can continue to fulfill its specification despite adversaries whose
attacks stay within the permitted operations in the application itself.

• Language security. This is a property of the language. In a secure
language, applications can continue to fulfill their specifications despite ad-
versaries whose attacks stay within the language. As we explain in Sec-
tion 3.7.7, the kernel languages of this book provide language security be-
cause they have a rigorous semantics that permits the construction of secure
ADTs.

• Implementation security. This is a property of the language implemen-
tation in the process. In a secure implementation, applications can continue
to fulfill their specifications despite adversaries that attempt to interfere
with compiled programs and the language’s run-time system. Providing
implementation security requires cryptographic techniques that are outside
the scope of this book.

• Operating system security, network security, and hardware secu-
rity. We group these three together, although each of them is a big topic
that can be studied separately. The system is secure if applications can
continue to fulfill their specifications despite adversaries who attempt to
interfere with the operating system, the network, or the hardware. For the
operating system and network, we can rely to some degree on off-the-shelf
products. Hardware security is another matter entirely. Unless we have a
special “hardened” computer, giving physical access to the computer always
makes it possible to compromise security.

Each of these layers must be addressed to some degree, or otherwise the applica-
tion is not secure. To judge how much effort must be put in making each layer
secure, a threat model must be set up and a threat analysis done. Then a security
policy must be defined, implemented, and verified. These activities are called
security engineering. They are beyond the scope of this book. We recommend
Anderson’s book for an excellent overview [5].

Section 3.7 shows how to build secure abstract data types using language
security. These techniques are necessary for building secure applications on the
Internet, but they are not sufficient. We also have to address the other layers. For
implementation security, we need a secure Mozart implementation. The develop-
ment of such an implementation is ongoing research. Building implementation-
secure systems is a research area with a long tradition. As an entry point in
this area, we recommend the work on the E language and its secure implementa-
tion [123, 183].
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11.10 Building applications

With the examples given in this chapter, you have enough technical knowledge
already to build fairly sophisticated distributed applications.

11.10.1 Centralized first, distributed later

Developing an application is done in two phases:

• First, write the application without partitioning the computation between
processes. Check the correctness and termination properties of the appli-
cation on one process. Most of the debugging is done here.

• Second, place the threads on the right processes and give the objects a
distributed semantics to satisfy the geographic constraints (placement of
resources, dependencies between processes) and the performance constraints
(network bandwidth and latency, machine memory and speed).

The large-scale structure of an application consists of a graph of threads and
objects. Threads are created on the processes that need them. Objects may
be stationary, mobile, or asynchronous. They exchange messages which may
refer to objects or other entities. Records and procedures, both stateless entities,
are the basic data structures of the application–they are passed automatically
between processes when needed. Dataflow variables and locks are used to manage
concurrency and dataflow execution.

11.10.2 Handling partial failure

The application must be able to handle partial failure. A good approach is to
design for fault confinement. That is, to design the application so that failures can
be confined, i.e., their effect will not propagate throughout the whole application
but will be limited. Fault confinement has to be part of the initial application
design. Otherwise the number of failure modes can be very large, which makes
fault confinement infeasible.

There is a trade-off between the communication mode (synchronous or asyn-
chronous) and the fault detection/confinement mechanism. Compared to syn-
chronous communication, asynchronous communication improves performance
but makes fault confinement harder. Consider a system with three active objects,
T1, T2, and T3. T1 does an asynchronous send to T2 and continues, assuming
that T2 is alive. Later, T1 sends a message to T3 under this assumption. But
the assumption might have been wrong. T1 might have been executing for a long
time under this wrong assumption. With synchronous sends this problem cannot
occur. T1 does a synchronous send to T2 and is informed that T2 has a problem
before continuing. This confines the fault to an earlier point of the program. The
trade-off between early fault detection and asynchronous communication is fun-
damental, like the choice between optimistic and pessimistic concurrency control.
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With asynchronous communication, the application must be prepared to correct
any false assumptions it makes about the rest of the system working correctly.

There are different ways to realize fault confinement. One way is to build
abstractions that do all the fault handling internally. If done well, this can hide
completely the complexities of handling faults, at the cost of having to use the
particular abstraction. The GlobalStore mentioned before takes this approach.
If we cannot hide the faults completely, the next best thing is to have narrow
interfaces (say, just one port) between processes. A final point is that a message-
passing programming style is preferable over a shared-state style. Fault handling
of distributed shared state is notoriously difficult.

11.10.3 Distributed components

Functors and resources are the key players in distributed component-based pro-
gramming. A functor is stateless, so it can be transparently copied anywhere
across the net and made persistent by pickling it on a file. A functor is linked on
a process by evaluating it there with the process resources that it needs (“plug-
ging it in” to the process). The result is a new resource, which can be used as
is or linked with more functors. Functors can be used as a core technology driv-
ing an open community of developers who contribute to a global pool of useful
components.

11.11 Exercises

1. Implementing network awareness. Explain exactly what happens in
the network (what messages are sent and when) during the execution of
the distributed lexical scoping example given in Section 11.4. Base your
explanation on the distributed algorithms explained in Section 11.7.

2. Distributed lift control system. Make the lift control system of Chap-
ter 5 into a distributed system. Put each component in a separate process.
Extend the system to handle partial failure, i.e., when one of the compo-
nents fails or has communication problems.

3. A simple chat room. Use the techniques of this chapter to write a simple
server-based chat application. Clients connect to the server, receive all
previous messages, and can send new messages. Extend your chat room
to handle client failures and server failure. If there is a server failure, the
client should detect this and allow the human user to connect to another
server.

4. A replicated server. To make a server resistant to failures, one technique
is to replicate it on two processes. Client requests are sent to both replicas,
each of which does the computation and returns a result. The client needs
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only to receive one result. This assumes that the server is deterministic. If
one of the replicas fails, the other replica detects this, starts a new second
replica using the Remote module, and informs the client. For this exercise,
write an abstraction for a replicated server that hides all the fault handling
activities from the clients.
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Chapter 12

Constraint Programming

“Plans within plans within plans within plans.”
– Dune, Frank Herbert (1920–1986)

Constraint programming consists of a set of techniques for solving constraint
satisfaction problems.1 A constraint satisfaction problem, or CSP, consists of a set
of constraints on a set of variables. A constraint, in this setting, is simply a logical
relation, such as “X is less than Y” or “X is a multiple of 3”. The first problem is
to find whether there exists a solution, without necessarily constructing it. The
second problem is to find one or more solutions.

A CSP can always be solved with brute force search. All possible values of
all variables are enumerated and each is checked to see whether it is a solution.
Except in very small problems, the number of candidates is usually too large to
enumerate them all. Constraint programming has developed “smart” ways to
solve CSPs which greatly reduce the amount of search needed. This is sufficient
to solve many practical problems. For many problems, though, search cannot be
entirely eliminated. Solving CSPs is related to deep questions of intractability.
Problems that are known to be intractable will always need some search. The
hope of constraint programming is that, for the problems that interest us, the
search component can be reduced to an acceptable level.

Constraint programming is qualitatively different from the other programming
paradigms that we have seen, such as declarative, object-oriented, and concurrent
programming. Compared to these paradigms, constraint programming is much
closer to the ideal of declarative programming: to say what we want without
saying how to achieve it.

Structure of the chapter

This chapter introduces a quite general approach for tackling CSPs called propagate-
and-search or propagate-and-distribute. The chapter is structured as follows:

1This chapter was co-authored with Raphaël Collet.
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• Section 12.1 gives the basic ideas of the propagate-and-search approach by
means of an example. This introduces the idea of encapsulating constraints
inside a kind of container called a computation space.

• Section 12.2 shows how to specify and solve some example constraint prob-
lems using propagate-and-search.

• Section 12.3 introduces the constraint-based computation model and its two
parts: constraints (both basic and propagators) and computation spaces.

• Section 12.4 defines computation spaces and shows how to program propagate-
and-search with the computation space ADT.

• Section 12.5 shows how to implement the choice , fail , and Solve oper-
ations of the relational computation model with computation spaces.

12.1 Propagate and search

In this section, we introduce the basic ideas underlying the propagate-and-search
approach by means of a simple example. Sections 12.3 and 12.4 continue this pre-
sentation by showing how the stateful computation model is extended to support
this approach and how to program with the extended model.

12.1.1 Basic ideas

The propagate-and-search approach is based on three important ideas:

1. Keep partial information. During the calculation, we might have partial
information about a solution (such as, “in any solution, X is greater than
100”). We keep as much of this information as possible.

2. Use local deduction. Each of the constraints uses the partial information
to deduce more information. For example, combining the constraint “X is
less than Y” and the partial information “X is greater than 100”, we can
deduce that ”Y is greater than 101” (assuming Y is an integer).

3. Do controlled search. When no more local deductions can be done, then we
have to search. The idea is to search as little as possible. We will do just
a small search step and then we will try to do local deduction again. A
search step consists in splitting a CSP P into two new problems, (P ∧ C)
and (P ∧ ¬C), where C is a new constraint. Since each new problem
has an additional constraint, it can do new local deductions. To find the
solutions of P , it is enough to take the union of the solutions to the two
new problems. The choice of C is extremely important. A well-chosen C
will lead to a solution in just a few search steps.
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12.1.2 Calculating with partial information

The first part of constraint programming is calculating with partial information,
namely keeping partial information and doing local deduction on it. We give
an example to show how this works, using intervals of integers. Assume that
x and y measure the sides of a rectangular field of agricultural land in integral
meters. We only have approximations to x and y. Assume that 90 ≤ x ≤ 110
and 48 ≤ y ≤ 53. Now we would like to calculate with this partial information.
For example, is the area of the field bigger than 4000 square meters? This is easy
to do with constraint programming. We first declare what we know about x and
y:

declare X Y in
X::90#110
Y::48#53

The notation X::90#110 means x ∈ {90, 91, ..., 110}. Now let us calculate with
this information. With constraint programming, xy > 4000 will return with true
immediately:2

declare A in
A::0#10000
A=:X*Y
{Browse A>:4000} % Displays 1

We can also display the area directly:

{Browse A} % Displays A{4320#5830}

From this we know the area must be in the range from 4320 to 5830 square meters.
The statement A=:X*Y does a constraint multiplication. Technically, it is called
a propagator: it looks at its arguments a, x, and y, and propagates information
between them. In this case, the propagation is simple: the minimal value of a
is updated to 90× 48 (which is 4320) and the maximal value of a is updated to
110× 53 (which is 5830). Note that we have to give the initial information about
a, for example that it is in the range from 0 to 10000. If we do not give this
information, the constraint multiplication A=:X*Y will block.

Now let us add some more information about x and y and see what we can
deduce from it. Assume we know that the difference x− 2y is exactly 11 meters.
We know this by fitting a rope to the y side. Passing the rope twice on the x side
leaves 11 meters. What can we deduce from this fact? Add the constraint:

X-2*Y=:11

Technically, this new constraint is also a propagator. It does a local deduction
with the information we know about x and y. The browser display is automat-
ically updated to A{5136#5341} . This considerably increases the accuracy of

2The program fragment will display the integer 1, which means true. The boolean is given
as an integer because we often need to do calculations with it.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



758 Constraint Programming

our measurement: we know the area must be from 5136 to 5341 square meters.
What do we know about x and y? We can display them:

{Browse X}
{Browse Y}

This displays X{107#109} for x and Y{48#49} for y. This is a very simple
example of calculating with partial information, but it can already be quite useful.

12.1.3 An example

We now look at an example of a complete constraint program, to see how propagate-
and-search actually works. Consider the following problem:

How can I make a rectangle out of 24 unit squares so that the perime-
ter is exactly 20?

Say that x and y are the lengths of the rectangle’s sides. This gives two equations:

x · y = 24

2 · (x + y) = 20

We can also add a third equation:

x ≤ y

Strictly speaking, the third equation is not necessary, but including it does no
harm (since we can always flip a rectangle over) and it will make the problem’s
solution easier (technically, it reduces the size of the search space). These three
equations are constraints. We call these equations propagators, since we will use
them to make local deductions, i.e., “propagate” partial information about a
solution.

To solve the problem, it is useful to start with some information about the
variables. We bound the possible values of the variables. This is not absolutely
necessary, but it is almost always possible and it often makes solving the problem
easier. For our example, assume that X and Y each range from 1 and 9. This
is reasonable since they are positive and less than 10. This gives two additional
equations:

x ∈ {1, 2, ..., 9}
y ∈ {1, 2, ..., 9}

We call these equations basic constraints since they are of the simple form “vari-
able in an explicit set”, which can be represented directly in memory.
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The initial problem

Now let us start solving the problem. We have three propagators and two basic
constraints. This gives the following situation:

S1 : X*Y=:24 X+Y=:10 X=<:Y || X::1#9 Y::1#9

which we will call the computation space S1. A computation space contains the
propagators and the basic constraints on the problem variables. As in the previous
example, we use the notation X::1#9 to mean x ∈ {1, 2, ..., 9}. We have the three
propagators X*Y=:24 , X+Y=:10 , and X=<:Y . Syntactically, we show that these
are propagators by adding the colon : to their name.

Local deductions

Each propagator now tries to do local deductions. For example, the propagator
X*Y=:24 notices that since Y is at most 9, that X cannot be 1 or 2. Therefore X is
at least 3. It follows that Y is at most 8 (since 3*8=24). The same reasoning can be
done with X and Y reversed. The propagator therefore updates the computation
space:

S1 : X*Y=:24 X+Y=:10 X=<:Y || X::3#8 Y::3#8

Now the propagator X+Y=:10 enters the picture. It notices that since Y cannot
be 2, therefore X cannot be 8. Similarly, Y cannot be 8 either. This gives:

S1 : X*Y=:24 X+Y=:10 X=<:Y || X::3#7 Y::3#7

With this new information, the propagator X*Y=:24 can do more deduction.
Since X is at most 7, therefore Y must be at least 4 (because 3*7 is definitely less
than 24). If Y is at least 4, then X must be at most 6. This gives:

S1 : X*Y=:24 X+Y=:10 X=<:Y || X::4#6 Y::4#6

At this point, none of the propagators sees any opportunities for adding infor-
mation. We say that the computation space has become stable. Local deduction
cannot add any more information.

Using search

How do we continue? We have to make a guess. Let us guess X=4. To make sure
that we do not lose any solutions, we need two computation spaces: one in which
X=4 and another in which X6=4. This gives:

S2 : X*Y=:24 X+Y=:10 X=<:Y || X=4 Y::4#6

S3 : X*Y=:24 X+Y=:10 X=<:Y || X::5#6 Y::4#6
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Each of these computation spaces now has the opportunity to do local deductions
again. For S2, the local deductions give a value of Y:

S2 : X*Y=:24 X+Y=:10 X=<:Y || X=4 Y=6

At this point, each of the three propagators notices that it is completely solved
(it can never add any more information) and therefore removes itself from the
computation space. We say that the propagators are entailed. This gives:

S2 : (empty) || X=4 Y=6

The result is a solved computation space. It contains the solution X=4 Y=6.
Let us see what happens with S3. Propagator X*Y=:24 deduces that X=6

Y=4 is the only possibility consistent with itself (we leave the reasoning to the
reader). Then propagator X=<:Y sees that there is no possible solution consistent
with itself. This causes the space to fail:

S3 : (failed)

A failed space has no solution. We conclude that the only solution is X=4 Y=6.

12.1.4 Executing the example

Let us run this example in Mozart. We define the problem by writing a one-
argument procedure whose argument is the solution. Running the procedure sets
up the basic constraints, the propagators, and selects a distribution strategy. The
distribution strategy defines the “guess” that splits the search in two. Here is the
procedure definition:

proc {Rectangle ?Sol}
sol(X Y)=Sol

in
X::1#9 Y::1#9
X*Y=:24 X+Y=:10 X=<:Y
{FD.distribute naive Sol}

end

The solution is returned as the tuple Sol , which contains the two variables X

and Y. Here X::1#9 and Y::1#9 are the two basic constraints and X*Y=:24 ,
X+Y=:10 , and X=<:Y are the three propagators. The FD.distribute call selects
the distribution strategy. The chosen strategy (naive ) selects the first non-
determined variable in Sol , and picks the leftmost element in the domain as a
guess. To find the solutions, we pass the procedure to a general search engine:

{Browse {SolveAll Rectangle}}

This displays a list of all solutions, namely [sol(4 6)] since there is only one.
All the constraint operations used in this example, namely :: , =: , =<: , and

FD.distribute are predefined in the Mozart system. The full constraint pro-
gramming support of Mozart consists of several dozen operations. All of these
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operations are defined in the constraint-based computation model. This model
introduces just two new concepts to the stateful concurrent model: finite do-
main constraints (basic constraints like X::1#9 ) and computation spaces. All
the richness of constraint programming in Mozart is provided by this model.

12.1.5 Summary

The fundamental concept used to implement propagate-and-search is the compu-
tation space, which contains propagators and basic constraints. Solving a problem
alternates two phases. A space first does local deductions with the propagators.
When no more local deductions are possible, i.e., the space is stable, then a search
step is done. In this step, two copies of the space are first made. A basic constraint
C is then “guessed” according to a heuristic called the distribution strategy. The
constraint C is then added to the first copy and ¬C is added to the second copy.
We then continue with each copy. The process is continued until all spaces are
either solved or failed. This gives us all solutions to the problem.

12.2 Programming techniques

Now that we have seen the basic concepts, let us see how to program with them.
A constraint problem is defined by a one-argument procedure. The procedure
argument is bound to the solution of the problem. Inside the procedure, next to
the usual language operations, two new kinds of operations are possible:

• Constraints. These specify the relationships between the different parts of
the problem. They can be either basic constraints or propagators.

• Specification of the distribution strategy. This specifies how the search tree
is to be formed, i.e., which constraints C and ¬C are chosen at each node
when doing a search step.

In contrast to relational programming (see Chapter 9), there is no explicit creation
of choice points (no choice statement). This would be too crude a way to search;
what actually happens is that choice points are created dynamically in terms of
the distribution strategy that is specified.

12.2.1 A cryptarithmetic problem

Now that we have the basic concepts, let us see how we can program with them.
As example we take a well-known combinatoric puzzle, the Send+More=Money
problem.3 The problem is to assign digits to letters such that the following
addition makes sense:

3This example is taken from [174].

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



762 Constraint Programming

proc {SendMoreMoney ?Sol}
S E N D M O R Y

in
Sol=sol(s:S e:E n:N d:D m:M o:O r:R y:Y) %1
Sol:::0#9 %2
{FD.distinct Sol} %3
S\=:0 %4
M\=:0

1000*S + 100*E + 10*N + D %5
+ 1000*M + 100*O + 10*R + E
=: 10000*M + 1000*O + 100*N + 10*E + Y
{FD.distribute ff Sol} %6

end

Figure 12.1: Constraint definition of Send-More-Money puzzle

S E N D
+ M O R E
M O N E Y

There are two conditions: each letter is assigned to a different digit and the
leading digits of the numbers are different from zero (S 6= 0 and M 6= 0).

To solve this problem with constraints, the first step is to model the problem,
i.e., to set up data structures and constraints that reflect the problem structure.
In this problem, it is easy: each digit is a variable and the problem conditions be-
come constraints on the variables. There are eight different letters, and therefore
eight variables.

The second step is to define a one-argument procedure that implements this
model. Figure 12.1 shows one way to define the procedure. The numbered state-
ments have the following effects:

1. The solution Sol is a record with one field for every different letter.

2. The fields of Sol are integers in the domain {0, ..., 9}.

3. The fields of Sol are pairwise distinct, i.e., no two have the same value.

4. Since they are leading digits, the values of S and Mare not zero.

5. All the digits satisfy the equation SEND + MORE = MONEY .

6. The distribution strategy tries the letters according to a first-fail strategy
(ff ). This means that the strategy tries first the letter with the least
number of possibilities, and with this letter it tries the least value first.

The third step is to solve the problem:

{Browse {SolveAll SendMoreMoney}}
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This computes and displays a list of all solutions. Note that this is done in the
same way as search in relational programming (see Chapter 9). This displays:

[sol(d:7 e:5 m:1 n:6 o:0 r:8 s:9 y:2)]

In other words, there is just one solution, which is:

9 5 6 7
+ 1 0 8 5
1 0 6 5 2

That is all there is to it! In practice, things are a bit more complicated:

• Modeling the problem. Modeling the problem is not always easy. Often
there are many possible ways to represent the problem in terms of con-
straints. It is not always obvious which one is best!

• Constraints and distribution strategies. There are many constraints
and distribution strategies to choose from. Which ones are best depends
strongly on the problem.

• Understanding the problem. The first solution to a realistic problem
is usually too inefficient. There are many techniques to improve it. Some
possibilities are to take advantage of problem structure, to use redundant
constraints, to use different distribution strategies, and to use the Explorer
(an interactive graphical search tree exploration tool, see [171]).

12.2.2 Palindrome products revisited

In Section 9.2.1, we saw how to find palindrome products with relational pro-
gramming. The technique used there takes 45 seconds to find all solutions for 6
digit palindromes. Here is a smarter solution that takes advantage of constraints
and the propagate-and-search approach:

proc {Palindrome ?Sol}
sol(A)=Sol
B C X Y Z

in
A::0#999999 B::0#999 C::0#999
A=:B*C
X::0#9 Y::0#9 Z::0#9
A=:X*100000+Y*10000+Z*1000+Z*100+Y*10+X
{FD.distribute ff [X Y Z]}

end

This takes slightly less than two seconds. We can do even better by realizing
that a palindrome XY ZZY X is always a multiple of 11. That is, XY ZZY X =
X · 100001 + Y · 10010 + Z · 1100, which means XY ZZY X/11 = X · 9091 + Y ·
910 + Z · 100. Taking advantage of this, we can specify the problem as follows:
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proc {Palindrome ?Sol}
sol(A)=Sol
B C X Y Z

in
A::0#90909 B::0#90 C::0#999
A=:B*C
X::0#9 Y::0#9 Z::0#9
A=:X*9091+Y*910+Z*100
{FD.distribute ff [X Y Z]}

end

This takes slightly less than 0.4 seconds to solve the same problem. What can
we conclude from this simple example? Many things:

• A constraint-based formulation of a combinatoric problem can be much
faster than a generate-and-test formulation. For palindrome product, the
constraint solution is more than 100 times faster than the naive solution.

• To make it fast, you also have to take advantage of the problem structure.
A little bit of smarts goes a long way. For palindrome product, taking
advantage of the solution being a multiple of 11 makes the program 5 times
faster.

• A fast solution is not necessarily more complicated than a slow solution.
Compare the slow and fast solutions to palindrome product: they are about
equal in length and ease of understanding.

• Performance can depend strongly on the exact problem formulation. Chang-
ing it a little bit can make it much faster or (usually) much slower.

• To write a good specification, you have to understand the operational mean-
ing of the constraints as well as the logical meaning. The latter is enough
for showing correctness, but the former is essential to get good performance.

12.3 The constraint-based computation model

The propagate-and-search approach is supported by adding two concepts to the
stateful concurrent model: basic constraints and computation spaces. Basic
constraints are a simple generalization of declarative variables in the single-
assignment store. Computation spaces extend the model as shown in Figure 12.2.

A computation space collects together basic constraints and propagators, as
we saw in the example of Section 12.1.3. The basic constraints are a constraint
store. The propagators are threads. A computation space is always created inside
a parent space; it can see the constraints of its parent. In the figure, X is bound
to a computation space that is created inside the top-level space.
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Figure 12.2: Constraint-based computation model
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A computation space is also an ADT that implements a number of operations.
With these operations, we can implement the propagate-and-search technique of
Section 12.1. The operations are explained in Section 12.4.

12.3.1 Basic constraints and propagators

We introduce basic constraints for finite domains as equations of the form x ∈ D,
where D is a finite integer set. This partial information is told to the store by
the statement x:: D. The domain D is specified with a compact notation (see
the examples in the previous sections). Successive tells x:: D1, x:: D2, . . .x:: Dn

restricts the domain of x to D1∩D2∩· · ·∩Dn, provided that the latter is nonempty.
Telling the empty domain for a variable would result in an inconsistent store (do
you see why?), so such a tell must fail. The basic constraint x ∈ {n} is simplified
to the equivalent relation x=n.

The usual variable declaration does not tell explicitly the domain of a fresh
variable. Its domain is implicit: it is the domain of rational trees. A ra-
tional tree is a non-partial value build with records and other basic values.
Equality with partial values acts as a domain restriction. For instance, telling
x=person(name: y age: z) restricts the domain of x to the rational trees that
match the partial value person(name: y age: z) .

A propagator is simply a thread that tells domain constraints to the store ac-
cording to their semantics. Each time a variable’s domain is changed in the store,
the propagators that use that variable must be given a chance to execute, so they
can propagate new partial information to variables. Waiting for a domain change
is a fine-grained variant of waiting for determinacy. A multiset of propagators
must behave in a concurrent declarative fashion, because that makes controlled
search effective.

12.4 Computation spaces

In the previous sections we have seen how to use constraints with built-in distri-
bution strategies. In this section we explain how computation spaces work, and
how to program search engines and distribution strategies with them.

Computation spaces are an abstraction that permits the high-level program-
ming of search abstractions and deep guard combinators. With computation
spaces, the computation model looks something like Figure 12.2. All the search
abstractions of Chapters 9 and 12 are programmed using spaces. Spaces have the
flexibility needed for real-world constraint problems and they can be implemented
efficiently: on real-world problems the Mozart implementation using copying and
recomputation is competitive in time and memory use with traditional systems
using trailing-based backtracking [168].

This section defines computation spaces, the operations that can be performed
on them (see Table 12.1), and gives an example of how to use them to program
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search. Actually we use the example as a roadmap throughout the definitions of
concepts and operations. The discussion in this section follows the model in [172,
169]. This model is implemented in the Mozart system [129] and refines the one
presented in the articles [167, 170]. The space abstraction can be made language-
independent; [78] describes a C++ implementation of a similar abstraction that
provides both trailing and copying.

12.4.1 Programming search with computation spaces

A search strategy defines how the search tree is explored, e.g., depth-first search
or breadth-first search. A distribution strategy defines the shape and content of
the search tree, i.e., how many alternatives exist at a node and what constraint is
added for each alternative. Computation spaces can be used to program search
strategies and distribution strategies independent of each other. That is, any
search strategy can be used together with any distribution strategy. Here is how
it is done:

• Create the space with the correct program inside. This program defines all
the variables and constraints in the space.

• Let the program run inside the space. Variables and propagators are creat-
ed. All propagators execute until no more information can be added to the
store in this manner. The space eventually reaches stability.

• During the space’s execution, the computation inside the space can decide
to create a choice point. The decision which constraint to add for each
alternative defines the distribution strategy. One of the space’s threads will
suspend when the choice point is created.

• When the space has become stable, execution continues outside the space,
to decide what to do next. There are different possibilities depending on
whether or not a choice point has been created in the space. If there is
none, then execution can stop and return with a solution. If there is one,
then the search strategy decides which alternative to choose and commits
to that alternative.

The next section explains the operations we need for this approach, together with
a concrete example of a search engine. Section 12.5 gives another example of how
to program search with spaces. Many other strategies can be programmed than
are shown here; for more information see [172, 169].

12.4.2 Definition

Our goal is to present computation spaces as a mean for implementing search
strategies and distribution strategies. We will explain in detail the execution of
a concrete example of a search engine on a small problem. The definitions of
concepts and operations will be given as they come in the execution.
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