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The multiplication X*X waits until X is bound. The first Browse immediately
displays start . The second Browse waits for the multiplication, so it displays
nothing yet. The {Delay 10000} call pauses for 10000 milliseconds (i.e., 10
seconds). X is bound only after the delay continues. When X is bound, then the
multiplication continues and the second browse displays 9801. The two operations
X=99 and X*X can be done in any order with any kind of delay; dataflow execution
will always give the same result. The only effect a delay can have is to slow things
down. For example:

declare X in
thread {Browse start} {Browse X*X} end
{Delay 10000} X=99

This behaves exactly as before: the browser displays 9801 after 10 seconds. This
illustrates two nice properties of dataflow. First, calculations work correctly
independent of how they are partitioned between threads. Second, calculations
are patient: they do not signal errors, but simply wait.

Adding threads and delays to a program can radically change a program’s
appearance. But as long as the same operations are invoked with the same argu-
ments, it does not change the program’s results at all. This is the key property
of dataflow concurrency. This is why dataflow concurrency gives most of the
advantages of concurrency without the complexities that are usually associated
with it.

1.12 State

How can we let a function learn from its past? That is, we would like the function
to have some kind of internal memory, which helps it do its job. Memory is needed
for functions that can change their behavior and learn from their past. This kind
of memory is called explicit state. Just like for concurrency, explicit state models
an essential aspect of how the real world works. We would like to be able to do
this in the system as well. Later in the book we will see deeper reasons for having
explicit state. For now, let us just see how it works.

For example, we would like to see how often the FastPascal function is used.
Is there some way FastPascal can remember how many times it was called? We
can do this by adding explicit state.

A memory cell

There are lots of ways to define explicit state. The simplest way is to define a
single memory cell. This is a kind of box in which you can put any content.
Many programming languages call this a “variable”. We call it a “cell” to avoid
confusion with the variables we used before, which are more like mathemati-
cal variables, i.e., just short-cuts for values. There are three functions on cells:
NewCell creates a new cell, := (assignment) puts a new value in a cell, and @
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(access) gets the current value stored in the cell. Access and assignment are also
called read and write. For example:

declare
C={NewCell 0}
C:=@C+1
{Browse @C}

This creates a cell C with initial content 0, adds one to the content, and then
displays it.

Adding memory to FastPascal

With a memory cell, we can let FastPascal count how many times it is called.
First we create a cell outside of FastPascal . Then, inside of FastPascal , we
add one to the cell’s content. This gives the following:

declare
C={NewCell 0}
fun {FastPascal N}

C:=@C+1
{GenericPascal Add N}

end

(To keep it short, this definition uses GenericPascal .)

1.13 Objects

Functions with internal memory are usually called objects. The extended version
of FastPascal we defined in the previous section is an object. It turns out that
objects are very useful beasts. Let us give another example. We will define a
counter object. The counter has a cell that keeps track of the current count. The
counter has two operations, Bumpand Read. Bumpadds one and then returns the
resulting count. Read just returns the count. Here is the definition:

declare
local C in

C={NewCell 0}
fun {Bump}

C:=@C+1
@C

end
fun {Read}

@C
end

end

There is something special going on here: the cell is referenced by a local variable,
so it is completely invisible from the outside. This property is called encapsu-
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lation. It means that nobody can mess with the counter’s internals. We can
guarantee that the counter will always work correctly no matter how it is used.
This was not true for the extended FastPascal because anyone could look at
and modify the cell.

We can bump the counter up:

{Browse {Bump}}
{Browse {Bump}}

What does this display? Bumpcan be used anywhere in a program to count how
many times something happens. For example, FastPascal could use Bump:

declare
fun {FastPascal N}

{Browse {Bump}}
{GenericPascal Add N}

end

1.14 Classes

The last section defined one counter object. What do we do if we need more
than one counter? It would be nice to have a “factory” that can make as many
counters as we need. Such a factory is called a class. Here is one way to define
it:

declare
fun {NewCounter}
C Bump Read in

C={NewCell 0}
fun {Bump}

C:=@C+1
@C

end
fun {Read}

@C
end
counter(bump:Bump read:Read)

end

NewCounter is a function that creates a new cell and returns new Bumpand Read

functions for it. Returning functions as results of functions is another form of
higher-order programming.

We group the Bump and Read functions together into one compound data
structure called a record. The record counter(bump:Bump read:Read) is char-
acterized by its label counter and by its two fields, called bump and read . Let
us create two counters:

declare
Ctr1={NewCounter}
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C={NewCell 0} C:=2 C:=1

C={NewCell 0} C:=1 C:=2

time

final content of C is 1

final content of C is 2
First execution:

Second execution:

Figure 1.4: All possible executions of the first nondeterministic example

Ctr2={NewCounter}

Each counter has its own internal memory and its own Bumpand Read functions.
We can access these functions by using the “. ” (dot) operator. Ctr1.bump

accesses the Bumpfunction of the first counter. Let us bump the first counter and
display its result:

{Browse {Ctr1.bump}}

Towards object-oriented programming

We have given an example of a simple class, NewCounter , that defines two op-
erations, Bump and Read. Operations defined inside classes are usually called
methods. The class can be used to make as many counter objects as we need.
All these objects share the same methods, but each has its own separate internal
memory. Programming with classes and objects is called object-based program-
ming.

Adding one new idea, inheritance, to object-based programming gives object-
oriented programming. Inheritance means that a new class can be defined in
terms of existing classes by specifying just how the new class is different. We say
the new class inherits from the existing classes. Inheritance is a powerful concept
for structuring programs. It lets a class be defined incrementally, in different
parts of the program. Inheritance is quite a tricky concept to use correctly. To
make inheritance easy to use, object-oriented languages add special syntax for it.
Chapter 7 covers object-oriented programming and shows how to program with
inheritance.

1.15 Nondeterminism and time

We have seen how to add concurrency and state to a program separately. What
happens when a program has both? It turns out that having both at the same
time is a tricky business, because the same program can give different results
from one execution to the next. This is because the order in which threads access
the state can change from one execution to the next. This variability is called
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nondeterminism. Nondeterminism exists because we lack knowledge of the exact
time when each basic operation executes. If we would know the exact time,
then there would be no nondeterminism. But we cannot know this time, simply
because threads are independent. Since they know nothing of each other, they
also do not know which instructions each has executed.

Nondeterminism by itself is not a problem; we already have it with concur-
rency. The difficulties occur if the nondeterminism shows up in the program,
i.e., if it is observable. (An observable nondeterminism is sometimes called a race
condition.) Here is an example:

declare
C={NewCell 0}
thread

C:=1
end
thread

C:=2
end

What is the content of C after this program executes? Figure 1.4 shows the two
possible executions of this program. Depending on which one is done, the final
cell content can be either 1 or 2. The problem is that we cannot say which. This
is a simple case of observable nondeterminism. Things can get much trickier. For
example, let us use a cell to hold a counter that can be incremented by several
threads:

declare
C={NewCell 0}
thread I in

I=@C
C:=I+1

end
thread J in

J=@C
C:=J+1

end

What is the content of C after this program executes? It looks like each thread
just adds 1 to the content, making it 2. But there is a surprise lurking: the
final content can also be 1! How is this possible? Try to figure out why before
continuing.

Interleaving

The content can be 1 because thread execution is interleaved. That is, threads
take turns each executing a little. We have to assume that any possible interleav-
ing can occur. For example, consider the execution of Figure 1.5. Both I and
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time

C={NewCell 0} I=@C J=@C C:=I+1

(C contains 1) (C contains 1)(I equals 0) (J equals 0)(C contains 0)

C:=J+1

Figure 1.5: One possible execution of the second nondeterministic example

J are bound to 0. Then, since I+1 and J+1 are both 1, the cell gets assigned 1
twice. The final result is that the cell content is 1.

This is a simple example. More complicated programs have many more pos-
sible interleavings. Programming with concurrency and state together is largely
a question of mastering the interleavings. In the history of computer technol-
ogy, many famous and dangerous bugs were due to designers not realizing how
difficult this really is. The Therac-25 radiation therapy machine is an infamous
example. It sometimes gave its patients radiation doses that were thousands of
times greater than normal, resulting in death or serious injury [112].

This leads us to a first lesson for programming with state and concurrency: if
at all possible, do not use them together! It turns out that we often do not need
both together. When a program does need to have both, it can almost always be
designed so that their interaction is limited to a very small part of the program.

1.16 Atomicity

Let us think some more about how to program with concurrency and state. One
way to make it easier is to use atomic operations. An operation is atomic if no
intermediate states can be observed. It seems to jump directly from the initial
state to the result state.

With atomic operations we can solve the interleaving problem of the cell
counter. The idea is to make sure that each thread body is atomic. To do this,
we need a way to build atomic operations. We introduce a new language entity,
called lock, for this. A lock has an inside and an outside. The programmer defines
the instructions that are inside. A lock has the property that only one thread at
a time can be executing inside. If a second thread tries to get in, then it will wait
until the first gets out. Therefore what happens inside the lock is atomic.

We need two operations on locks. First, we create a new lock by calling the
function NewLock . Second, we define the lock’s inside with the instruction lock

L then ... end , where L is a lock. Now we can fix the cell counter:

declare
C={NewCell 0}
L={NewLock}
thread

lock L then I in
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I=@C
C:=I+1

end
end
thread

lock L then J in
J=@C
C:=J+1

end
end

In this version, the final result is always 2. Both thread bodies have to be guarded
by the same lock, otherwise the undesirable interleaving can still occur. Do you
see why?

1.17 Where do we go from here

This chapter has given a quick overview of many of the most important concepts
in programming. The intuitions given here will serve you well in the chapters to
come, when we define in a precise way the concepts and the computation models
they are part of.

1.18 Exercises

1. Section 1.1 uses the system as a calculator. Let us explore the possibilities:

(a) Calculate the exact value of 2100 without using any new functions. Try
to think of short-cuts to do it without having to type 2*2*2*...*2

with one hundred 2’s. Hint: use variables to store intermediate results.

(b) Calculate the exact value of 100! without using any new functions. Are
there any possible short-cuts in this case?

2. Section 1.3 defines the function Combto calculate combinations. This func-
tion is not very efficient because it might require calculating very large
factorials. The purpose of this exercise is to write a more efficient version
of Comb.

(a) As a first step, use the following alternative definition to write a more
efficient function:(

n
r

)
=

n× (n− 1)× · · · × (n− r + 1)
r × (r − 1)× · · · × 1

Calculate the numerator and denominator separately and then divide
them. Make sure that the result is 1 when r = 0.
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(b) As a second step, use the following identity:

(
n
r

)
=

(
n

n− r

)

to increase efficiency even more. That is, if r > n/2 then do the
calculation with n− r instead of with r.

3. Section 1.6 explains the basic ideas of program correctness and applies them
to show that the factorial function defined in Section 1.3 is correct. In this
exercise, apply the same ideas to the function Pascal of Section 1.5 to show
that it is correct.

4. What does Section 1.7 say about programs whose time complexity is a
high-order polynomial? Are they practical or not? What do you think?

5. Section 1.8 defines the lazy function Ints that lazily calculates an infinite
list of integers. Let us define a function that calculates the sum of a list of
integers:

fun {SumList L}
case L of X|L1 then X+{SumList L1}
else 0 end

end

What happens if we call {SumList {Ints 0}} ? Is this a good idea?

6. Section 1.9 explains how to use higher-order programming to calculate vari-
ations on Pascal’s triangle. The purpose of this exercise is to explore these
variations.

(a) Calculate individual rows using subtraction, multiplication, and other
operations. Why does using multiplication give a triangle with all
zeroes? Try the following kind of multiplication instead:

fun {Mul1 X Y} (X+1)*(Y+1) end

What does the 10th row look like when calculated with Mul1 ?

(b) The following loop instruction will calculate and display 10 rows at a
time:

for I in 1..10 do {Browse {GenericPascal Op I}} end

Use this loop instruction to make it easier to explore the variations.

7. This exercise compares variables and cells. We give two code fragments.
The first uses variables:
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local X in
X=23
local X in

X=44
end
{Browse X}

end

The second uses a cell:

local X in
X={NewCell 23}
X:=44
{Browse @X}

end

In the first, the identifier X refers to two different variables. In the second,
X refers to a cell. What does Browse display in each fragment? Explain.

8. This exercise investigates how to use cells together with functions. Let us
define a function {Accumulate N} that accumulates all its inputs, i.e., it
adds together all the arguments of all calls. Here is an example:

{Browse {Accumulate 5}}
{Browse {Accumulate 100}}
{Browse {Accumulate 45}}

This should display 5, 105, and 150, assuming that the accumulator contains
zero at the start. Here is a wrong way to write Accumulate :

declare
fun {Accumulate N}
Acc in

Acc={NewCell 0}
Acc:=@Acc+N
@Acc

end

What is wrong with this definition? How would you correct it?

9. This exercise investigates another way of introducing state: a memory store.
The memory store can be used to make an improved version of FastPascal

that remembers previously-calculated rows.

(a) A memory store is similar to the memory of a computer. It has a
series of memory cells, numbered from 1 up to the maximum used so
far. There are four functions on memory stores: NewStore creates a
new store, Put puts a new value in a memory cell, Get gets the current
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value stored in a memory cell, and Size gives the highest-numbered
cell used so far. For example:

declare
S={NewStore}
{Put S 2 [22 33]}
{Browse {Get S 2}}
{Browse {Size S}}

This stores [22 33] in memory cell 2, displays [22 33] , and then
displays 2. Load into the Mozart system the memory store as defined
in the supplements file on the book’s Web site. Then use the interactive
interface to understand how the store works.

(b) Now use the memory store to write an improved version of FastPascal ,
called FasterPascal , that remembers previously-calculated rows. If
a call asks for one of these rows, then the function can return it directly
without having to recalculate it. This technique is sometimes called
memoization since the function makes a “memo” of its previous work.
This improves its performance. Here’s how it works:

• First make a store S available to FasterPascal .

• For the call {FasterPascal N} , let M be the number of rows
stored in S, i.e., rows 1 up to M are in S.

• If N>M then compute rows M+1 up to N and store them in S.

• Return the Nth row by looking it up in S.

Viewed from the outside, FasterPascal behaves identically to FastPascal

except that it is faster.

(c) We have given the memory store as a library. It turns out that the
memory store can be defined by using a memory cell. We outline how
it can be done and you can write the definitions. The cell holds the
store contents as a list of the form [N1|X1 ... Nn|Xn] , where the
cons Ni|Xi means that cell number Ni has content Xi . This means
that memory stores, while they are convenient, do not introduce any
additional expressive power over memory cells.

(d) Section 1.13 defines a counter with just one operation, Bump. This
means that it is not possible to read the counter without adding one
to it. This makes it awkward to use the counter. A practical counter
would have at least two operations, say Bump and Read, where Read

returns the current count without changing it. The practical counter
looks like this:

declare
local C in

C={NewCell 0}
fun {Bump}
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C:=@C+1
@C

end
fun {Read}

@C
end

end

Change your implementation of the memory store so that it uses this
counter to keep track of the store’s size.

10. Section 1.15 gives an example using a cell to store a counter that is incre-
mented by two threads.

(a) Try executing this example several times. What results do you get?
Do you ever get the result 1? Why could this be?

(b) Modify the example by adding calls to Delay in each thread. This
changes the thread interleaving without changing what calculations
the thread does. Can you devise a scheme that always results in 1?

(c) Section 1.16 gives a version of the counter that never gives the result 1.
What happens if you use the delay technique to try to get a 1 anyway?
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Chapter 2

Declarative Computation Model

“Non sunt multiplicanda entia praeter necessitatem.”
“Do not multiply entities beyond necessity.”
– Ockham’s Razor, William of Ockham (1285–1349?)

Programming encompasses three things:

• First, a computation model, which is a formal system that defines a lan-
guage and how sentences of the language (e.g., expressions and statements)
are executed by an abstract machine. For this book, we are interested in
computation models that are useful and intuitive for programmers. This
will become clearer when we define the first one later in this chapter.

• Second, a set of programming techniques and design principles used to write
programs in the language of the computation model. We will sometimes
call this a programming model. A programming model is always built on
top of a computation model.

• Third, a set of reasoning techniques to let you reason about programs,
to increase confidence that they behave correctly and to calculate their
efficiency.

The above definition of computation model is very general. Not all computation
models defined in this way will be useful for programmers. What is a reasonable
computation model? Intuitively, we will say that a reasonable model is one that
can be used to solve many problems, that has straightforward and practical rea-
soning techniques, and that can be implemented efficiently. We will have more
to say about this question later on. The first and simplest computation model
we will study is declarative programming. For now, we define this as evaluating
functions over partial data structures. This is sometimes called stateless program-
ming, as opposed to stateful programming (also called imperative programming)
which is explained in Chapter 6.

The declarative model of this chapter is one of the most fundamental com-
putation models. It encompasses the core ideas of the two main declarative
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paradigms, namely functional and logic programming. It encompasses program-
ming with functions over complete values, as in Scheme and Standard ML. It
also encompasses deterministic logic programming, as in Prolog when search is
not used. And finally, it can be made concurrent without losing its good proper-
ties (see Chapter 4).

Declarative programming is a rich area – most of the ideas of the more ex-
pressive computation models are already there, at least in embryonic form. We
therefore present it in two chapters. This chapter defines the computation model
and a practical language based on it. The next chapter, Chapter 3, gives the
programming techniques of this language. Later chapters enrich the basic mod-
el with many concepts. Some of the most important are exception handling,
concurrency, components (for programming in the large), capabilities (for encap-
sulation and security), and state (leading to objects and classes). In the context of
concurrency, we will talk about dataflow, lazy execution, message passing, active
objects, monitors, and transactions. We will also talk about user interface design,
distribution (including fault tolerance), and constraints (including search).

Structure of the chapter

The chapter consists of seven sections:

• Section 2.1 explains how to define the syntax and semantics of practical pro-
gramming languages. Syntax is defined by a context-free grammar extended
with language constraints. Semantics is defined in two steps: by translat-
ing a practical language into a simple kernel language and then giving the
semantics of the kernel language. These techniques will be used throughout
the book. This chapter uses them to define the declarative computation
model.

• The next three sections define the syntax and semantics of the declarative
model:

– Section 2.2 gives the data structures: the single-assignment store and
its contents, partial values and dataflow variables.

– Section 2.3 defines the kernel language syntax.

– Section 2.4 defines the kernel language semantics in terms of a simple
abstract machine. The semantics is designed to be intuitive and to
permit straightforward reasoning about correctness and complexity.

• Section 2.5 defines a practical programming language on top of the kernel
language.

• Section 2.6 extends the declarative model with exception handling, which
allows programs to handle unpredictable and exceptional situations.

• Section 2.7 gives a few advanced topics to let interested readers deepen their
understanding of the model.
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Figure 2.1: From characters to statements

2.1 Defining practical programming languages

Programming languages are much simpler than natural languages, but they can
still have a surprisingly rich syntax, set of abstractions, and libraries. This is
especially true for languages that are used to solve real-world problems, which we
call practical languages. A practical language is like the toolbox of an experienced
mechanic: there are many different tools for many different purposes and all tools
are there for a reason.

This section sets the stage for the rest of the book by explaining how we
will present the syntax (“grammar”) and semantics (“meaning”) of practical pro-
gramming languages. With this foundation we will be ready to present the first
computation model of the book, namely the declarative computation model. We
will continue to use these techniques throughout the book to define computation
models.

2.1.1 Language syntax

The syntax of a language defines what are the legal programs, i.e., programs that
can be successfully executed. At this stage we do not care what the programs are
actually doing. That is semantics and will be handled in the next section.
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Grammars

A grammar is a set of rules that defines how to make ‘sentences’ out of ‘words’.
Grammars can be used for natural languages, like English or Swedish, as well as
for artificial languages, like programming languages. For programming languages,
‘sentences’ are usually called ‘statements’ and ‘words’ are usually called ‘tokens’.
Just as words are made of letters, tokens are made of characters. This gives us
two levels of structure:

statement (‘sentence’) = sequence of tokens (‘words’)
token (‘word’) = sequence of characters (‘letters’)

Grammars are useful both for defining statements and tokens. Figure 2.1 gives
an example to show how character input is transformed into a statement. The
example in the figure is the definition of Fact :

fun {Fact N}
if N==0 then 1
else N*{Fact N-1} end

end

The input is a sequence of characters, where ´ ´ represents the space and ´ \n ´

represents the newline. This is first transformed into a sequence of tokens and
subsequently into a parse tree. The syntax of both sequences in the figure is com-
patible with the list syntax we use throughout the book. Whereas the sequences
are “flat”, the parse tree shows the structure of the statement. A program that
accepts a sequence of characters and returns a sequence of tokens is called a to-
kenizer or lexical analyzer. A program that accepts a sequence of tokens and
returns a parse tree is called a parser.

Extended Backus-Naur Form

One of the most common notations for defining grammars is called Extended
Backus-Naur Form (EBNF for short), after its inventors John Backus and Pe-
ter Naur. The EBNF notation distinguishes terminal symbols and nonterminal
symbols. A terminal symbol is simply a token. A nonterminal symbol represents
a sequence of tokens. The nonterminal is defined by means of a grammar rule,
which shows how to expand it into tokens. For example, the following rule defines
the nonterminal 〈digit〉:

〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

It says that 〈digit〉 represents one of the ten tokens 0, 1, ..., 9. The symbol
“|” is read as “or”; it means to pick one of the alternatives. Grammar rules can
themselves refer to other nonterminals. For example, we can define a nonterminal
〈int〉 that defines how to write positive integers:

〈int〉 ::= 〈digit〉 { 〈digit〉 }
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Context-free grammar

Expresses restrictions imposed by the language-
(e.g., variables must be declared before use)

Makes the grammar context-sensitive-

(e.g., with EBNF)

Set of extra conditions

Is easy to read and understand-

Defines a superset of the language-

+

Figure 2.2: The context-free approach to language syntax

This rule says that an integer is a digit followed by zero or more digits. The
braces “{ ... }” mean to repeat whatever is inside any number of times, including
zero.

How to read grammars

To read a grammar, start with any nonterminal symbol, say 〈int〉. Reading the
corresponding grammar rule from left to right gives a sequence of tokens according
to the following scheme:

• Each terminal symbol encountered is added to the sequence.

• For each nonterminal symbol encountered, read its grammar rule and re-
place the nonterminal by the sequence of tokens that it expands into.

• Each time there is a choice (with |), pick any of the alternatives.

The grammar can be used both to verify that a statement is legal and to generate
statements.

Context-free and context-sensitive grammars

Any well-defined set of statements is called a formal language, or language for
short. For example, the set of all possible statements generated by a grammar
and one nonterminal symbol is a language. Techniques to define grammars can
be classified according to how expressive they are, i.e., what kinds of languages
they can generate. For example, the EBNF notation given above defines a class of
grammars called context-free grammars. They are so-called because the expansion
of a nonterminal, e.g., 〈digit〉, is always the same no matter where it is used.

For most practical programming languages, there is usually no context-free
grammar that generates all legal programs and no others. For example, in many
languages a variable has to be declared before it is used. This condition cannot
be expressed in a context-free grammar because the nonterminal that uses the
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Figure 2.3: Ambiguity in a context-free grammar

variable must only allow using already-declared variables. This is a context de-
pendency. A grammar that contains a nonterminal whose use depends on the
context where it is used is called a context-sensitive grammar.

The syntax of most practical programming languages is therefore defined in
two parts (see Figure 2.2): as a context-free grammar supplemented with a set of
extra conditions imposed by the language. The context-free grammar is kept in-
stead of some more expressive notation because it is easy to read and understand.
It has an important locality property: a nonterminal symbol can be understood
by examining only the rules needed to define it; the (possibly much more numer-
ous) rules that use it can be ignored. The context-free grammar is corrected by
imposing a set of extra conditions, like the declare-before-use restriction on vari-
ables. Taking these conditions into account gives a context-sensitive grammar.

Ambiguity

Context-free grammars can be ambiguous, i.e., there can be several parse trees
that correspond to a given token sequence. For example, here is a simple grammar
for arithmetic expressions with addition and multiplication:

〈exp〉 ::= 〈int〉 | 〈exp〉 〈op〉 〈exp〉
〈op〉 ::= + | *

The expression 2*3+4 has two parse trees, depending on how the two occurrences
of 〈exp〉 are read. Figure 2.3 shows the two trees. In one tree, the first 〈exp〉 is 2
and the second 〈exp〉 is 3+4. In the other tree, they are 2*3 and 4, respectively.

Ambiguity is usually an undesirable property of a grammar since it makes
it unclear exactly what program is being written. In the expression 2*3+4, the
two parse trees give different results when evaluating the expression: one gives
14 (the result of computing 2*(3+4)) and the other gives 10 (the result of com-
puting (2*3)+4). Sometimes the grammar rules can be rewritten to remove the
ambiguity, but this can make the rules more complicated. A more convenient
approach is to add extra conditions. These conditions restrict the parser so that
only one parse tree is possible. We say that they disambiguate the grammar.

For expressions with binary operators such as the arithmetic expressions given
above, the usual approach is to add two conditions, precedence and associativity:
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• Precedence is a condition on an expression with different operators, like
2*3+4. Each operator is given a precedence level. Operators with high
precedences are put as deep in the parse tree as possible, i.e., as far away
from the root as possible. If * has higher precedence than +, then the parse
tree (2*3)+4 is chosen over the alternative 2*(3+4). If * is deeper in the
tree than +, then we say that * binds tighter than +.

• Associativity is a condition on an expression with the same operator, like
2-3-4. In this case, precedence is not enough to disambiguate because all
operators have the same precedence. We have to choose between the trees
(2-3)-4 and 2-(3-4). Associativity determines whether the leftmost or
the rightmost operator binds tighter. If the associativity of - is left, then
the tree (2-3)-4 is chosen. If the associativity of - is right, then the other
tree 2-(3-4) is chosen.

Precedence and associativity are enough to disambiguate all expressions defined
with operators. Appendix C gives the precedence and associativity of all the
operators used in this book.

Syntax notation used in this book

In this chapter and the rest of the book, each new data type and language con-
struct is introduced together with a small syntax diagram that shows how it fits
in the whole language. The syntax diagram gives grammar rules for a simple
context-free grammar of tokens. The notation is carefully designed to satisfy two
basic principles:

• All grammar rules can stand on their own. No later information will ever
invalidate a grammar rule. That is, we never give an incorrect grammar
rule just to “simplify” the presentation.

• It is always clear by inspection when a grammar rule completely defines a
nonterminal symbol or when it gives only a partial definition. A partial
definition always ends in three dots “...”.

All syntax diagrams used in the book are summarized in Appendix C. This
appendix also gives the lexical syntax of tokens, i.e., the syntax of tokens in
terms of characters. Here is an example of a syntax diagram with two grammar
rules that illustrates our notation:

〈statement〉 ::= skip | 〈expression〉 ´ =´ 〈expression〉 | ...
〈expression〉 ::= 〈variable〉 | 〈int〉 | ...

These rules give partial definitions of two nonterminals, 〈statement〉 and 〈expression〉.
The first rule says that a statement can be the keyword skip , or two expressions
separated by the equals symbol =, or something else. The second rule says that
an expression can be a variable, an integer, or something else. To avoid confusion
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with the grammar rule’s own syntax, a symbol that occurs literally in the text
is always quoted with single quotes. For example, the equals symbol is shown as
´ =´ . Keywords are not quoted, since for them no confusion is possible. A choice
between different possibilities in the grammar rule is given by a vertical bar |.

Here is a second example to give the remaining notation:

〈statement〉 ::= if 〈expression〉 then 〈statement〉
{ elseif 〈expression〉 then 〈statement〉 }
[ else 〈statement〉 ] end | ...

〈expression〉 ::= ´ [ ´ { 〈expression〉 }+ ´ ] ´ | ...
〈label〉 ::= unit | true | false | 〈variable〉 | 〈atom〉

The first rule defines the if statement. There is an optional sequence of elseif

clauses, i.e., there can be any number of occurrences including zero. This is
denoted by the braces { ... }. This is followed by an optional else clause, i.e., it
can occur zero or one times. This is denoted by the brackets [ ... ]. The second
rule defines the syntax of explicit lists. They must have at least one element, e.g.,
[5 6 7] is valid but [ ] is not (note the space that separates the [ and the ] ).
This is denoted by { ... }+. The third rule defines the syntax of record labels.
This is a complete definition. There are five possibilities and no more will ever
be given.

2.1.2 Language semantics

The semantics of a language defines what a program does when it executes.
Ideally, the semantics should be defined in a simple mathematical structure that
lets us reason about the program (including its correctness, execution time, and
memory use) without introducing any irrelevant details. Can we achieve this for a
practical language without making the semantics too complicated? The technique
we use, which we call the kernel language approach, gives an affirmative answer
to this question.

Modern programming languages have evolved through more than five decades
of experience in constructing programmed solutions to complex, real-world prob-
lems.1 Modern programs can be quite complex, reaching sizes measured in mil-
lions of lines of code, written by large teams of human programmers over many
years. In our view, languages that scale to this level of complexity are successful
in part because they model some essential aspects of how to construct complex
programs. In this sense, these languages are not just arbitrary constructions of
the human mind. We would therefore like to understand them in a scientific way,
i.e., by explaining their behavior in terms of a simple underlying model. This is
the deep motivation behind the kernel language approach.

1The figure of five decades is somewhat arbitrary. We measure it from the first working
stored-program computer, the Manchester Mark I. According to lab documents, it ran its first
program on June 21, 1948 [178].
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Figure 2.4: The kernel language approach to semantics

The kernel language approach

This book uses the kernel language approach to define the semantics of program-
ming languages. In this approach, all language constructs are defined in terms
of translations into a core language known as the kernel language. The kernel
language approach consists of two parts (see Figure 2.4):

• First, define a very simple language, called the kernel language. This lan-
guage should be easy to reason in and be faithful to the space and time
efficiency of the implementation. The kernel language and the data struc-
tures it manipulates together form the kernel computation model.

• Second, define a translation scheme from the full programming language
to the kernel language. Each grammatical construct in the full language is
translated into the kernel language. The translation should be as simple as
possible. There are two kinds of translation, namely linguistic abstraction
and syntactic sugar. Both are explained below.

The kernel language approach is used throughout the book. Each computation
model has its kernel language, which builds on its predecessor by adding one new
concept. The first kernel language, which is presented in this chapter, is called
the declarative kernel language. Many other kernel languages are presented later
on in the book.

Formal semantics

The kernel language approach lets us define the semantics of the kernel language in
any way we want. There are four widely-used approaches to language semantics:
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• An operational semantics shows how a statement executes in terms of an
abstract machine. This approach always works well, since at the end of the
day all languages execute on a computer.

• An axiomatic semantics defines a statement’s semantics as the relation be-
tween the input state (the situation before executing the statement) and
the output state (the situation after executing the statement). This relation
is given as a logical assertion. This is a good way to reason about state-
ment sequences, since the output assertion of each statement is the input
assertion of the next. It therefore works well with stateful models, since a
state is a sequence of values. Section 6.6 gives an axiomatic semantics of
Chapter 6’s stateful model.

• A denotational semantics defines a statement as a function over an ab-
stract domain. This works well for declarative models, but can be applied
to other models as well. It gets complicated when applied to concurrent
languages. Sections 2.7.1 and 4.9.2 explain functional programming, which
is particularly close to denotational semantics.

• A logical semantics defines a statement as a model of a logical theory. This
works well for declarative and relational computation models, but is hard
to apply to other models. Section 9.3 gives a logical semantics of the declar-
ative and relational computation models.

Much of the theory underlying these different semantics is of interest primarily to
mathematicians, not to programmers. It is outside the scope of the book to give
this theory. The principal formal semantics we give in this book is an operational
semantics. We define it for each computation model. It is detailed enough to
be useful for reasoning about correctness and complexity yet abstract enough to
avoid irrelevant clutter. Chapter 13 collects all these operational semantics into
a single formalism with a compact and readable notation.

Throughout the book, we give an informal semantics for every new language
construct and we often reason informally about programs. These informal pre-
sentations are always based on the operational semantics.

Linguistic abstraction

Both programming languages and natural languages can evolve to meet their
needs. When using a programming language, at some point we may feel the need
to extend the language, i.e., to add a new linguistic construct. For example, the
declarative model of this chapter has no looping constructs. Section 3.6.3 defines
a for construct to express certain kinds of loops that are useful for writing
declarative programs. The new construct is both an abstraction and an addition
to the language syntax. We therefore call it a linguistic abstraction. A practical
programming language consists of a set of linguistic abstractions.
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There are two phases to defining a linguistic abstraction. First, define a new
grammatical construct. Second, define its translation into the kernel language.
The kernel language is not changed. This book gives many examples of useful
linguistic abstractions, e.g., functions (fun ), loops (for ), lazy functions (fun

lazy ), classes (class ), reentrant locks (lock ), and others.2 Some of these are
part of the Mozart system. The others can be added to Mozart with the gump

parser-generator tool [104]. Using this tool is beyond the scope of this book.
A simple example of a linguistic abstraction is the function syntax, which

uses the keyword fun . This is explained in Section 2.5.2. We have already
programmed with functions in Chapter 1. But the declarative kernel language
of this chapter only has procedure syntax. Procedure syntax is chosen for the
kernel since all arguments are explicit and there can be multiple outputs. There
are other, deeper reasons for choosing procedure syntax which are explained later
in this chapter. Because function syntax is so useful, though, we add it as a
linguistic abstraction.

We define a syntax for both function definitions and function calls, and a
translation into procedure definitions and procedure calls. The translation lets
us answer all questions about function calls. For example, what does {F1 {F2

X} {F3 Y}} mean exactly (nested function calls)? Is the order of these function
calls defined? If so, what is the order? There are many possibilities. Some
languages leave the order of argument evaluation unspecified, but assume that a
function’s arguments are evaluated before the function. Other languages assume
that an argument is evaluated when and if its result is needed, not before. So even
as simple a thing as nested function calls does not necessarily have an obvious
semantics. The translation makes it clear what the semantics is.

Linguistic abstractions are useful for more than just increasing the expressive-
ness of a program. They can also improve other properties such as correctness,
security, and efficiency. By hiding the abstraction’s implementation from the pro-
grammer, the linguistic support makes it impossible to use the abstraction in the
wrong way. The compiler can use this information to give more efficient code.

Syntactic sugar

It is often convenient to provide a short-cut notation for frequently-occurring
idioms. This notation is part of the language syntax and is defined by grammar
rules. This notation is called syntactic sugar. Syntactic sugar is analogous to
linguistic abstraction in that its meaning is defined precisely by translating it
into the full language. But it should not be confused with linguistic abstraction:
it does not provide a new abstraction, but just reduces program size and improves
program readability.

We give an example of syntactic sugar that is based on the local statement.

2Logic gates (gate ) for circuit descriptions, mailboxes (receive ) for message-passing
concurrency, and currying and list comprehensions as in modern functional languages, cf.,
Haskell.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



42 Declarative Computation Model

Programming language

Mathematical study
of programming

Foundational calculusKernel language Abstract machine

Efficient execution
on a real machine

Aid the programmer
in reasoning and
understanding

Translations

Figure 2.5: Translation approaches to language semantics

Local variables can always be defined by using the statement local X in ...

end . When this statement is used inside another, it is convenient to have syntactic
sugar that lets us leave out the keywords local and end . Instead of:

if N==1 then [1]
else

local L in
...

end
end

we can write:

if N==1 then [1]
else L in

...
end

which is both shorter and more readable than the full notation. Other examples
of syntactic sugar are given in Section 2.5.1.

Language design

Linguistic abstractions are a basic tool for language design. Any abstraction that
we define has three phases in its lifecycle. When first we define it, it has no lin-
guistic support, i.e., there is no syntax in the language designed to make it easy
to use. If at some point, we suspect that it is especially basic and useful, we can
decide to give it linguistic support. It then becomes a linguistic abstraction. This
is an exploratory phase, i.e., there is no commitment that the linguistic abstrac-
tion will become part of the language. If the linguistic abstraction is successful,
i.e., it simplifies programs and is useful to programmers, then it becomes part of
the language.
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Other translation approaches

The kernel language approach is an example of a translation approach to seman-
tics, i.e., it is based on a translation from one language to another. Figure 2.5
shows the three ways that the translation approach has been used for defining
programming languages:

• The kernel language approach, used throughout the book, is intended for the
programmer. Its concepts correspond directly to programming concepts.

• The foundational approach is intended for the mathematician. Examples
are the Turing machine, the λ calculus (underlying functional program-
ming), first-order logic (underlying logic programming), and the π calculus
(to model concurrency). Because these calculi are intended for formal math-
ematical study, they have as few elements as possible.

• The machine approach is intended for the implementor. Programs are trans-
lated into an idealized machine, which is traditionally called an abstract
machine or a virtual machine.3 It is relatively easy to translate idealized
machine code into real machine code.

Because we focus on practical programming techniques, this book uses only the
kernel language approach.

The interpreter approach

An alternative to the translation approach is the interpreter approach. The lan-
guage semantics is defined by giving an interpreter for the language. New lan-
guage features are defined by extending the interpreter. An interpreter is a pro-
gram written in language L1 that accepts programs written in another language
L2 and executes them. This approach is used by Abelson & Sussman [2]. In their
case, the interpreter is metacircular, i.e., L1 and L2 are the same language L.
Adding new language features, e.g., for concurrency and lazy evaluation, gives a
new language L′ which is implemented by extending the interpreter for L.

The interpreter approach has the advantage that it shows a self-contained
implementation of the linguistic abstractions. We do not use the interpreter
approach in this book because it does not in general preserve the execution-time
complexity of programs (the number of operations needed as a function of input
size). A second difficulty is that the basic concepts interact with each other in
the interpreter, which makes them harder to understand.

3Strictly speaking, a virtual machine is a software emulation of a real machine, running on
the real machine, that is almost as efficient as the real machine. It achieves this efficiency by
executing most virtual instructions directly as real instructions. The concept was pioneered by
IBM in the early 1960’s in the VM operating system. Because of the success of Java, which
uses the term “virtual machine”, modern usage tends to blur the distinction between abstract
and virtual machines.
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2.2 The single-assignment store

We introduce the declarative model by first explaining its data structures. The
model uses a single-assignment store, which is a set of variables that are initially
unbound and that can be bound to one value. Figure 2.6 shows a store with three
unbound variables x1, x2, and x3. We can write this store as {x1, x2, x3}. For
now, let us assume we can use integers, lists, and records as values. Figure 2.7
shows the store where x1 is bound to the integer 314 and x2 is bound to the list
[1 2 3] . We write this as {x1 = 314, x2 = [1 2 3] , x3}.

2.2.1 Declarative variables

Variables in the single-assignment store are called declarative variables. We use
this term whenever there is a possible confusion with other kinds of variables.
Later on in the book, we will also call these variables dataflow variables because
of their role in dataflow execution.

Once bound, a declarative variable stays bound throughout the computation
and is indistinguishable from its value. What this means is that it can be used
in calculations as if it were the value. Doing the operation x + y is the same as
doing 11 + 22, if the store is {x = 11, y = 22}.

2.2.2 Value store

A store where all variables are bound to values is called a value store. Another
way to say this is that a value store is a persistent mapping from variables to
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Figure 2.8: A value store: all variables are bound to values

values. A value is a mathematical constant. For example, the integer 314 is
a value. Values can also be compound entities. For example, the list [1 2

3] and the record person(name:"George" age:25) are values. Figure 2.8
shows a value store where x1 is bound to the integer 314, x2 is bound to the
list [1 2 3] , and x3 is bound to the record person(name:"George" age:25) .
Functional languages such as Standard ML, Haskell, and Scheme get by with a
value store since they compute functions on values. (Object-oriented languages
such as Smalltalk, C++, and Java need a cell store, which consists of cells whose
content can be modified.)

At this point, a reader with some programming experience may wonder why
we are introducing a single-assignment store, when other languages get by with
a value store or a cell store. There are many reasons. The first reason is that
we want to compute with partial values. For example, a procedure can return an
output by binding an unbound variable argument. The second reason is declara-
tive concurrency, which is the subject of Chapter 4. It is possible because of the
single-assignment store. The third reason is that it is essential when we extend the
model to deal with relational (logic) programming and constraint programming.
Other reasons having to do with efficiency (e.g., tail recursion and difference lists)
will become clear in the next chapter.

2.2.3 Value creation

The basic operation on a store is binding a variable to a newly-created value. We
will write this as xi=value. Here xi refers directly to a variable in the store (and
is not the variable’s textual name in a program!) and value refers to a value, e.g.,
314 or [1 2 3] . For example, Figure 2.7 shows the store of Figure 2.6 after the
two bindings:

x1 = 314
x2 = [1 2 3]
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The single-assignment operation xi=value constructs value in the store and then
binds the variable xi to this value. If the variable is already bound, the operation
will test whether the two values are compatible. If they are not compatible, an
error is signaled (using the exception-handling mechanism, see Section 2.6).

2.2.4 Variable identifiers

So far, we have looked at a store that contains variables and values, i.e., store
entities, with which calculations can be done. It would be nice if we could refer
to a store entity from outside the store. This is the role of variable identifiers.
A variable identifier is a textual name that refers to a store entity from outside
the store. The mapping from variable identifiers to store entities is called an
environment.

The variable names in program source code are in fact variable identifiers.
For example, Figure 2.9 has an identifier “X” (the capital letter X) that refers to
the store variable x1. This corresponds to the environment {X → x1}. To talk
about any identifier, we will use the notation 〈x〉. The environment {〈x〉 → x1}
is the same as before, if 〈x〉 represents X. As we will see later, variable identifiers
and their corresponding store entities are added to the environment by the local

and declare statements.
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2.2.5 Value creation with identifiers

Once bound, a variable is indistinguishable from its value. Figure 2.10 shows what
happens when x1 is bound to [1 2 3] in Figure 2.9. With the variable identifier
X, we can write the binding as X=[1 2 3] . This is the text a programmer would
write to express the binding. We can also use the notation 〈x〉=[1 2 3] if we
want to be able to talk about any identifier. To make this notation legal in a
program, 〈x〉 has to be replaced by an identifier.

The equality sign “=” refers to the bind operation. After the bind completes,
the identifier “X” still refers to x1, which is now bound to [1 2 3] . This is
indistinguishable from Figure 2.11, where X refers directly to [1 2 3] . Following
the links of bound variables to get the value is called dereferencing. It is invisible
to the programmer.

2.2.6 Partial values

A partial value is a data structure that may contain unbound variables. Fig-
ure 2.12 shows the record person(name:"George" age: x2) , referred to by the
identifier X. This is a partial value because it contains the unbound variable x2.
The identifier Y refers to x2. Figure 2.13 shows the situation after x2 is bound
to 25 (through the bind operation Y=25). Now x1 is a partial value with no
unbound variables, which we call a complete value. A declarative variable can
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