
768 Constraint Programming

fun {DFE S}
case {Ask S}
of failed then nil
[] succeeded then [S]
[] alternatives(2) then C={Clone S} in

{Commit S 1}
case {DFE S} of nil then {Commit C 2} {DFE C}
[] [T] then [T]
end

end
end

% Given {Script Sol}, returns solution [Sol] or nil:
fun {DFS Script}

case {DFE {NewSpace Script}} of nil then nil
[] [S] then [{Merge S}]
end

end

Figure 12.3: Depth-first single solution search

〈statement〉 ::= {NewSpace 〈x〉 〈y〉 }

| {Choose 〈x〉 〈y〉 }

| {Ask 〈x〉 〈y〉 }

| {Commit 〈x〉 〈y〉 }

| {Clone 〈x〉 〈y〉 }

| {Inject 〈x〉 〈y〉 }

| {Merge 〈x〉 〈y〉 }

Table 12.1: Primitive operations for computation spaces

A depth-first search engine

Figure 12.3 shows how to program depth-first single solution search, in the case
of binary choice points. This explores the search tree in depth-first manner and
returns the first solution it finds. The problem is defined as a unary procedure
{Script Sol} that gives a reference to the solution Sol , just like the examples
of Section 12.2. The solution is returned in a one-element list as [Sol] . If there
is no solution, then nil is returned. In Script , choice points are defined with
the primitive space operation Choose .

The search function uses the primitive operations on spaces NewSpace, Ask ,
Commit , Clone , and Merge . We will explain each operation in detail as it comes
in the execution. Table 12.1 lists the complete set of primitive operations.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

12.4 Computation spaces 769

A script example

Let us run the search engine on the example given in Section 12.1.3. The problem
was specified by the procedure Rectangle .

proc {Rectangle ?Sol}
sol(X Y)=Sol

in
X::1#9 Y::1#9
X*Y=:24 X+Y=:10 X=<:Y
{FD.distribute naive Sol}

end

We start the execution with the statement Sol={DFS Rectangle} , where DFS

and Rectangle are defined as above, and Sol is a fresh variable. If we expand
the body of the function, it should create two variables, say S and L, leading to
a configuration like the following. The box represents the thread that executes
the statements, and below it is a representation of the store.

S={NewSpace Rectangle}

L={DFE S}

Sol= case L of ... end

Rectangle=< proc > Sol L S

Space creation

The first primitive space operation we use is NewSpace. In our example, it
creates a new computation space S, with a root variable Root , and one thread
that executes {Rectangle Root} . Both the new thread and the new store are
shown inside a box, which delimits the “boundaries” of the space.

L={DFE S}

Sol= case L of ... end

Rectangle=< proc > Sol L S=
{Rectangle Root}

Root

A precise definition of NewSpace is

• S={NewSpace P} , when given a unary procedure P, creates a new compu-
tation space and returns a reference to it. In this space, a fresh variable R,
called the root variable, is created and a new thread, and {P R} is invoked
in the thread.

Recall that a computation space encapsulates a computation. It is thus an in-
stance of the stateful concurrent model, with its three parts: thread store, con-
straint store, and mutable store. As it can itself nest a computation space, the
spaces naturally form a tree structure:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

770 Constraint Programming

Space A

Space B

Top Level Space

A
nc

es
to

rs
X

Ta

Tb
X=Term

Threads Ta, Tb, and Tc all see●

variable X.

If Tb binds X then Tb & Tc will
see the binding. Ta won’t unless
Space B is merged into Space A.

●

● This is because child spaces are

become part of their parent store.
speculative: they may or may not

Because Space C is speculative,●

only Tc sees Y (Ta and Tb don’t).

Space C

Tc

Y

D
es

ce
nd

an
ts parent

parent

binding

sees

sees

Current space

sees

parent

Figure 12.4: Visibility of variables and bindings in nested spaces

• Tree structure. There is always a top level computation space where threads
may interact with the external world. A thread may create a new compu-
tation space. The new space is called a child space. The current space is
the child’s parent space. At any time, there is a tree of computation spaces
in which the top level space is the root. With respect to a given space, a
higher one in the tree (closer to the root) is called an ancestor and a lower
one is called a descendant.

• Threads and variables belong to spaces. A thread always belongs to exactly
one computation space. A variable always belongs to exactly one compu-
tation space.

Space execution

Now let us focus on the space S. The thread inside is runnable, so we will run it.
The reduction of the procedure call {Rectangle Root} gives

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

12.4 Computation spaces 771

S=

local sol(X Y)=Root in

X::1#9 Y::1#9

X*Y=:24 X+Y=:10 X=<:Y

{FD.distribute naive Root}

end

Root

You might have noticed that the variable Rectangle is bound outside the space,
which did not prevent the inner thread to read its value and use it. Computation
spaces do respect precise visibility rules. Those rules provide a certain degree of
isolation from the “external” computation.

• Variable visibility. A thread sees and may access variables belonging to its
space as well as to all ancestor spaces. The thread cannot see the variables
of descendant spaces. Figure 12.4 gives an example with bindings.

• Basic constraint visibility. A thread may add basic constraints to variables
visible to it. This means that it may constrain variables belonging to its
space or to its ancestor spaces. The basic constraint will only be visible in
the current space and its descendants. That is, the parent space does not
see the binding unless the current space is merged with it (see later).

Posting constraints

The thread inside the space continues its execution. It creates two new variables
X and Y inside the space, and binds Root to sol(X Y) . This gives

S=

X::1#9 Y::1#9

X*Y=:24 X+Y=:10 X=<:Y

{FD.distribute naive Root}

Root=sol(X Y) X Y

It then tells the basic constraints X::1#9 and Y::1#9 to the constraint store of
the space, and creates new propagators, each one in its own thread. We have

S=
X*Y=:24 X+Y=:10 X=<:Y {FD.distribute naive Root}

Root=sol(X Y) X::1#9 Y::1#9

Concurrent propagation

Now propagators enter the scene. As we have seen in Section 12.1.3, they prop-
agate concurrently, reducing the domains to 4#6 . The space becomes

S=
X*Y=:24 X+Y=:10 X=<:Y {FD.distribute naive Root}

Root=sol(X Y) X::4#6 Y::4#6

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

772 Constraint Programming

Execution in a computation space does a variant of the maximally concurrent
model. It avoids the difficulties usually associated with this model. Let us see
why this is possible. Each constraint is implemented as a thread (called “propa-
gator”) that executes concurrently with the other propagators. Each propagator
adds information to the store until no more information can be added. Con-
straint programming avoids the difficulties of the maximally concurrent model
because propagator execution is monotonic: they only add information, they
never change or remove information. (This is essentially the same reason why
concurrent declarative programming is simpler than concurrent stateful program-
ming.) Furthermore, propagators have a logical semantics. All the information
they add is consistent with this semantics. If they are written correctly, then the
exact order in which they execute does not matter. When they reach a fixpoint
(space stability), i.e., when no propagator can add any more information, the
result is always the same.

Distribution

The propagators in the space are no longer runnable. At this point, FD.distribute

becomes runnable. This procedure implements the distribution strategy. It picks
a variable and a value following a heuristic, in this case X and 4, and proposes a
“guess”. For this it executes the statement {Choose 2} , which creates a choice
point with two alternatives, and blocks until a call to Commit unblocks it. The
interaction between Choose and Commit is explained in detail later. The whole
computation (including the parent space) now looks like

L={DFE S}

Sol= case L of ... end

Rectangle=< proc > Sol L

S=

X*Y=:24

X+Y=:10

X=<:Y

case {Choose 2}

of 1 then X=4 {FD.distribute [Y]}

[] 2 then X\=:4 {FD.distribute Root}

end

Root=sol(X Y) X::4#6 Y::4#6

The definition of Choose is

• Y={Choose N} is the only operation that is called from inside the space,
while the other operations are called from outside the space. It creates a
choice point with N alternatives. Then it blocks, waiting for an alternative
to be chosen by a Commit operation on the space. The Choose call defines
only the number of alternatives; it does not specify what to do for any given
alternative. Choose returns with Y=I when alternative 1≤I ≤N is chosen.
A maximum of one choice point may exist in a space at any time.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

12.4 Computation spaces 773

State of a space

The space was running concurrently with its parent space. The thread of the
search engine now executes the statement L={DFE S} , which evaluates {Ask S} .
This operation asks the space for its status. In this case, it returns alternatives(2) ,
meaning that a choice point with two alternatives has been created inside the
space. After reduction of the case statement, the whole computation becomes

local C={Clone S} in

{Commit S 1}

L=case {DFE S} of ... end

end

Sol= case L of ... end

Rectangle=< proc > Sol L S=<space>

Here we give a precise definition of the various states of a space. A space is
runnable if it or a descendant contains a runnable thread, and blocked otherwise.
Let us run all threads in the space and its descendants, until the space is blocked.
Then the space can be in one of the following further states:

• The space is stable. This means that no additional basic constraints done
in an ancestor can make the space runnable. A stable space can be in four
further states:

– The space is succeeded. This means that it contains no choice points.
A succeeded space contains a solution to the logic program.

– The space is distributable. This means that the space has one thread
that is suspended on a choice point with two or more alternatives. A
space can have at most one choice point; attempting to create another
gives an error.

– The space is failed. This means that the space attempted to tell in-
consistent basic constraints, for instance binding the same variable to
two different values. No further execution happens in the space.

– The space is merged. This means that the space has been discarded and
its constraint store has been added to a parent. Any further operation
on the space is an error. This state is the end of a space’s lifetime.

• The space is suspended. This means that additional basic constraints done
in an ancestor can make the space runnable. Being suspended is usually
a temporary condition due to concurrency. It means that some ancestor
space has not yet transferred all required information to the space. A space
that stays not stable indefinitely usually indicates a programmer error.

The operation Ask is then defined as

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

774 Constraint Programming

• A={Ask S} asks the space S for its status. As soon as the space becomes
stable, A is bound. If S is failed, merged, or succeeded, then Ask returns
failed , merged , or succeeded . If S is distributable, then it returns
alternatives(N) , where N is the number of alternatives.

Cloning a space

The next statement of the search engine thread declares a variable C, and creates
a copy of the space S. Note that variables and threads belonging to S are copied
too, so that both spaces are independent of each other. For the sake of simplicity,
we have kept the same identifiers for S and C in the picture below. But they
actually denote different variables in the stores.

{Commit S 1}

L=case {DFE S} of ... end

Sol= case L of ... end

Rectangle=< proc > Sol L

S=

X*Y=:24

X+Y=:10

X=<:Y

case {Choose 2}

of 1 then X=4 {FD.distribute [Y]}

[] 2 then X\=:4 {FD.distribute Root}

end

Root=sol(X Y) X::4#6 Y::4#6

C=

X*Y=:24

X+Y=:10

X=<:Y

case {Choose 2}

of 1 then X=4 {FD.distribute [Y]}

[] 2 then X\=:4 {FD.distribute Root}

end

Root=sol(X Y) X::4#6 Y::4#6

The definition of Clone is

• C={Clone S} , if S is a stable space, creates an identical copy (a clone) of S

and returns a reference to it. This allows both alternatives of a distributable
space to be explored.

Committing to an alternative

The search engine then executes {Commit S 1} . This indicates to the space S

to enter the first alternative. So the call to Choose inside the space unblocks and
returns 1. The distributor thread then binds X to 4, which leads to the space

S=
X*Y=:24 X+Y=:10 X=<:Y {FD.distribute [Y]}

Root=sol(X Y) X=4 Y::4#6

We define Commit as

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

12.4 Computation spaces 775

A={Ask X}
case A of
alternatives(N) then

{Commit X I}
end

...

I={Choose N}
case I of

1. Block

5. Synch on alternative
(pass I)

of 1 then ...

end
...

6. Run alternative
[] 2 then ...

...
...

(pass N)
3. Synch on stability

(in parent space)
Search strategy

Computation space X

...

4. Calculate alternative

2. Block

...

Figure 12.5: Communication between a space and its distribution strategy

• {Commit S I} , if S is a distributable space, causes the Choose call in the
space to complete and return I as its result. This may cause the space to
resume execution. The integer I must satisfy 1≤I ≤N, where N is the first
argument of the Choose call.

Now we see precisely how to make the search strategy interact with the distri-
bution strategy. The basic technique is to use Choose , Ask , and Commit to
communicate between the inside of a space and the search strategy, which is pro-
grammed in the parent space. Figure 12.5 shows how the communication works.
Within the space, calling I={Choose N} first informs the search strategy of the
total number of alternatives (N). Then the search strategy picks one (I) and in-
forms the space. The synchronization condition between the inside of the space
and the search strategy is stability, i.e., that there are no more local deductions
possible inside the space.

Merging a space

The propagators inside S now run until both variables become determined. All
the propagators are entailed by the store, they simply disappear from S:

S=
{FD.distribute [Y]}

Root=sol(X Y) X=4 Y=6

The distributor thread terminates too, because Y is determined, so the whole
computation becomes

L=case {DFE S} of ... end

Sol= case L of ... end

Rectangle=< proc > Sol L S= Root=sol(X Y) X=4 Y=6

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

776 Constraint Programming

C=

X*Y=:24

X+Y=:10

X=<:Y

case {Choose 2}

of 1 then X=4 {FD.distribute [Y]}

[] 2 then X\=:4 {FD.distribute Root}

end

Root=sol(X Y) X::4#6 Y::4#6

The search engine calls again {DFE S} , which performs {Ask S} . The returned
value is now succeeded , which means that the computation inside S has termi-
nated with a consistent store. The search engine continues its execution. The
call to {DFE S} then returns [S] . The latter matches the second clause in DFS,
and the search ends with the statement Sol=[{Merge S}] . The call {Merge

S} merges S with the current space, and returns the root variable of S. The
computation becomes

Rectangle=< proc > Sol=Root L=[S] S=<merged>

Root=sol(X Y) X=4 Y=6

C=

X*Y=:24

X+Y=:10

X=<:Y

case {Choose 2}

of 1 then X=4 {FD.distribute [Y]}

[] 2 then X\=:4 {FD.distribute Root}

end

Root=sol(X Y) X::4#6 Y::4#6

Merging a space is necessary to access the solution:

• Access by merging. A thread cannot see the variables of a child space,
unless the child space is merged with its parent. Space merging is an explicit
program operation. It causes the child space to disappear and all the child’s
content to be added to the parent space.

And Merge is defined by

• {Merge S Y} binds Y to the root variable of space S and discards the space.

Space failure

Suppose now that the search would continue. This would be the case if the first
alternative had no solution. The search engine would then execute {Commit C

2} L={DFE C} . The statement {Commit C 2} causes {Choose 2} to return 2,
which makes the space C evolve to

C=
X*Y=:24 X+Y=:10 X=<:Y {FD.distribute Root}

Root=sol(X Y) X::5#6 Y::4#6

As we have seen, the action of the propagators lead to inconsistencies. For in-
stance, X*Y=:24 propagates the constraints X=6 and Y=4. The propagator X=<:Y

cannot be satisfied with those values, which makes the space C fail:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

12.5 Implementing the relational computation model 777

C=<failed>

In the search engine, the call to {Ask C} would return failed . This means that
C contains no solution. The search would then return nil in that case.

Failures, stateful operations, and interaction with the external world are en-
capsulated in computation spaces in the following way.

• Exceptions and failures. A thread that tries to add an inconsistent ba-
sic constraint to its constraint store will raise a failure exception. What
happens then in the top level space is implementation-dependent. If the
exception occurs in a child space and is not caught, then the space fails. A
failure happening in a propagator immediately results in its space’s failure,
because propagators are threads by themselves.

• Stateful operations. Operations on stateful entities across spaces are forbid-
den. For instance, a thread cannot read or change the value of a cell that
belongs to its space’s parent. A consequence is that only the top level space
can interact with the external world.

Injecting a computation into a space

There is one primitive operation that we have not used, namely Inject . This
operation is however useful, because it permits to add constraints to an existing
space. For instance, you can constrain the solution of a space to be “better” than
an already known solution. The definition of “better” is problem-dependent, of
course. Here is the definition of Inject :

• {Inject S P} is similar to space creation except that it uses an existing
space S. It creates a new thread in the space and invokes {P R} in the
thread, where R is the space’s root variable. This makes a stable space not
stable again. Adding constraints to an existing space is necessary for some
distribution strategies such as branch-and-bound and saturation [172, 169].

12.5 Implementing the relational computation

model

We end this brief introduction to constraint programming by connecting with
the relational computation model of Chapter 9. The relational model extends the
declarative model with choice and fail statements and with a Solve operation
to do encapsulated search. We can now show how to program these operations
with computation spaces. We have already showed how to do fail ; it remains
to implement choice and Solve . Their implementation is independent of the
constraint domain. It will work for finite domain constraints. It will also work
for the single-assignment store used in the rest of the book, since it is also a
constraint system.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

778 Constraint Programming

12.5.1 The choice statement

We can define the choice statement in terms of the Choose operation. The
following statement:

choice 〈s〉1 [] 〈s〉2 [] ... [] 〈s〉n end

is a linguistic abstraction that is defined as follows:

case {Choose N}
of 1 then 〈s〉1
[] 2 then 〈s〉2
...
[] N then 〈s〉n
end

This creates a choice point and then executes the statement corresponding to the
choice made by the search engine.

12.5.2 Implementing the Solve function

Figure 12.6 shows the implementation of the Solve function. It is an all-solution
search engine that uses both computation spaces and laziness. The reader should
pay attention to where laziness occurs. It is important because of the stateful
nature of spaces. For instance, in the else clause of SolveLoop , a clone of S

must be created before any attempt to Commit on S. Because of the lazy nature
of SolveLoop , we could actually have declared C and NewTail in reverse order:

...
NewTail={SolveLoop S I+1 N SolTail}
C={Space.clone S}

...

This works because the value of NewTail is not needed before C is committed.

12.6 Exercises

1. Cryptarithmetic. Write a program to solve all puzzles of the form “Word1
plus Word2 equals Word3”. The words should be input interactively. Use
the solution to the Send+More=Money problem given in Section 12.2.1 as
a guide. The user should be able to stop the search process if it is taking
too long. Use the Solve function to enumerate the solutions.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

12.6 Exercises 779

% Returns the list of solutions of Script given by a lazy
% depth-first exploration
fun {Solve Script}

{SolveStep {Space.new Script} nil}
end

% Returns the list of solutions of S appended with SolTail
fun {SolveStep S SolTail}

case {Space.ask S}
of failed then SolTail
[] succeeded then {Space.merge S}|SolTail
[] alternatives(N) then {SolveLoop S 1 N SolTail}
end

end

% Lazily explores the alternatives I through N of space S,
% and returns the list of solutions found, appended with
% SolTail
fun lazy {SolveLoop S I N SolTail}

if I>N then
SolTail

elseif I==N then
{Space.commit S I}
{SolveStep S SolTail}

else
C={Space.clone S}
NewTail={SolveLoop S I+1 N SolTail}

in
{Space.commit C I}
{SolveStep C NewTail}

end
end

Figure 12.6: Lazy all-solution search engine Solve

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

780 Constraint Programming

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Part IV

Semantics

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Chapter 13

Language Semantics

“This is the secret meaning of the runes; I hid here magic-runes,
undisturbed by evil witchcraft. In misery shall he die by means of
magic art who destroys this monument.”
– Runic inscription, Björketorp Stone

For all the computation models of the previous chapters, we gave a formal se-
mantics in terms of a simple abstract machine. For the declarative model, this
abstract machine contains two main parts: a single-assignment store and a seman-
tic stack. For concurrency, we extended the machine to have multiple semantic
stacks. For lazy execution we added a trigger store. For explicit state we added
a mutable store. For read-only views we added a read-only store.

This chapter brings all these pieces together. It defines an operational seman-
tics for all the computation models of the previous chapters.1 We use a different
formalism than the abstract machine of the previous chapters. The formalism of
this chapter is more compact and easier to reason with than the abstract machine
definitions. It has three principal changes with respect to the abstract machine
of Chapter 2:

• It uses a concise notation based on reduction rules. The reduction rules
follow the abstract syntax, i.e., there are one or more rules for each syntactic
construct. This approach is called Structural Operational Semantics, or
SOS for short. It was pioneered by Gordon Plotkin [208].

• It uses substitutions instead of environments. We saw that statements, in
order to be reducible, must define bindings for their free identifiers. In
the abstract machine, these bindings are given by the environment in the
semantic statement. In this chapter, the free identifiers are directly substi-
tuted by references into the store. We have the invariant that in a reducible
statement, all free identifiers have been replaced by store references.

1This chapter was co-authored with Raphaël Collet.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

784 Language Semantics

• It represents the single-assignment store as a logical formula. This formula is
a conjunction of basic constraints, each of which represents a single variable
binding. Activation conditions are replaced by logical conditions such as
entailment and disentailment.

The chapter is structured as follows:

• Section 13.1 is the main part. It gives the semantics of the shared-state
concurrent model.

• Section 13.2 gives a formal definition of declarative concurrency, which is an
important property of some subsets of the shared-state concurrent model.

• Section 13.3 explains how subsets of this semantics cover the different com-
putation models of the previous chapters.

• Section 13.4 explains how the semantics covers the different programming
abstractions and concepts seen in previous chapters.

• Section 13.5 briefly summarizes the historical development of the shared-
state concurrent model and its relative, the message-passing concurrent
model.

This chapter is intended to be self-contained. It can be understood independently
of the previous chapters. However, its mathematical content is much higher than
the previous chapters. To aid understanding, we therefore recommend that you
connect it with the abstract machine that was defined before.

13.1 The shared-state concurrent model

This section gives a structural operational semantics for the shared-state concur-
rent model. We also call this the general computation model, since it is the most
general model of the book. It covers all the computation models of the book ex-
cept for the relational and constraint-based models. The semantics of each earlier
model, e.g., the declarative, declarative concurrent, and stateful models, can be
obtained by taking just the rules for the language constructs that exist in those
models. A configuration in the shared-state concurrent model consists of several
tasks connected to a shared store:

task · · · task
↘ ↙
store

A task, also called thread, is the basic unit of sequential calculation. A compu-
tation consists of a sequence of computation steps, each of which transforms a
configuration into another configuration. At each step, a task is chosen among all
reducible tasks. The task then does a single reduction step. The execution of the
different tasks is therefore interleaved. We say that the model has an interleaving
semantics. Concurrency is modeled by reasoning about all possible interleavings.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 785

13.1.1 The store

The store consists of two parts: a single-assignment store and a predicate store:

• The single-assignment store (also called constraint store) contains variables
and their bindings. The constraint store is monotonic: variables and bind-
ings can be added, but never changed or removed.

• The predicate store contains the additional information that is needed for
the execution of certain statements. The predicate store consists of the
procedure store (containing procedure values), the mutable store (contain-
ing cells), the trigger store (containing by-need triggers), and the read-only
store (containing read-only views). Some of these stores are nonmonoton-
ic. These stores are introduced in step-by-step fashion as we define the
reduction rules that need them.

All reduction rules are carefully designed so that task reduction is monotonic:
once a task is reducible, then it stays reducible even if information is added to
the constraint store or the predicate store is changed.

13.1.2 The single-assignment (constraint) store

The constraint store is a repository of information about the program variables.
For instance, the store can contain the information “x is bound to 3 and x is equal
to y”, which is written x=3 ∧ x=y. Such a set of bindings is called a constraint.
It has a logical semantics, which is explained in Chapter 9. This is why we also
call this store the constraint store. For this chapter we use just a small part of
the logical semantics, namely logical conjunction (adding new information to the
store, i.e., doing a binding) and entailment (checking whether some information
is in the store).

The constraint store entails information. For example, the store x=3 ∧ x=y
entails y=3, even though that information is not directly present as a binding.
We denote the store by σ and we write this as σ |= y=3. We also use another
relation called disentailment. If β is a constraint, then we say that σ disentails β
if σ entails the negation of β, i.e., σ |= ¬β. For example, if σ contains x=3 then
it disentails x=4.

Entailment and disentailment are the general relations we use to query the
store. They are both forms of logical implication. We assume that the implemen-
tation uses an efficient algorithm for checking them. Such an algorithm is given
in Section 2.7.2.

The constraint store is monotonic, i.e., information can be added but not
changed or removed. Consequently, both entailment and disentailment are mono-
tonic too: when the store entails some information or its negation, this stays true
forever.2 The constraint store provides two primitive operations to the program-

2Note that “σ disentails β” is not the same as “it is not true that σ entails β”. The former
is monotonic while the latter is not.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

786 Language Semantics

mer, called tell and ask :

• Tell. The tell operation is a mechanism to add information to the store. A
task telling the information β to store σ updates the store to σ∧β, provided
that the new store is consistent. For instance, a task may not tell y=7 to
the store x=3∧x=y. It may however tell y=3, which is consistent with the
store. An inconsistent tell leaves the store unchanged. It is signaled with
some mechanism, typically by raising an exception.

• Ask. The ask operation is a mechanism to query the store for the presence
of some information. A task asking store σ for information β becomes
reducible when σ entails either β or its negation ¬β. For instance, with
the store x=3 ∧ x=y, asking for y=3 will give an affirmative answer (the
information is present). Asking for y=4 will give a negative answer (the
information will never be present). An affirmative answer corresponds to
an entailment and a negative answer corresponeds to a disentailment. The
task will not reduce until either an affirmative or negative answer is possible.
Therefore the ask operation is a synchronization mechanism. The task
doing the ask is said to synchronize on β, which is called its guard.

Monotonicity of the store implies a strong property: task reduction is monotonic.
Assume that a task waits for the store to contain some information, i.e., the task
becomes reducible when the store entails some information. Then, once the task
is reducible, it stays reducible even if other tasks are reduced before it. This
is an excellent basis for dataflow concurrency, where tasks synchronize on the
availability of data.

13.1.3 Abstract syntax

Figure 13.1 defines the abstract syntax for the kernel language of the shared-
state concurrent model. Here S denotes a statement, C, P , X, Y denote variable
identifiers, k denotes an integer constant, and n is an integer such that n ≥ 0.
In the record f(l1:X1 · · · ln:Xn), the label f denotes an atom, and each one of the
features li denotes an atom or integer constant. We use ≡ to denote equality
between semantic objects, in order to avoid confusion with = in the equality
statement.

We assume that in any statement defining a lexical scope for a list of variable
identifiers, the identifiers in the list are pairwise distinct. To be precise, in the
three statements

local X1 · · ·Xn in S end

case X of f(l1:X1 · · · ln:Xn) then S1 else S2 end

proc { P X1 · · ·Xn} S end

we must have Xi 6≡ Xj for i 6= j. We further assume that all identifiers (including
X) are distinct in the record tell X=f(l1:X1 · · · ln:Xn). These conditions on

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 787

S ::= skip empty statement
| S1 S2 sequential composition
| thread S end thread introduction

| local X1 · · ·Xn in S end variable introduction (n ≥ 1)

| X=Y imposing equality (tell)
| X=k
| X=f(l1:X1 · · · ln:Xn)

| if X then S1 else S2 end conditional statements (ask)
| case X of f(l1:X1 · · · ln:Xn)

then S1 else S2 end

| {NewNameX} name introduction

| proc { P X1 · · ·Xn} S end procedural abstraction
| { P X1 · · ·Xn}

| {IsDet X Y } explicit state
| {NewCell X C}

| {Exchange C X Y }

| {ByNeed P X} by-need trigger

| Y =!! X read-only variable

| try S1 catch X then S2 end exception handling
| raise X end

| {FailedValue X Y }

Figure 13.1: The kernel language with shared-state concurrency

pairwise distinctness are important to ensure that statements are truly primitive,
i.e., that there are no hidden tells of the form X = Y .

13.1.4 Structural rules

The system advances by successive reduction steps. A possible reduction step is
defined by a reduction rule of the form

T T ′

σ σ′ if C

stating that the computation makes a transition from a multiset of tasks T con-
nected to a store σ, to a multiset of tasks T ′ connected to a store σ′. We call
the pair T /σ a configuration. The rule can have an optional boolean condition
C, which has to be true for the rule to reduce. In this notation, we assume that
the left-hand side of a rule (the initial configuration T /σ) may have patterns and

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

788 Language Semantics

that an empty pattern matches anything. For the rule to reduce, the pattern
must be matched in the obvious way.

We use a very light notation for multisets of tasks: the multiset is named
by a letter in calligraphic style, disjoint union is denoted by a white space, and
singletons are written without curly braces. This allows to write “T1 T T2” for
{T1}]T]{T2}. Any confusion with a sequence of statements is avoided because
of the thread syntax (see later). We generally write “σ” to denote a store, leaving
implicit the set of its variables, say V. If need be, we can make the set explicit
by writing the store with V as a subscript: σV .

We use two equivalent notations to express that a rule has the entailment
condition σ |= β. The condition can be written as a pattern on the left-hand side
or as an explicit condition:

T T ′

σ ∧ β σ ∧ β
or

T T ′

σ σ
if σ |= β

In the definitions that follow, we use whichever notation is the most convenient.
We assume the semantics has the following two rules, which express model

properties that are independent of the kernel language.

T U T ′ U
σ σ′ if

T T ′

σ σ′
T T
σ σ′ if σ and σ′ are equivalent

The first rule expresses concurrency: a subset of the threads can reduce without
directly affecting or depending on the others. The second rule states that the
store can be replaced by an equivalent one. The second rule can also be written
as

σ σ′ if σ and σ′ are equivalent

(using an empty pattern instead of T).

Equivalent stores

A store σ consists of a constraint store σc and a predicate store σp. We denote
this as σ = σc ∧ σp. We say that two stores σ and σ′ are equivalent if (1) their
constraint stores entail one another, that is, σc |= σ′

c and σ′
c |= σc, and (2) their

stores entail the other’s predicate store, that is, σ |= σ′
p and σ′ |= σp.

We define entailment for the predicate store σp as follows. We consider σp as
a multiset of items called predicates. A predicate can be considered as a tuple of
variables, e.g., trig(x, y) is a predicate. We say that σ |= p′1 ∧ · · · ∧ p′n if there
exists a subset {p1, . . . , pn} of σp such that for all i, pi and p′i have the same
labels and number of arguments, and the corresponding arguments of pi and p′i
are equal in σc. For example, if σ ≡ x=x′ ∧ trig(x, y) then σ |= trig(x′, y).

This definition of equivalence is a form of logical equivalence. It is possible
because entailment makes the store independent of its representation: if σ and
σ′ are equivalent, then σ |= γ if and only if σ′ |= γ.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 789

13.1.5 Sequential and concurrent execution

A thread is a sequence of statements S1 S2 · · ·Sn that we write in a head-tail
fashion with angle brackets, i.e., 〈S1 〈S2 〈· · · 〈Sn 〈〉〉 · · · 〉〉〉. The abstract syntax
of threads is

T ::= 〈〉 | 〈S T 〉.
A terminated thread has the form 〈〉. Its reduction simply leads to an empty set
of threads. A non-terminated thread has the form 〈S T 〉. Its reduction replaces
its topmost statement S by its reduction S ′:

〈〉
σ σ

〈S T 〉 〈S ′ T 〉
σ σ′ if

S S ′

σ σ′

(We extend the reduction rule notation to allow statements in addition to mul-
tisets of tasks.) The empty statement, sequential composition, and thread intro-
duction are intimately tied to the notion of thread. Their reduction needs a more
specific definition than the one given above for S:

〈skip T 〉 T
σ σ

〈(S1 S2) T 〉 〈S1 〈S2 T 〉〉
σ σ

〈thread S end T 〉 〈T 〉 〈S 〈〉〉
σ σ

The empty statement skip is removed from the thread’s statement sequence. A
sequence S1 S2 makes S1 the thread’s first statement, while thread S end creates
a new thread with statement S, that is, 〈S 〈〉〉.

13.1.6 Comparison with the abstract machine semantics

Now that we have introduced some reduction rules, let us briefly compare them
with the abstract machine. For example, let us consider the semantics of sequen-
tial composition. The abstract machine semantics defines sequential composition
as follows (taken from Section 2.4):

The semantic statement is

(〈s〉1 〈s〉2, E)

Execution consists of the following actions:

• Push (〈s〉2, E) on the stack.

• Push (〈s〉1, E) on the stack.

The reduction rule semantics of this chapter defines sequential composition as
follows (taken from the previous section):

〈(S1 S2) T 〉 〈S1 〈S2 T 〉〉
σ σ

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

790 Language Semantics

It pays dividends to compare carefully these two definitions. They say exactly
the same thing. Do you see why this is? Let us go over it systematically. In
the reduction rule semantics, a thread is given as a sequence of statements. This
sequence corresponds exactly to the semantic stack of the abstract machine. The
rule for sequential composition transforms the list from 〈(S1 S2) T 〉 to 〈S1 〈S2 T 〉〉.
This transformation can be read operationally: first pop (S1 S2) from the list,
then push S2, and finally push S1.

The reduction rule semantics is nothing other than a precise and compact
notation for the English-language definition of the abstract machine with substi-
tutions.

13.1.7 Variable introduction

The local statement does variable introduction: it creates new variables in the
store and replaces the free identifiers by these variables. We give an example to
understand how the local statement executes. In the following statement, the
identifier Foo in S2 refers to a different variable from the one referred to by Foo

in S1 and S3:
local Foo Bar in

S1

local Foo in S2 end

S3

 ≡ S4

end

The outermost local replaces the occurrences of Foo in S1 and S3 but not those
in S2. This gives the following reduction rule:

local X1 · · ·Xn in S end S{X1→x1, . . . , Xn→xn}
σV σV∪{x1,...,xn}

if x1, . . . , xn fresh variables

In this rule, as in subsequent rules, we use “x” to denote a variable and “X” to
denote an identifier. A variable is fresh if it is different from all existing variables
in the store. So the condition of the rule states that all the variables xi are
distinct and not in V.

The notation S{X1→x1, . . . , Xn→xn} stands for the simultaneous substitu-
tion of the free occurrences of X1 by x1, X2 by x2, . . . , Xn by xn. For instance,
the substitution of Foo by x and Bar by y in the statement S4 defined above
gives

S4{Foo→x, Bar→y} ≡ S1{Foo→x, Bar→y}
local Foo in S2{Bar→y} end

S3{Foo→x, Bar→y}
A substitution is actually an environment that is used as a function. Since vari-
ables and identifiers are in disjoint sets, the substitution S{X1→x1, . . . , Xn→xn}
is equivalent to the composition of single substitutions S{X1→x1} · · · {Xn→xn}.
The substitution operation S{X→x} is defined formally in Section 13.1.17.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 791

13.1.8 Imposing equality (tell)

According to Section 13.1.7, a variable introduced by local has no initial value.
The variable exists but the store simply has no information about it. Adding
information about the variable is done by the tell operation. Let β denote a
statement imposing equality. This statement has three possible forms:

β ::= x=y | x=z | x=f(l1:x1 · · · ln:xn).

This states that x is equal to either another variable y, an integer or name z, or
a record with label f , features (i.e., field names) li, and fields xi. Doing a tell
operation adds the information in β to the store, provided that it does not lead
to an inconsistent store. This is also called binding the variable x.

It is possible that the new information in β conflicts with what the store
already knows about x. We say that β is inconsistent with σ. This happens
whenever β ∧ σ ↔ false . For example, take β ≡ x=10 and σ ≡ x=20. Instead
of adding β to the store, we signal this as an error, e.g., by raising an exception.
Therefore the store is always consistent.

In practice, most tell operations are very simple: telling β just binds one
variable, x, without binding any others. For example, telling x=23 where σ has
no binding for x. But the tell operation is actually much more general. It can
cause many bindings to be done. For example, take σ ≡ x=f(x1 x2)∧y=f(y1 y2).
Then telling x = y does three bindings: x=y, x1=y1, and x2=y2.

Naive semantics of tell

The following two rules decide whether to add β to the store.

β skip

σ σ ∧ β
if σ ∧ β is consistent

β fail

σ σ
if σ ∧ β is inconsistent

(Note that β is used to denote both a statement and a constraint.) We could
implement tell to follow these rules. However, such an implementation would
be complicated and hard to make efficient. The Mozart system uses a slightly
more elaborate semantics that can be implemented efficiently. The tell opera-
tion is a good example of the trade-off between simple semantics and efficient
implementation.

Realistic semantics of tell

We have seen that one tell operation can potentially add many bindings to the
store. This generality has an important consequence for inconsistent tells. For
example, take β ≡ x=y and σ ≡ x=f(x1 x2)∧y=f(y1 y2)∧x2=a∧y2=b. The tell

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

792 Language Semantics

is inconsistent. Does the tell add x1=y1 to the store? It would be nice if the tell
did nothing at all, i.e., σ is unchanged afterwards. This is the naive semantics.
But this is very expensive to implement: it means the tell operation would be a
transaction, which is rolled back if an inconsistency is detected. The system would
have to do a transaction for each variable binding. It turns out that implementing
tell as a transaction is not necessary. If β ∧σ is inconsistent, practical experience
shows that it is perfectly reasonable that some bindings remain in place after the
inconsistency is detected.

For the semantics of a tell operation we therefore need to distinguish a binding
that implies no other bindings (which we call a basic binding) and a binding that
implies other bindings (which we call a nonbasic binding). In the above example,
x=y is nonbasic and x1=y1 is basic.

Bindings implied by β

To see whether β is a basic binding, we need to determine the extra bindings that
happen as part of a tell operation, i.e., the bindings of other variables than x. For
a store σ, we write β

σ→ γ to say that the binding β involves the extra binding
γ. The relation

σ→ is defined as the least reflexive transitive relation satisfying

x=f(l1:y1 · · · ln:yn)
σ→ xi=yi if σ |= x=f(l1:x1 · · · ln:xn)

x=y
σ→ xi=yi if σ |= x=f(l1:x1 · · · ln:xn) ∧ y=f(l1:y1 · · · ln:yn)

We can now define subbindingsσ(β), the set of bindings strictly involved by β and
not yet entailed by σ, as

subbindingsσ(β) =
{

γ
∣∣∣ β

σ→ γ and γ 6 σ→ β and σ 6|= γ
}

.

Rules for basic bindings

We refine the naive semantics to allow some nonbasic bindings to remain when
the tell is inconsistent. We first give the rules for the basic bindings. They decide
whether to add β to the store, in the simple case where β just binds one variable.

β skip

σ σ ∧ β
if subbindingsσ(β) = ∅ and σ ∧ β is consistent

β fail

σ σ
if subbindingsσ(β) = ∅ and σ ∧ β is inconsistent

If only basic bindings are done, then these rules are sufficient. In that case, the
naive semantics and the realistic semantics coincide. On the other hand, if there
are nonbasic bindings, we need one more rule, which is explained next.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 793

Rule for nonbasic bindings

The following rule applies when β involves other bindings. It allows β to be
decomposed into basic bindings, which can be told first.

β γ β
σ σ

if γ ∈ subbindingsσ(β)

With the three binding rules, we can now completely explain how a realistic tell
operation works. Telling β consists of two parts. If β is basic, then the two basic
binding rules explain everything. If β is nonbasic, then the nonbasic binding rule
is used to “peel off” basic bindings, until the tell is reduced to basic bindings only.
The rule allows basic bindings to be peeled off in any order, so the implementation
is free to choose an order that it can handle efficiently.

This rule handles the fact that some bindings may be done even if β is incon-
sistent with the store. The inconsistency will eventually be noticed by a basic
binding, but some previously peeled-off basic bindings may have already been
done by then.

13.1.9 Conditional statements (ask)

There is a single conditional statement that does an ask operation, namely the if

statement. The reduction of an if statement depends on its condition variable:

if x then S1 else S2 end S1

σ ∧ x=true σ ∧ x=true

if x then S1 else S2 end S2

σ ∧ x=false σ ∧ x=false

This statement synchronizes on the value of the variable x. The first rule applies
when the store entails x=true and the second rule applies when the store entails
x=false . The value of x can be determined by a boolean function, as in x=(y<z)
(Section 13.1.11). What happens if x is different from the atoms true and false

is explained later.
The if statement only becomes reducible when the store entails sufficient

information to decide whether x is true or false . If there is not enough infor-
mation in the store, then neither rule can reduce. The if statement is said to
do dataflow synchronization. Because store variables are the basis for dataflow
execution, they are called dataflow variables.

The case statement

The case statement is a linguistic abstraction for pattern matching that is built
on top of if . Its semantics can be derived from the semantics of if , local , and
the record operations Arity and Label . Because pattern matching is such an

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

794 Language Semantics

interesting concept, though, we prefer to give the semantics of case directly as
reduction rules:

case x of f(l1:X1 · · · ln:Xn)
then S1 else S2 end

S1{X1→x1, . . . , Xn→xn}

σ ∧ x=f(l1:x1 · · · ln:xn) σ ∧ x=f(l1:x1 · · · ln:xn)

case x of f(l1:X1 · · · ln:Xn)
then S1 else S2 end

S2

σ σ

if σ |= x6=f(l1:x1 · · · ln:xn)
for any variables x1, . . . , xn

The semantics of pattern matching uses entailment. We say that x matches the
pattern f(l1:X1 · · · ln:Xn) if there exist x1, . . . , xn such that the store entails
x=f(l1:x1 · · · ln:xn). If the match is successful, then the case statement reduces
to S1 where the identifiers Xi are replaced by the corresponding xi. This implies
that the lexical scope of the Xi covers the whole statement S1. Otherwise, if we
can deduce that the match will never succeed, the case reduces to S2. If there
is not enough information to decide one way or another, then neither rule can
reduce. This is the dataflow behavior of case .

Determined variables and the Wait statement

We say that a variable is determined if it is bound to an integer, a name, or
a record. We say an equality determines a variable if it results in the variable
becoming determined. We define the predicate det(x) which is entailed by the
store when the given variable x is determined.

σ |= det(x) iff σ |= x=z for some integer or name z
or σ |= x=f(l1:x1 . . . ln:xn) for some f, li, xi with n ≥ 0

It is useful to introduce a statement that blocks until a variable is determined.
We call this the Wait statement. Its semantics is extremely simple: it reduces to
skip when its argument is determined.

{Wait x} skip

σ σ
if σ |= det(x)

Wait is a form of ask; like the case statement it can be defined in terms of if :

proc {Wait X}
if X==unit then skip else skip end

end

That is, {Wait X} waits until it can be decided whether X is the same as or
different from unit . This reduces when anything definite, no matter what, is
known about X.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 795

13.1.10 Names

Names are unforgeable constants, similar to atoms but without a print represen-
tation. They are used in the semantics to give a unique identity to procedures
and cells (see Sections 13.1.11 and 13.1.12). But their usefulness goes much be-
yond this semantic role. They behave as first-class rights, because they do not
have a concrete representation and cannot be forged. A thread cannot guess a
name value: a thread can know a name only if it references it via one of its vari-
ables. We therefore provide names to the programmer as well as using them in
the semantics.

There are just two operations on a name: creation and equality test. A name
is equal only to itself. New names can be created at will. We use the metavariable
ξ to denote a name, and we extend the equality statement for names:

β ::= · · · | x=ξ.

This statement cannot be typed directly by the programmer, but only created
indirectly through the NewNameoperation, which creates a new name:

{NewNamex} x=ξ
σ σ

if ξ fresh name

The NewNameoperation is not needed for the semantics of procedures and cells.

13.1.11 Procedural abstraction

A procedure is created by the execution of a proc statement. This puts a proce-
dure value proc {$ X1 · · ·Xn} S end in the procedure store. This value is almost
the same as a λ-expression in the λ-calculus. The difference is a matter of detail:
a true λ expression returns a result when applied, whereas a procedure value binds
its arguments when applied. This means that a procedure value can return any
number of results including none. When the procedure is applied, its procedure
value is pushed on the semantic stack and its argument identifiers Xi reference
its effective arguments. The procedure value must of course contain no free oc-
currence of any identifier. This can be proved as a property of the reduction rule
semantics.

We associate a procedure to a variable by giving the procedure a name. Names
are globally unique constants; they were introduced in the previous section. We
pair the name ξ with the procedure value, giving ξ:proc {$ X1 · · ·Xn} S end ,
which is put in the procedure store. The procedure store consists of pairs name:value
which define a mapping from names to procedure values. A variable that refers
to the procedure is bound to ξ in the constraint store.

proc { xp X1 · · ·Xn} S end xp=ξ
σ σ ∧ ξ:proc {$ X1 · · ·Xn} S end

if ξ fresh name

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

796 Language Semantics

{ xp x1 · · ·xn} S{X1→x1, . . . , Xn→xn}
σ ∧ xp=ξ ∧ ξ:proc {$ X1 · · ·Xn} S end σ ∧ xp=ξ ∧ ξ:proc {$ X1 · · ·Xn} S end

It is interesting to see the dataflow behavior of the procedure call. The invocation
statement { xp x1 · · ·xn} synchronizes on the value of xp. So the procedure can
be created in a concurrent thread, provided that no other thread binds xp to a
value.

Where is the contextual environment?

In the abstract machine, a procedure value consists of two parts: the proce-
dure’s source definition and a contextual environment that gives its external ref-
erences. Where does the contextual environment appear in the procedure value
ξ:proc {$ X1 · · ·Xn} S end? It is very simple: the contextual environment ap-
pears in the procedure body S. When a local statement (or another statement
that creates variables) executes, it substitutes identifiers by variables in all the
statements that it encompasses, including procedure bodies. Take for example:

local Add N in
N=3
proc {Add A B} B=A+N end

end

When the procedure is defined, it creates the value ξ:proc {$ A B} B=A+ n end ,
where n is the variable that was substituted for N. The contextual environment
is {n}.

Built-in procedures

A practical implementation of the shared-state concurrent model has to define
built-in procedures, such as arithmetic operators, comparisons, etc. For instance,
the sum operation can be written as x=x1 +x2, which is actually a shorthand for
the procedure call {Add x1 x2 x} that is defined by

{Add x1 x2 x} x=k
σ ∧ x1=k1 ∧ x2=k2 σ ∧ x1=k1 ∧ x2=k2

if k = k1 + k2

Another built-in procedure is the equality test, which is often used in conjunction
with an if statement. Equality test is the general form of the ask operation
defined in Section 13.1.2. It is usually written as a boolean function in infix
notation, as in x=(x1==x2) which is shorthand for {Equal x1 x2 x} .

{Equal x1 x2 x} x=true

σ σ
if σ |= x1=x2

{Equal x1 x2 x} x=false

σ σ
if σ |= x1 6=x2

An algorithm to implement the Equal operation is given in Section 2.7.2. Notice
that both Add and Equal have dataflow behavior.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 797

13.1.12 Explicit state

There are two forms of explicit state in the model. First, there is the boundness
check of dataflow variables, which is a weak form of state. Then there are cells,
which is a true explicit state. We explain them in turn. The relationship between
the two is explored in an exercise.

Boundness check

The boundness check IsDet lets us examine whether variables are determined or
not, without waiting. This lets us examine the instantaneous status of a dataflow
variable. It can be defined with the following rules:

{IsDet x y} y=true

σ σ
if σ |= det(x)

{IsDet x y} y=false

σ σ
if σ |= ¬det(x)

The first rule, checking whether x is determined, is similar to the rule for Wait .
It is the second rule that introduces something new: it allows to give a definite
result, y = false , for a negative test. This was not possible up to now. This
is the first rule in our semantics that has a nonmonotonic condition, i.e., if the
rule is reducible then adding more information to the store can make the rule no
longer reducible.

Cells

All the statements introduced up to now define a language that calculates with the
constraint store and procedure store, both of which are monotonic. We have now
arrived at a point where we need a nonmonotonic store, which we call the mutable
store. The mutable store contains entities called cells, which implement explicit
state. This is important for reasons of modularity (see Section 4.7). It greatly
increases the model’s expressive power, allowing object-oriented programming,
for instance. The reverse side of the coin is that reasoning about programs and
testing them become harder.

A cell is named in the same way as a procedure: when the cell is created, a
fresh name ξ is associated with it. A pair ξ:x is put in the mutable store, where
the variable x defines the current value of the cell. One changes a cell’s value to
y by replacing the pair ξ:y in the mutable store by ξ:y. Cells need two primitive
operations only, namely cell creation and exchange:

{NewCell x xc} xc=ξ
σ σ ∧ ξ:x

if ξ fresh name

{Exchange xc xold xnew} xold=x
σ ∧ xc=ξ ∧ ξ:x σ ∧ xc=ξ ∧ ξ:xnew

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

