
798 Language Semantics

Having just one operation to use cells, Exchange , is rather minimal. It is often
convenient to assume that two other operations exist, namely xc:= x (assignment)
and x=@xc (access). Since we can define them in terms of Exchange , no additional
rules are needed for them.

It is interesting to see the dataflow behavior of Exchange . It blocks until its
first argument references a cell. It never blocks on the second or third arguments.
This allows it to manipulate the cell’s contents even before they are determined.

Example of a stream

Using cells and dataflow variables together permits some remarkable program-
ming techniques. We give a small example that uses a stream. Assume that the
cell C contains the tail of a stream. Then the following statement adds the atom
one to the stream:

local X Old New in
{Exchange C Old New}
X=one
Old=X|New

end

The three instructions inside this local statement can be executed in any order
and the final result is exactly the same. What’s more, several threads can inde-
pendently add elements to the stream by each executing this local statement.
The order of the elements on the stream is determined by the order in which the
Exchange statements are executed.

13.1.13 By-need triggers

The by-need trigger is the basic concept used to define demand-driven execution.
Its semantics is carefully designed so that the demand-driven concurrent model
is still declarative. We define the semantics in two steps. We first define the
needσ(S, x) relation that says when statement S “needs” variable x. We then
define the semantics of the ByNeed operation. For this, we add two predicates to
the store, namely need(x) and trig(p, x). We can view these as sitting in a new
store called the trigger store.

The semantics of Section 4.5.1 is correct according to this section, but the
semantics of this section is more general (it allows more executions). Section 4.5.1
is more restricted to make it easier to implement.

The by-need semantics of this section is designed so that the demand-driven
concurrent model of Chapter 4 is declarative. In particular, the semantics is
designed so that the need(x) predicate is monotonic, reduction rules for by-need
triggers introduce no nondeterminism, and unification never blocks because of
by-need execution.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 799

The needσ(S, x) relation

The relation needσ(S, x) holds between a statement S, a store σ, and a variable
x if and only if three conditions hold:

• No reduction is possible for S with store σ.

• There exists a constraint c (a set of variable bindings) such that σ ∧ c is
consistent and a reduction is possible for S with store σ ∧ c.

• It is true that σ |= ¬det(x) and for all constraints c that satisfy the previous
condition, we have σ ∧ c |= det(x).

The first condition says that S is suspended. The second condition says that S
can be made reducible by adding bindings to the store. The third condition says
that these added bindings also make x determined, i.e., making x determined is
a necessary condition on the added bindings.

Rules for need(x)

We use the needσ(S, x) relation to decide when to add the need(x) predicate to
the trigger store. The first rule implements this idea:

S S
σ σ ∧ need(x)

if needσ(S, x) and σ 6|= need(x)

We need a second rule:

σ σ ∧ need(x)
if σ |= det(x) and σ 6|= need(x)

This rules says that even if no statement needs x, the mere fact of x being
determined is enough to make it needed. This ensures that the need(x) predicate
is monotonic. We can use this fact to show that the demand-driven model is
declarative.

Rules for by-need trigger

The following rule defines the creation of a by-need trigger:

{ByNeed xp x} skip

σ σ ∧ trig(xp, x)

The following rule defines the activation of a by-need trigger:

〈{ xp x} 〈〉〉
σ ∧ trig(xp, x) σ

if σ |= need(x)

These two rules can be seen as a variation of the semantics of thread { xp x} end ,
where the existence of need(x) is used to decide whether or not to execute { xp x} .
The predicate trig(xp, x) can be seen as a kind of suspended thread.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

800 Language Semantics

Lazy functions

A lazy function is implemented by attaching a by-need trigger to the variable that
will contain the function result. The “lazy ” annotation is a syntactic short-cut
for this technique. Any lazy function, e.g.,

fun lazy {F X1 ... Xn} 〈expr〉 end

behaves as if it were defined by:

fun {F X1 ... Xn}

{ByNeed fun {$} 〈expr〉 end }

end

When written in full, this becomes:

proc {F X1 ... Xn X}

local P in

proc {P X} X= 〈expr〉 end

{ByNeed P X}

end

end

The WaitQuiet statement

It is possible to define a variation of Wait , called WaitQuiet , that has a different
behavior with by-need execution:

{WaitQuiet x} skip

σ σ
if σ |= det(x)

This rule is identical with the rule for Wait . The difference between the two
appears when the variable’s value is computed by need. By definition, we stipulate
that arguments of WaitQuiet are not recognized by the needσ(S, x) relation. This
means that Wait requests the computation of the value, while WaitQuiet does
not. WaitQuiet is used in the Mozart system to implement the Browser.

13.1.14 Read-only variables

A read-only variable is a restricted version of a dataflow variable that cannot
be made determined by binding it. Any such attempt will block. A read-only
variable y is always linked to another variable x that does not have this restriction.
When x becomes determined then y is bound to the same partial value. Any
blocked bindings of y can then continue.

To define the semantics of read-only variables, we first add the predicate
future(x, y) to the store. This states that y is a read-only view of x. We can view
these predicates as sitting in a new store called the read-only store. Once x is

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 801

determined, the predicate is removed from the store and replaced by the binding
x=y.

Four rules are needed: one each for the creation and removal of the read-
only view, one to block any attempted bindings, and one to handle by-need
synchronization. A read-only view is created by the procedure {ReadOnly x xr} ,
which binds xr to a read-only view of x. To be compatible with Mozart syntax,
which uses the prefix operator “!! ”, we will always write this procedure as a
function call xr=!! x,

xr=!! x xr=y
σ σ ∧ future(x, y)

if x fresh variable

This creates y, a read-only variable for x, and a future predicate that associates
them. The second rule removes the future predicate when x is determined.

σ ∧ future(x, y) σ ∧ x=y
if σ |= det(x)

A third rule is needed to block any attempt to make y determined by binding it.
This rule replaces the first basic binding rule given in Section 13.1.8. It adds one
new condition to the basic binding rule.

β skip

σ σ ∧ β
if subbindingsσ(β) = ∅ and σ ∧ β is consistent and ¬preventσ(β)

Here preventσ(β) prevents a binding in two cases: (1) the variable to be bound is
read-only and would be made determined, and (2) two read-only variables would
be bound together. We define it as follows:

preventσ(β) ≡ pre1 σ(β) ∨ pre2 σ(β)
pre1 σ(β) ≡ ∃y. σ |= future(, y) and σ ∧ β |= det(y)
pre2 σ(β) ≡ ∃y, y′. σ |= future(, y) ∧ future(, y′) and β ≡ y=y′

A final rule is needed for by-need synchronization. Read-only views are used to
protect dataflow variables used in abstractions, but the dataflow variables should
still be effective in lazy calculations. This implies that if y is needed, the need
should be propagated to x.

σ σ ∧ need(x)
if σ |= need(y) ∧ future(x, y) and σ 6|= need(x)

It is possible to add a “quiet” version of the !! operation which is opaque to the
need condition. The quiet version would not need this final rule.

13.1.15 Exception handling

The exception mechanism is closely bound to sequential composition. Indeed,
raising an exception modifies the sequence of statements in the thread where it

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

802 Language Semantics

has been thrown. It skips every statement inside the scope defined by the most
enclosing try /catch block.

The following rule for the try /catch statement is a first attempt towards its
semantics:

try S1 catch X then S2 end try S ′
1 catch X then S2 end

σ σ′ if
S S ′

σ σ′

It defines the reduction of the nested statement. We then just need to add two
rules for the cases where S1 is skip and raise x end . But this definition is not
complete: it does not handle thread creation inside the try /catch block.

So let us try another approach. We “unfold” the try /catch statement, in
order to match the reduction of the nested statement with the usual rules for
sequence and thread creation. We say that the statement

try S1 catch X then S2 end

unfolds to a sequence of two statements, the first one being S1, and the second
one a “catch ” statement:

S1 (catch X then S2 end)

The new catch statement is for semantic use only: it is a marker that stops a
raise statement exactly at the place it must. The unfolding technique works
even when try /catch blocks are nested. For instance, the statement:

try

try S1

catch X then S2 end

S3

 ≡ scope of outer

try /catch

catch Y then S4 end

S5

when put in a thread unfolds to:

〈

scope of outer
try /catch︷ ︸︸ ︷

S1︸︷︷︸
scope of nested

try /catch

〈catch X then S2 end 〈S3 〈catch Y then S4 end 〈S5 〈〉〉〉〉〉〉

The following two rules define the unfolding of a try /catch statement and the
simplification of a catch statement when no exception is raised:

try S1 catch X then S2 end S1 (catch X then S2 end)
σ σ

catch X then S2 end skip

σ σ

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 803

We now define the behavior of a raise statement. As we said earlier, it should
skip every statement following it, except a catch statement. As the following
statements reside in the current thread’s tail, we must use a “thread-level” re-
duction:

〈raise x end 〈S T 〉〉 〈raise x end T 〉
σ σ

if S 6≡ catch . . . end

〈raise x end 〈S T 〉〉 〈S2{X→x} T 〉
σ σ

if S ≡ catch X then S2 end

What happens if the thread’s statement sequence is done (i.e., there is only the
termination symbol)? The behavior in this case is implementation dependent.
The implementation should have a rule like this one:

〈raise x end 〈〉〉 . . .
σ . . .

The Mozart system has a rule that halts the process with an error message
(“Uncaught exception”).

Sources of exceptions

Exceptions can have three origins: explicitly by executing a raise , implicitly
through a language operation that is impossible, and implicitly through an event
external to the system. This section defines the implicit exceptions that come
from language operations. Several statements can raise an exception when their
reduction will never be possible. The first case is imposing an equality that would
lead to an inconsistent store. This means that fail is replaced by raise in the
second basic binding rule:

β raise failure(...) end

σ σ
if subbindingsσ(β) = ∅ and σ∧β is inconsistent

where the ... stands for some debugging information that is not specified here.3

The second case is a type inconsistency. This is defined with the following
rules. An exception is raised when the condition variable of an if statement is
not a boolean:

if x then S1 else S2 end raise error(...) end

σ σ
if σ |= det(x) ∧ x /∈ {true , false }

3The raise statement in this rule is shorthand for local X in X=failure(...)
raise X end end .

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

804 Language Semantics

An exception is raised if a procedure application is invoked on something that is
not a procedure or is a procedure with a wrong number of arguments:

{ xp x1 · · ·xn} raise error(...) end

σ σ
if σ |= det(xp) ∧ (xp is not a procedure)

{ xp x1 · · ·xn} raise error(...) end

σ σ
if σ |= xp=ξ ∧ ξ:λX1 · · ·Xm.S and m 6= n

An exception is raised if Exchange is executed on something that is not a cell:

{Exchange xc xold xnew} raise error(...) end

σ σ
if σ |= det(xc) ∧ (xc is not a cell)

We can add analogous rules for the built-in procedures.

13.1.16 Failed values

The semantics of failed values is defined by four rules. The first rule creates a
failed value:

{FailedValue x xf } xf=y
σ σ ∧ y=failed(x)

if y fresh variable

The entity failed(x) represents a failed value that encapsulates the variable x. A
failed value is not a value, i.e., it is not a member of the set of possible values.
It follows that a rule that needs a value to reduce will not reduce with a failed
value. However, we allow a failed value to be bound to an unbound variable.
This means it can be passed to and from a procedure and it can be embedded in
a data structure. The second rule ensures that needing a failed value raises an
exception:

S raise x end

σ σ
if needσy(S, y) and σ |= y=failed(x)

Here σy = σ \ {y=failed(x)}, i.e., y is unbound in σy. This allows correct calcu-
lation of the needσ relation. The third rule handles the case of IsDet . This case
is not handled correctly by the second rule because it does a test on a variable
being not determined. We therefore have to handle it separately:

{IsDet xf y} raise x end

σ σ
if σ |= xf=failed(x)

This assumes that neither of the rules of Section 13.1.12 will reduce for a failed
value. The fourth rule ensures that attempting to bind a failed value to a nonva-
riable raises an exception:

β raise x end

σ σ
if subbindingsσ(β) = ∅ and failconflictσ(β, x)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 805

This rule is added to the two basic binding rules. We define the condition
failconflictσ(β, x) to be true in two cases. First, if β |= det(y) and σ |= y=failed(x).
Second, if β ≡ y=y′ and at least one of y or y′ is bound to a failed value of the
form failed(x) and the other is a failed value or determined.

13.1.17 Variable substitution

This section defines the substitution of identifiers by variables in a statement.
The notation Sθ, where θ = {X1→x1, . . . , Xn→xn}, stands for the substitution
of X1 by x1, . . . , Xn by xn in the statement S. For convenience, we first define
substitutions for variables and identifiers. Let χ denote an identifier or a variable,
i.e., χ ::= X | x.

χθ =

{
θ(χ) if χ ∈ dom(θ)
χ otherwise

The following substitutions do not involve lexical scoping, so their definition is
easy.

(skip)θ ≡ skip

(S1 S2)θ ≡ S1θ S2θ

(thread S end)θ ≡ thread Sθ end

(χ1=χ2)θ ≡ χ1θ = χ2θ

(χ=z)θ ≡ χθ = z

(χ=f(l1:χ1 · · · ln:χn))θ ≡ χθ = f(l1:χ1θ · · · ln:χnθ)

(if χ then S1 else S2 end)θ ≡ if χθ then S1θ else S2θ end

({ χ χ1 · · ·χn})θ ≡ { χθ χ1θ · · ·χnθ}

(raise χ end)θ ≡ raise χθ end

We assume that NewName, IsDet , NewCell , Exchange , ByNeed, ReadOnly , and
FailedValue are handled by the procedure application case. The remaining
substitutions deal with lexical scoping. The notation θ{X1,...,Xn} stands for the
removal of the mappings of X1, . . . , Xn from θ, i.e.,

θ{X1,...,Xn} =
{
X→x ∈ θ

∣∣∣ X /∈ {X1, . . . , Xn}
}

.

(local X1 · · ·Xn in S end)θ ≡ local X1 · · ·Xn in Sθ{X1,...,Xn} end(
case χ of f(l1:X1 . . . ln:Xn)

then S1 else S2 end

)
θ ≡ case χθ of f(l1:X1 . . . ln:Xn)

then S1θ{X1,...,Xn} else S2θ end

(proc { χ X1 · · ·Xn} S end)θ ≡ proc { χθ X1 · · ·Xn} Sθ{X1,...,Xn} end

(try S1 catch X then S2 end)θ ≡ try S1θ catch X then S2θ{X} end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

806 Language Semantics

13.2 Declarative concurrency

In Section 4.1.4 we gave an informal definition of the concept of declarative con-
currency. Let us now make this definition formal. Recall how we define a reduc-
tion step:

T T ′

σ σ′

Here T is a multiset of threads in execution (i.e., statement sequences) and σ is
a set of bindings (a store). Let us assume for this section that σ has no cells.
We call T a program in execution, or program, for short, if there is no risk of
confusion with the meaning of program as a source text.

Partial and total termination

We say that the configuration T /σ is partially terminated if it cannot be further
reduced (no reduction rule applies). The termination is partial since adding bind-
ings to σ might allow some rules to apply and execution to continue. Although
it is not needed for defining declarative concurrency, we can also define total ter-
mination: no matter what bindings are added to σ, the configuration cannot be
reduced further.

We can also consider failed computations as partially terminated if we intro-
duce the following two reduction rules.

〈raise x end 〈〉〉
σ false

T
false false

With those rules, any uncaught exception eventually lead to the failure configu-
ration ∅/false .

Logical equivalence

We define logical equivalence between stores as we did in the beginning of the
chapter. We extend this to logical equivalence between configurations. Let V be
a set of variables. Two configurations T /σ and T ′/σ′ are logically equivalent with
respect to V if there exists a bijection r on variables and names such that

• for all x in V, r(x) = x,

• r(σ) ≡ σ′ and σ ≡ r−1(σ′),

• r(T) = T ′ and T = r−1(T ′), where r and r−1 are used as substitutions.

The mapping r makes the correspondence between variables and names that are
not in a common set V.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.2 Declarative concurrency 807

Declarative concurrency

We say that a program T is declarative concurrent if for all σV ,

• T /σ always reduces after a finite number of reduction steps to a partially
terminated configuration and all these configurations are logically equiva-
lent with respect to V ;

• for every partial termination T ′/σ′ of T /σ, σ′ entails σ (monotonicity).

Those two statements also hold for failure configurations. The failed store false

entails all the other stores.
In general, we say that a computation model is declarative concurrent if all its

programs are declarative concurrent. Intuitively, we can consider a declarative
concurrent program as calculating a partial function b = fT (a), where a = σ and
b = σ′. The function is determined by the program T .

The execution of a declarative concurrent program can always be separated
into a sequence of alternating input and output “phases”: adding a set of bindings
(input phase) and executing until partial termination (output phase).

We can prove that all the declarative concurrent models of Chapter 4 are
declarative concurrent according to the above definition. In particular, the most
general model (which contains both threads and by-need triggers) is declarative
concurrent.

From the viewpoint of foundational calculi, this result means that the declar-
ative concurrent model can be seen as an interesting intermediate step between
functional calculi such as the λ calculus and process calculi such as the π calculus.
The λ calculus is a model of functional programming. This has nice properties
such as confluence (see Section 4.9.2). The π calculus is a model of concurrent
programming: it is not functional but it is able to express many concurrent com-
putations. The declarative concurrent model is both functional and concurrent.
It restricts the expressiveness of concurrency compared to the π calculus in such
a way that computations become functional again like in the λ calculus.

Confluence property

The above definition of declarative concurrency only considers partial termina-
tions. Nothing is said about infinite executions. Here we propose another way
to express declarative concurrency which takes all kinds of computations into
account. We use the notation T /σ −→ T ′/σ′ to say that there exists a finite
execution that begins with configuration T /σ and ends with configuration T ′/σ′.
Partial termination is not required for T ′/σ′.

A program T is declarative concurrent if for all σV , and for all executions
T /σ −→ T1/σ1 and T /σ −→ T2/σ2, there exist two further executions T1/σ1 −→
T ′

1/σ′
1 and T2/σ2 −→ T ′

2/σ′
2 such that the configurations T ′

1/σ′
1 and T ′

2/σ′
2 are

equivalent with respect to V.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

808 Language Semantics

The property can be depicted by the following diagram, where the configura-
tion T ′/σ′ is given “up to equivalence with respect to V.”

T /σ
↙ ↘

T1/σ1 T2/σ2

↘ ↙
T ′/σ′

This property is useful for infinite executions. It states that all finite executions
of a neverending declarative program must be consistent with each other. For
instance, consider a program T that binds x to an infinite list. If x is bound to
1|2|3|... during one execution, and to 2|4|6|... during another execution,
then the program is not declarative.

13.3 Eight computation models

The previous section gives the semantics of the shared-state concurrent model,
which is the most expressive general-purpose model of the book. This semantics
is factorized so that the semantics of most of the earlier models are subsets of
it. To make these subsets easy to understand, we distinguish three properties:
concurrency, state, and laziness. Each of these properties is defined by a part of
the semantics:

• Concurrency is introduced by the thread statement. Having concurrency
implies that there is a multiset of tasks.

• State is introduced by the NewCell operation and handled by the Exchange

operation. Having state implies that there is a mutable store. We assume
that having ports is equivalent to having state.

• Laziness is introduced by the ByNeed operation. Having laziness implies
that there is a trigger store.

Each of the three properties can be left out of the model by removing its state-
ments. This gives eight useful models of varying degrees of expressiveness (!).
Table 13.1 lists these eight models. All of these models are practical and most
have been used in real programming languages. Table 13.1 also situates a num-
ber of real languages with respect to the model that in our opinion best fits the
intended use of each language. In this table, C means concurrency, L means
laziness, and S means state. An × means the property is in the model, a blank
means it is not.

In the shared-state concurrent model, the three properties are all explicit.
That is, the programmer controls whether or not they are used by means of
explicit commands. This is not true of all the languages mentioned. For example,

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.4 Semantics of common abstractions 809

C L S Description

Declarative model (Chapters 2 &3, Mercury, Prolog).
× Stateful model (Chapters 6 & 7, Scheme, Standard ML, Pascal).

× Lazy declarative model (Haskell).
× × Lazy stateful model.

× Eager concurrent model (Chapter 4, dataflow).
× × Stateful concurrent model (Chapters 5 & 8, Erlang, Java, FCP).
× × Lazy concurrent model (Chapter 4, demand-driven dataflow).
× × × Stateful concurrent model with laziness (Oz).

Table 13.1: Eight computation models

laziness is implicit in Haskell and concurrency is implicit in FCP (Flat Concurrent
Prolog).

Languages can be based on the same computation model and yet “feel” very
differently to the programmer:

• Scheme, Standard ML, and Pascal are all based on the stateful model.
Pascal is a simple imperative language. Scheme and Standard ML are
“mostly-functional” languages. By “mostly” we mean that state is intended
to be used in a limited way.

• Erlang, Java, and FCP are all based on the stateful concurrent model, ei-
ther of the shared-state variety or of the message-passing variety. Erlang
is based on port objects that are programmed in a functional model and
communicate with asynchronous message passing. Java is based on pas-
sive objects referenced by threads and that communicate through shared
monitors. FCP is based on the process model of logic programming, with
predicates in Horn clause syntax that communicate through shared streams.

Whether a language is dynamically or statically typed is independent of its place
in the table. Scheme, Prolog, Erlang, FCP, and Oz are dynamically typed.
Haskell, Standard ML, Mercury, Java, and Pascal are statically typed.

The table does not give the semantics of the relational computation model
of Chapter 9 (the declarative model with search). We delay this until we give
the semantics of constraint programming in Chapter 12. The logical semantics
of Prolog and Mercury are closely related to the relational computation model.

13.4 Semantics of common abstractions

We have seen many programming abstractions throughout this book. For exam-
ple, some of the more general ones are:

• Loop abstractions such as the for loop.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

810 Language Semantics

• Software components (functors) and their instances (modules).

• Stream objects and declarative concurrency.

• Coroutines (non-preemptive threads).

• Lazy functions and list comprehensions.

• Secure abstract data types, wrappers, and revocable capabilities.

• Incremental definition of abstract data types (classes) and their instances
(objects).

• Ports (communication channels) and port objects.

• Concurrent components (port objects and their compositions).

• Active objects, both asynchronous and synchronous.

• Active objects with mailboxes (as used in Erlang).

• Locks, reentrant locks, monitors, and transactions.

• Tuple spaces (similar to the Linda concept).

We showed how to implement these abstractions using the shared-state concurrent
model or a subset of this model. When taken together with this chapter, these
implementations can be seen as formal semantic definitions of the abstractions.
The choice of which concepts are primitive and which are derived is often a matter
of judgement. For example, Chapter 5 defines a port as a primitive concept and
gives its semantics directly.

For some of the abstractions, we have defined new syntax, thus making them
into linguistic abstractions. For the semantics, it is almost irrelevant whether or
not an abstraction has syntactic support. We say “almost” because the syntax
can guarantee that the abstraction is not used in an incorrect way, which is
important when reasoning about programs.

13.5 Historical notes

The computation model of this chapter was developed over many years. We
briefly summarize its history. In the late 1980’s, a new model of computation
known as the concurrent constraint model was developed by Michael Maher and
Vijay Saraswat out of concurrent logic programming and constraint logic pro-
gramming [163, 117, 90]. All computation models of the book are ultimately
based on this model.

The concurrent constraint model led to the AKL language [93, 92] and sub-
sequently to Oz 1 [179, 180], a precursor of the language used in this book. AKL

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.6 Exercises 811

adds stateful data (in the form of ports) and encapsulated search to the ba-
sic concurrent constraint model. Oz 1 further adds higher-order procedures, a
compositional syntax (instead of the Horn clause syntax of AKL), stateful ab-
stractions including an object system, and computation spaces for encapsulated
search. Like AKL, Oz 1 has implicit concurrency: when a statement blocks it is
put into its own thread that contains only that statement. The direct successor of
Oz 1, called Oz 2, replaces implicit concurrency by explicit thread creation, which
allows an improved object system and makes it easier to reason about programs.

The kernel languages used in this book are subsets of Oz 3, which this book
calls simply Oz. Oz 3 extends and simplifies Oz 2 in many ways. It adds by-
need execution (an early version is given in [121]), first-class software components
called functors [50], and a distributed computation model [72]. It has a simple
formal semantics that can be implemented efficiently. The formal semantics of
this chapter completes and corrects the semantics given in earlier publications,
notably regarding by-need execution and read-only variables.

13.6 Exercises

1. The case statement. Let us investigate the case statement, whose se-
mantics is defined in Section 13.1.9.

(a) Show how the semantic rules of case can be derived from the rules
for local and if .

(b) In the first rule for the case , we could have explicitly introduced
variables for the Xi by:

case x of f(l1:X1 . . . ln:Xn)
then S1 else S2 end

local X1 · · ·Xn in

X1=x1 · · · Xn=xn S1 end

σ ∧ x=f(l1:x1 . . . ln:xn) σ ∧ x=f(l1:x1 . . . ln:xn)

Do the rules lead to the same possible executions? What are the
differences (if any)?

(c) It is possible to write an if statement in terms of a case statement.
How? This implies that case could have been put in the kernel lan-
guage instead of if , and if could have been defined as a linguistic
abstraction.

2. Lexically-scoped closures. The rules for procedural abstraction in Sec-
tion 13.1.11 are designed to follow lexical scoping, i.e., procedure introduc-
tion creates a lexically-scoped closure. Let us look more closely to see how
this works:

• Write the consecutive computation steps (rule reductions) for the ex-
ecution of the ForAll and MakeAdder definitions in Section 13.1.11.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

812 Language Semantics

• Procedure introduction creates the λ expression ξ:λX1 · · ·Xn.S in the
store. Explain how the contextual environment is stored in this λ
expression.

3. Implementing cells with IsDet . Section 13.1.12 explains the IsDet

operation, which can be used to check the status of a dataflow variable. For
this exercise, let us examine the expressive power of IsDet .

• Define the operations NewCell and Exchange in the declarative model
extended with IsDet . The semantics of these operations should be
identical to their semantics with cells, as given in this chapter. It
is straightforward to define a solution, albeit an inefficient one, that
works in a sequential model. Hint: use the function LastCons , defined
as:

fun {LastCons Xs}
case Xs of X|Xr then

if {IsDet Xr} then {LastCons Xr} else Xs end
[] nil then nil end

end

Using LastCons let us gets around the monotonicity of the store. The
idea is to build incrementally a list with unbound tail and use IsDet

to get its latest known element.

• Does the above solution work in a concurrent model, i.e., when ex-
changes on the same cell are done concurrently? Is such a solution
possible? In the light of this result, comment on the relationship be-
tween IsDet and explicit state.

4. Reading and writing a cell. Section 13.1.12 mentions that two more cell
operations can be added for programming convenience, namely xold=@xc to
read the content and xc:= xnew to update the content. Define the semantics
of these two operations.

5. Dataflow streams. Section 13.1.12 gives an example of a local state-
ment that adds an element to a stream. Prove that executing two of these
statements in different threads always gives exactly the same final result
as if they were executed sequentially in the same thread in one order or
another.

6. Stateful streams. Define a stream datatype that does not use dataflow
variables. That is, it is a list in which each tail is a cell whose content points
to the rest of the list. The last cell contains a marker saying that the stream
is not yet complete, e.g., the atom incomplete . (This is not the same as the
atom nil which means that the stream is complete.) There is a global cell
C whose contents is always the last cell in the stream. Write an operation
that adds an element to the stream and that works in a concurrent setting.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.6 Exercises 813

Hint: assume that there exists a statement lock S end such that only one
thread at a time can be executing S; all others suspend if needed to make
this true. Can you do it without using a lock statement? Compare your
solution to that of the previous exercise. Which is simpler?

7. Needing a variable. Section 13.1.13 gives a definition of what it means
to need a variable. Because this need relation is monotonic, we can show
that the demand-driven concurrent model is declarative. However, there
are other ways to define the need relation that also result in declarative
models. For this exercise, try to find at least one such definition.

8. Exceptions with a finally clause. Section 13.1.15 defines the try /catch

statement:

try S1 catch X then S2 end

which executes S2 if an exception is raised in S1. Another, very useful
statement relating to exceptions is the try /finally statement:

try S1 finally S2 end

which always executes S2, whether or not S1 raises an exception. If S1 raises
an exception, then this exception is raised again after executing S2. Define
the try /finally statement in terms of the try /catch statement.

9. (advanced exercise) Lambda calculus. The book claims that the declar-
ative model and the declarative concurrent model both do functional pro-
gramming. For this exercise, prove this claim formally. First show that any
execution in the declarative model corresponds to an execution in a version
of the λ calculus. How do dataflow variables show up? Then show that
adding concurrency and laziness do not change this result.

10. (research project) Trade-offs in language design. When designing a lan-
guage, there are often trade-offs between the programmer’s mental model,
the language semantics, and the implementation. One would like all three
to be simple, but that is often impossible. One of the delicate matters is
to find the right balance. To make this concrete, let us see how to provide
the concept of binding in a dataflow language. Section 13.1.8 defines two
semantics for binding, which it calls the naive semantics and the realistic
semantics. There is also a third possibility. Let us summarize all three:

• The naive semantics does binding atomically, as a transaction. If
adding β would be inconsistent, then the store is unchanged. This
gives a simple mental model and a simple semantics, but the imple-
mentation is complex. This semantics was much discussed in the con-
text of concurrent logic programming, but was dropped because of
problems implementing it efficiently [177, 190].

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

814 Language Semantics

• The realistic semantics does binding as an incremental tell. That is, if
β is inconsistent, then the store might still be changed. This makes the
implementation simple, but the semantics somewhat more complex.
Experience shows that the mental model is acceptable. This semantics
is chosen for the computation models of this book.

• The third semantics is more in line with mainstream programming
languages. It jettisons unification in favor of simple bindings only. It
allows binding only unbound variables with terms. Variable-variable
bindings block and term-term bindings raise an exception. This makes
both the implementation and the semantics simple. However, it is less
expressive for the programmer. This approach was pioneered, e.g., in
dataflow languages with I-structures such as Id and pH [131, 132, 133]
and in Multilisp [68] (see Section 4.9.4).

For this exercise, reexamine the trade-offs between these three approaches.
Which would you recommend?

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Part V

Appendices

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Appendix A

Mozart System Development
Environment

“Beware the ides of March.”
– Soothsayer to Julius Caesar, William Shakespeare (1564–1616)

The Mozart system used in this book has a complete IDE (Interactive De-
velopment Environment). To get you started, we give a brief overview of this
environment here. We refer you to the system documentation for additional in-
formation.

A.1 Interactive interface

The Mozart system has an interactive interface that is based on the Emacs text
editor. The interfactive interface is sometimes called the OPI, which stands for
Oz Programming Interface. The OPI is split into several buffers: scratch pad,
Oz emulator, Oz compiler, and one buffer for each open file. This interface gives
access to several tools: incremental compiler (which can compile any legal pro-
gram fragment), Browser (visualize the single-assignment store), Panel (resource
usage), Compiler Panel (compiler settings and environment), Distribution Panel
(distribution subsystem including message traffic), and the Explorer (interactive
graphical resolution of constraint problems). These tools can also be manipulated
from within programs, e.g., the Compiler module allows to compile strings from
within programs.

A.1.1 Interface commands

You can access all the important OPI commands through the menus at the top
of the window. Most of these commands have keyboard equivalents. We give the
most important ones:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

818 Mozart System Development Environment

Command Effect
CTRL-x CTRL-f Read a file into a new editor buffer
CTRL-x CTRL-s Save current buffer into its file
CTRL-x i Insert file into the current buffer
CTRL-. CTRL-l Feed current line into Mozart
CTRL-. CTRL-r Feed current selected region into Mozart
CTRL-. CTRL-p Feed current paragraph into Mozart
CTRL-. CTRL-b Feed current buffer into Mozart
CTRL-. h Halt the run-time system (but keep the editor)
CTRL-x CTRL-c Halt the complete system
CTRL-. e Toggle the emulator window
CTRL-. c Toggle the compiler window
CTRL-x 1 Make current buffer fill the whole window
CTRL-g Cancel current command

The notation “CTRL-x” means to hold down the Control key and then press the
key x once. The CTRL-g command is especially useful if you get lost. To feed a
text means to compile and execute it. A region is a contiguous part of the buffer.
It can be selected by dragging over it while holding the first mouse button down.
A paragraph is a set of non-empty text lines delimited by empty lines or by the
beginning or end of the buffer.

The emulator window gives messages from the emulator. It gives the output
of Show and run-time error messages, e.g., uncaught exceptions. The compiler
window gives messages from the compiler. It says whether fed source code is
accepted by the system and gives compile-time error messages otherwise.

A.1.2 Using functors interactively

Functors are software component specifications that aid in building well-structured
programs. A functor can be instantiated, which creates a module. A module is
a run-time entity that groups together any other run-time entities. Modules
can contain records, procedures, objects, classes, running threads, and any other
entity that exists at run-time.

Functors are compilation units, i.e., their source code can be put in a file and
compiled as one unit. Functors can also be used in the interactive interface. This
follows the Mozart principle that everything can be done interactively.

• A compiled functor can be loaded interactively. For example, assume that
the Set module, which can be found on the book’s Web site, is compiled in
file Set.ozf. It will be loaded interactively with the following code:

declare
[Set]={Module.link ["Set.ozf"]}

This creates the module Set . Other functor manipulations are possible by
using the module Module .

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

A.2 Batch interface 819

• A functor is simply a value, like a class. It can be defined interactively with
a syntax similar to classes:

F=functor $ define skip end

This defines a functor and binds F to it.

A.2 Batch interface

The Mozart system can be used from a command line. Oz source files can be
compiled and linked. Source files to compile should contain functors, i.e., start
with the keyword functor . For example, assume that we have the source file
Set.oz, which is available on the book’s Web site. We create the compiled functor
Set.ozf by typing the following command from a command line interface:

ozc -c Set.oz

We can create a standalone executable Set by typing the following:

ozc -x Set.oz

(In the case of Set.oz, the standalone executable does very little: it just defines
the set operations.) The Mozart default is to use dynamic linking, i.e., needed
modules are loaded and linked at the moment they are needed in an application.
This keeps compiled files small. But it is possible to link all imported modules
during compilation (static linking) so that no dynamic linking is needed.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

820 Mozart System Development Environment

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Appendix B

Basic Data Types

“Wie het kleine niet eert is het grote niet weert.”
“He who does not honor small things is not worthy of great things.”
– Traditional Dutch proverb.

This appendix explains the most common basic data types in Oz together with
some common operations. The types explained are numbers (including integers
and floating point numbers), characters (which are represented as small integers),
literals (constants of two types, either atoms or names), records, tuples, chunks
(records with a limited set of operations), lists, strings (which are represented as
lists of characters), and virtual strings (strings represented as tuples).

For each data type discussed in this appendix, there is a corresponding Base
module in the Mozart system that defines all operations on the data type. This
appendix gives some but not all of these operations. See the Mozart system
documentation for complete information [49].

B.1 Numbers (integers, floats, and characters)

The following code fragment introduces four variables I , H, F and C. It binds I

to an integer, H to an integer in hexadecimal notation, F to a float, and C to the
character t in this order. It then displays I , H, F, and C:

declare I H F C in
I = ˜5
H = 0xDadBeddedABadBadBabe
F = 5.5
C = &t
{Browse I} {Browse H} {Browse F} {Browse C}

Note that ˜ (tilde) is the unary minus symbol. This displays the following:

˜5
1033532870595452951444158
5.5

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

822 Basic Data Types

〈character〉 ::= (any integer in the range 0 ... 255)
| ´ &´ 〈charChar〉
| ´ &´ 〈pseudoChar〉

〈charChar〉 ::= (any inline character except \ and NUL)
〈pseudoChar〉 ::= (’\’ followed by three octal digits)

| (´ \x ´ or ´ \X ´ followed by two hexadecimal digits)
| ´ \a ´ | ´ \b ´ | ´ \f ´ | ´ \n ´ | ´ \r ´ | ´ \t ´

| ´ \v ´ | ´ \\ ´ | ´ \ ´´ | ´ \" ´ | ´ \ `´ | ´ \& ´

Table B.1: Character lexical syntax

116

Oz supports binary, octal, decimal, and hexadecimal notation for integers, which
can have any number of digits. An octal integer starts with a leading 0 (zero),
followed by any number of digits from 0 to 7. A binary integer starts with a
leading 0b or 0B (zero followed by the letter b or B) followed by any number of
binary digits, i.e., 0 or 1. A hexadecimal integer starts with a leading 0x or 0X

(zero followed by the letter x or X). The hexadecimal digits from 10 to 15 are
denoted by the letters a through f and A through F.

Floats are different from integers in that they approximate real numbers. Here
are some examples of floats:

˜3.14159265359 3.5E3 ˜12.0e˜2 163.

Note that Mozart uses ˜ (tilde) as the unary minus symbol for floats as well as
integers. Floats are internally represented in double precision (64 bits) using the
IEEE floating point standard. A float must be written with a decimal point and
at least one digit before the decimal point. There may be zero or more digits
after the decimal point. Floats can be scaled by powers of ten by appending the
letter e or E followed by a decimal integer (which can be negative with a ´ ˜ ´).

Characters are a subtype of integers that range from 0 to 255 . The standard
ISO 8859-1 coding is used. This code extends the ASCII code to include the letters
and accented letters of most languages whose alphabets are based on the Roman
alphabet. Unicode is a 16-bit code that extends the ASCII code to include the
characters and writing specifics (like writing direction) of most of the alphabets
used in the world. It is not currently used, but may be in the future. There are
five ways to write characters:

• A character can be written as an integer in the range 0, 1, ..., 255 , in accord
with the integer syntax given before.

• A character can be written as an ampersand & followed by a specific char-
acter representation. There are four such representations:

– Any inline character except for \ (backslash) and the NUL character.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

B.1 Numbers (integers, floats, and characters) 823

〈expression〉 ::= 〈expression〉 〈binaryOp〉 〈expression〉
| ´ { ´ 〈expression〉 { 〈expression〉 } ´ } ´

| ...
〈binaryOp〉 ::= ´ +´ | ´ - ´ | ´ * ´ | ´ / ´ | div | mod | ...

Table B.2: Some number operations

Some examples are &t , & (note the space), and &+. Inline control
characters are acceptable.

– A backslash \ followed by three octal digits, e.g., &\215 is a character.
The first digit should not be greater than 3.

– A backslash \ followed by the letter x or X, followed by two hexadecimal
digits, e.g., &\x3f is a character.

– A backslash \ followed by one of the following characters: a (= \007 ,
bell), b (= \010 , backspace), f (= \014 , formfeed), n (= \012 , new-
line), r (= \015 , carriage return), t (= \011 , horizontal tab), v (=
\013 , vertical tab), \ (= \134 , backslash), ’ (= \047 , single quote),
" (= \042 , double quote), ‘ (= \140 , backquote), and & (= \046 ,
ampersand). For example, &\\ is the backslash character, i.e., the
integer 92 (the ASCII code for \) .

Table B.1 summarizes these possibilities.
There is no automatic type conversion in Oz, so 5.0 = 5 will raise an excep-

tion. The next section explains the basic operations on numbers, including the
primitive procedures for explicit type conversion. The complete set of operations
for characters, integers, and floats are given in the Base modules Char , Float ,
and Int . Additional generic operations on all numbers are given in the Base
module Number. See the documentation for more information.

B.1.1 Operations on numbers

To express a calculation with numbers, we use two kinds of operations: binary
operations, such as addition and subtraction, and function applications, such as
type conversions. Table B.2 gives the syntax of these expressions. All numbers,
i.e., both integers and floats, support addition, subtraction, and multiplication:

declare I Pi Radius Circumference in
I = 7 * 11 * 13 + 27 * 37
Pi = 3.1415926536
Radius = 10.
Circumference = 2.0 * Pi * Radius

Integer arithmetic is to arbitrary precision. Float arithmetic has a fixed precision.
Integers support integer division (div symbol) and modulo (mod symbol). Floats

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

824 Basic Data Types

Operation Description
{IsChar C} Return boolean saying whether C is a character
{Char.toAtom C} Return atom corresponding to C

{Char.toLower C} Return lowercase letter corresponding to C

{Char.toUpper C} Return uppercase letter corresponding to C

Table B.3: Some character operations

support floating division (/ symbol). Integer division truncates the fractional
part. Integer division and modulo satisfy the following identity:

A = B * (A div B) + (A mod B)

There are several operations to convert between floats and integers.

• There is one operation to convert from an integer to a float, namely IntToFloat .
This operation finds the best float approximation to a given integer. Be-
cause integers are calculated with arbitrary precision, it is possible for an
integer to be larger than a representable float. In that case, the float inf

(infinity) is returned.

• There is one operation to convert from a float to an integer, namely FloatToInt .
This operation follows the default rounding mode of the IEEE floating point
standard, i.e., if there are two possibilities, then it picks the even integer.
For example, {FloatToInt 2.5} and {FloatToInt 1.5} both give the
integer 2. This eliminates the bias that would result by always rounding
half integers upwards.

• There are three operations to convert a float into a float that has zero
fractional part: Floor , Ceil (ceiling), and Round.

– Floor rounds towards negative infinity, e.g., {Floor ˜3.5} gives
˜4.0 and {Floor 4.6} gives 4.0 .

– Ceil rounds towards positive infinity, e.g., {Ceil ˜3.5} gives ˜3.0

and {Ceil 4.6} gives 5.0 .

– Round rounds towards the nearest even, e.g., {Round 4.5}=4 and
{Round 5.5}=6 . Round is identical to FloatToInt except that it re-
turns a float, i.e., {Round X} = {IntToFloat {FloatToInt X}} .

B.1.2 Operations on characters

All integer operations also work for characters. There are a few additional op-
erations that work only on characters. Table B.3 lists some of them. The Base
module Char gives them all.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

B.2 Literals (atoms and names) 825

〈expression〉 ::= unit | true | false | 〈atom〉 | ...

Table B.4: Literal syntax (in part)

〈atom〉 ::= (lowercase char) { (alphanumeric char) } (except no keyword)
| ’’’ { 〈atomChar〉 | 〈pseudoChar〉 } ’’’

〈atomChar〉 ::= (any inline character except ’ , \ , and NUL)
〈pseudoChar〉 ::= (’\’ followed by three octal digits)

| (´ \x ´ or ´ \X ´ followed by two hexadecimal digits)
| ´ \a ´ | ´ \b ´ | ´ \f ´ | ´ \n ´ | ´ \r ´ | ´ \t ´

| ´ \v ´ | ´ \\ ´ | ´ \ ´´ | ´ \" ´ | ´ \ `´ | ´ \& ´

Table B.5: Atom lexical syntax

B.2 Literals (atoms and names)

Atomic types are types whose members have no internal structure.1 The previous
section has given one kind of atomic type, namely numbers. In addition to
numbers, literals are a second kind of atomic type (see Table B.4 and Table B.5).
Literals can be either atoms or names. An atom is a value whose identity is
determined by a sequence of printable characters. An atom can be written in two
ways. First, as a sequence of alphanumeric characters starting with a lowercase
letter. This sequence may not be a keyword of the language. Second, by arbitrary
printable characters enclosed in single quotes. Here are some valid atoms:

a foo ´ =´ ´ := ´ ´ Oz 3.0 ´ ´ Hello World ´ ´ if ´ ´ \n,\n ´ a_person

There is no confusion between the keyword if and the atom ´ if ´ because of the
quotes. The atom ´ \n,\n ´ consists of four characters. Atoms are ordered lexi-
cographically, based on the underlying ISO 8859-1 encoding for single characters.

Names are a second kind of literal. A name is a unique atomic value that
cannot be forged or printed. Unlike numbers or atoms, names are truly atomic,
in the original sense of the word: they cannot be decomposed at all. Names have
just two operations defined on them: creation and equality comparison. The only
way to create a name is by calling the function {NewName}, which returns a new
name that is guaranteed to be unique. Note that Table B.4 has no representation
for names. The only way to reference a name is through a variable that is bound
to the name. As Chapter 3 explains, names play an important role for secure
encapsulation in ADTs.

1But like physical atoms, atomic values can sometimes be decomposed if the right tools are
used, e.g., numbers have a binary representation as a sequence of zeroes and ones and atoms
have a print representation as a sequence of characters.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

826 Basic Data Types

Operation Description
{IsAtom A} Return boolean saying whether A is an atom
{AtomToString A} Return string corresponding to atom A

{StringToAtom S} Return atom corresponding to string S

Table B.6: Some atom operations

〈expression〉 ::= 〈label〉 ´ (´ { [〈feature〉 ´ : ´] 〈expression〉 } ´) ´ | ...
〈label〉 ::= unit | true | false | 〈variable〉 | 〈atom〉
〈feature〉 ::= unit | true | false | 〈variable〉 | 〈atom〉 | 〈int〉
〈binaryOp〉 ::= ´ . ´ | 〈consBinOp〉 | ...
〈consBinOp〉 ::= ´ #´ | ...

Table B.7: Record and tuple syntax (in part)

There are three special names that have keywords reserved to them. The
keywords are unit , true , and false . The names true and false are used
to denote boolean true and false values. The name unit is often used as a
synchronization token in concurrent programs. Here are some examples:

local X Y B in
X = foo
{NewName Y}
B = true
{Browse [X Y B]}

end

B.2.1 Operations on atoms

Table B.6 gives the operations in the Base module Atom and some of the opera-
tions relating to atoms in the Base module String .

B.3 Records and tuples

Records are data structures that allow to group together language references.
Here is a record that groups four variables:

tree(key:I value:Y left:LT right:RT)

It has four components and the label tree . To avoid ambiguity, there should be
no space between the label and the left parenthesis. Each component consists
of an identifier, called feature, and a reference into the store. A feature can be
either a literal or an integer. Table B.7 gives the syntax of records and tuples.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

B.3 Records and tuples 827

The above record has four features, key , value , left , and right , that identify
four language references, I , Y, LT, and RT.

It is allowed to omit features in the record syntax. In that case, the feature
will be an integer starting from 1 for the first such component and incrementing
by 1 for each successive component that does not have a feature. For example,
the record tree(key:I value:Y LT RT) is identical to tree(key:I value:Y

1:LT 2:RT) .

The order of labeled components does not matter; it can be changed without
changing the record. We say that these components are unordered. The order of
unlabeled components does matter; it determines how the features are numbered.
It is as if there were two “worlds”: the ordered world and the unordered world.
They have no effect on each other and can be interleaved in any way. All the
following notations denote the same record:

tree(key:I value:Y LT RT) tree(value:Y key:I LT RT)
tree(key:I LT value:Y RT) tree(value:Y LT key:I RT)
tree(key:I LT RT value:Y) tree(value:Y LT RT key:I)
tree(LT key:I value:Y RT) tree(LT value:Y key:I RT)
tree(LT key:I RT value:Y) tree(LT value:Y RT key:I)
tree(LT RT key:I value:Y) tree(LT RT value:Y key:I)

Two records are the same if the same set of components is present and the ordered
components are in the same order.

It is an error if a feature occurs more than once. For example, the notations
tree(key:I key:J) and tree(1:I value:Y LT RT) are both in error. The
error is discovered when the record is constructed. This can be either at compile
time or at run time. However, both tree(3:I value:Y LT RT) and tree(4:I

value:Y LT RT) are correct since no feature occurs more than once. Integer
features do not have to be consecutive.

B.3.1 Tuples

If the record has only consecutive integer features starting from 1, then we call
it a tuple. All these features can be omitted. Consider this tuple:

tree(I Y LT RT)

It is exactly the same as the following tuple:

tree(1:I 2:Y 3:LT 4:RT)

Tuples whose label is ´ #´ have another notation using the # symbol as an “mixfix”
operator (see Appendix C.4). This means that a#b#c is a tuple with three argu-
ments, namely ´ #´ (a b c) . Be careful not to confuse it with the pair a#(b#c) ,
whose second argument is itself the pair b#c . The mixfix notation can only be
used for tuples with at least two arguments. It is used for virtual strings (see
Section B.7).

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

