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Operation Description
R.F Return field F from R

{HasFeature R F} Return boolean saying whether feature F is in R

{IsRecord R} Return boolean saying whether R is of record type
{MakeRecord L Fs} Return record with label L and features Fs

{Label R} Return the label of R

{Arity R} Return the list of features (arity) of R

{Record.toList R} Return the list of fields of R, in Arity order
{Width R} Return the number of features (width) of R

{AdjoinAt R F X} Return R augmented with feature F and value X

{Adjoin R1 R2} Return R1 augmented with all fields of R2

Table B.8: Some record operations

B.3.2 Operations on records

Table B.8 gives a few basic record operations. Many more operations exist in the
Base module Record . This appendix shows only a few, namely those concerning
extracting information from records and building new records. To select a field of
a record component, we use the infix dot operator, e.g., tree(key:I value:Y

LT RT).value returns Y. To compare two records, we use the equality test op-
eration. Two records are the same if they have the same set of features and the
language references for each feature are the same.

The arity of a record is a list of the features of the record sorted lexicographi-
cally. To display the arity of a record we use the function Arity . Calling {Arity

R} will execute as soon as R is bound to a record, and will return the arity of the
record. Feeding the statement:

declare T W L R in
T=tree(key:a left:L right:R value:1)
W=tree(a L R 1)
{Browse {Arity T}}
{Browse {Arity W}}

will display:

[key left right value]
[1 2 3 4]

The function {AdjoinAt R1 F X} returns the record resulting from adjoining
(i.e., adding) the field X to R1 at feature F. The record R1 is unchanged. If
R1 already has the feature F, then the result is identical to R1 except for the
field R1.F , whose value becomes X. Otherwise the feature F is added to R1. For
example:

declare T W L R in
T=tree(key:a left:L right:R value:1)
W=tree(a L R 1)
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Operation Description
{MakeTuple L N} Return tuple with label L and features 1, ..., N

{IsTuple T} Return boolean saying whether T is of tuple type

Table B.9: Some tuple operations

〈expression〉 ::= ´ [ ´ { 〈expression〉 }+ ´ ] ´ | ...
〈consBinOp〉 ::= ´ | ´ | ...

Table B.10: List syntax (in part)

{Browse {AdjoinAt T 1 b}}
{Browse {AdjoinAt W key b}}

will display:

tree(b key:a left:L right:R value:1)
tree(a L R 1 key:b)

The {Adjoin R1 R2} operation gives the same result as if AdjoinAt were called
successively, starting with R1 and iterating through all features of R2.

B.3.3 Operations on tuples

All record operations also work for tuples. There are a few additional operations
that work only on tuples. Table B.9 lists some of them. The Base module Tuple

gives them all.

B.4 Chunks (limited records)

A chunk is Mozart terminology for a record type with a limited set of operations.
Chunks are not a fundamental concept; they can be implemented with procedure
values and names, as explained in Section 3.7.5. For improved efficiency, Mozart
provides chunks directly as a data type. We describe them here because some
library modules use them (in particular, the module ObjectSupport ). There are
only two basic operations: create a chunk from any record and extract information
with the field selection operator “. ”:

declare
C={Chunk.new anyrecord(a b c)} % Chunk creation
F=C.2 % Chunk field selection

The Label and Arity operations are not defined and unification is not possible.
Chunks give a way of “wrapping” information so that access to the information
is restricted, i.e., not all computations can access the information. This makes
chunks useful for defining secure abstract data types.
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B.5 Lists

A list is either the atom nil representing the empty list or a tuple with infix
operator | and two arguments which are respectively the head and the tail of
the list. The two arguments have field numbered 1 and 2. The head can be any
data type and the tail is a list. We call the tuple a list pair. Often it is called a
cons cell because creating one in Lisp is done with an operation called cons. Lisp
is the oldest list-processing language and pioneered many list concepts and their
terminology. When the second argument is not necessarily a list, then it is often
called a dotted pair, because Lisp writes it in infix with a dot operator. In our
notation, a list of the letters a, b, and c is written as:

a|b|c|nil

We provide a more concise syntax for lists (i.e., when the rightmost argument is
nil ):

[a b c]

Table B.10 shows the syntax of these two ways of writing a list. The partial list
containing elements a and b and whose tail is the variable X looks like:

a|b|X

One can also use the standard record notation for lists:

´ | ´ (a ´ | ´ (b X))

or even (making the field names explicit):

´ | ´ (1:a 2: ´ | ´ (1:b 2:X))

Circular lists are allowed. For example, the following is legal:

declare X in
X=a|b|X
{Browse X}

By default, the browser displays the list without taking sharing into account, i.e.,
without taking into account multiple references to the same part of the list. In
the list X, after the first two elements a and b, we find X again. By default, the
browser ignores all sharing. It displays X as:

a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|
a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|,,,

To avoid infinite loops, the browser has an adjustable depth limit. The three
commas ,,, represent the part of the list that is not displayed. Select Graph in
the Representation entry of the browser’s Options menu and feed the fragment
again. This will display the list as a graph (see Figure B.1):

C1=a|b|C1

The browser introduces the new variable C1 to refer to another part of the list.
See the browser manual for more information on what the browser can display.
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Operation Description
{Append L1 L2} Return the concatenation of L1 and L2

{Member X L} Return boolean saying whether X is in L

{Length L} Return the length of L

{List.drop L N} Return L minus the first Nelements, or nil

if it is shorter
{List.last L} Return the last element of non-empty list

L

{Sort L F} Return L sorted according to boolean com-
parison function F

{Map L F} Return the list obtained by applying F to
each element of L

{ForAll L P} Apply the unary procedure P to each ele-
ment of L

{Filter L F} Return the list of elements of L for which
F gives true

{FoldL L F N} Return the value obtained by inserting F

between all elements of L

{Flatten L} Return the list of all non-list elements of
L, at any nesting depth

{List.toTuple A L} Return tuple with label A and ordered
fields from L

{List.toRecord A L} Return record with label A and fea-
tures/fields F#X in L

Table B.11: Some list operations

B.5.1 Operations on lists

Table B.11 gives a few basic list operations. Many more operations exist in the
Base module List . Here is a simple symbolic calculation with lists:

declare A B in
A=[a b c]
B=[1 2 3 4]
{Browse {Append A B}}

This displays the list [a b c 1 2 3 4] . Like all operations, these all have cor-
rect dataflow behavior. For example, {Length a|b|X} blocks until X is bound.
The operations Sort , Map, ForAll , Filter , and FoldL are examples of higher-
order operations, i.e., operations that take functions or procedures as arguments.
We will talk about higher-order execution in Chapter 3. For now, here’s an
example to give a flavor of what is possible:

declare L in
L=[john paul george ringo]
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|

|

a

b 

C1:

Figure B.1: Graph representation of the infinite list C1=a|b|C1

〈expression〉 ::= 〈string〉 | ...
〈string〉 ::= ´ " ´ { 〈stringChar〉 | 〈pseudoChar〉 } ´ " ´

〈stringChar〉 ::= (any inline character except " , \ , and NUL)
〈pseudoChar〉 ::= (’\’ followed by three octal digits)

| (´ \x ´ or ´ \X ´ followed by two hexadecimal digits)
| ´ \a ´ | ´ \b ´ | ´ \f ´ | ´ \n ´ | ´ \r ´ | ´ \t ´

| ´ \v ´ | ´ \\ ´ | ´ \ ´´ | ´ \" ´ | ´ \ `´ | ´ \& ´

Table B.12: String lexical syntax

{Browse {Sort L Value. ´ <´ }}

sorts L according to the comparison function ´ <´ and displays the result:

[george john paul ringo]

As an infix operator, comparison is written as X<Y, but the comparison operation
itself is in the Base module Value . Its full name is Value. ´ <´ . Modules are
explained in Section 3.9.

B.6 Strings

Lists whose elements are character codes are called strings. For example:

"Mozart 1.2.3"

is the list:

[77 111 122 97 114 116 32 49 46 50 46 51]

or equivalently:

[&M &o &z &a &r &t & &1 &. &2 &. &3]

Using lists to represent strings is convenient because all list operations are avail-
able for doing symbolic calculations with strings. Character operations can be
used together with list operations to calculate on the internals of strings. String
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Operation Description
{VirtualString.toString VS} Return a string with the same characters

as VS

{VirtualString.toAtom VS} Return an atom with the same characters
as VS

{VirtualString.length VS} Return the number of characters in VS

{Value.toVirtualString X D W} Return a string representing the partial
value X, where records are limited in depth
to D and in width to W

Table B.13: Some virtual string operations

syntax is shown in Table B.12. The NUL character mentioned in the table has
character code 0 (zero). See Section B.1 for an explanation of the meaning of
´ \a ´ , ´ \b ´ , etc.

There exists another, more memory-efficient representation for character se-
quences called bytestring. This representation should only be used if memory
limitations make it necessary.

B.7 Virtual strings

A virtual string is a tuple with label ´ #´ that represents a string. The virtual
string brings together different substrings that are concatenated with virtual con-
catenation. That is, the concatenation is never actually performed, which saves
time and memory. For example, the virtual string:

123#"-"#23#" is "#(123-23)

represents the string:

"123-23 is 100"

Except in special cases, a library operation that expects a string can always be
given a virtual string instead. For example, virtual strings can be used for all
I/O operations. The components of a virtual string can be numbers, strings,
virtual strings (i.e., ´ #´ -labeled tuples), and all atoms except for nil and ´ #´ .
Table B.13 gives a few virtual string operations.
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Appendix C

Language Syntax

“The devil is in the details.”
– Traditional proverb.

“God is in the details.”
– Traditional proverb.

“I don’t know what is in those details,
but it must be something important!”
– Irreverent proverb.

This appendix defines the syntax of the complete language used in this book,
including all syntactic conveniences. The language is a subset of the Oz language
as implemented by the Mozart system. The appendix is divided into six sections:

• Section C.1 defines the syntax of interactive statements, i.e., statements
that can be fed into the interactive interface.

• Section C.2 defines the syntax of statements and expressions.

• Section C.3 defines the syntax of the nonterminals needed to define state-
ments and expressions.

• Section C.4 lists the operators of the language with their precedence and
associativity.

• Section C.5 lists the keywords of the language.

• Section C.6 defines the lexical syntax of the language, i.e., how a character
sequence is transformed into a sequence of tokens.

To be precise, this appendix defines a context-free syntax for a superset of the
language. This keeps the syntax simple and easy to read. The disadvantage of
a context-free syntax is that it does not capture all syntactic conditions for legal
programs. For example, take the statement local X in 〈statement〉 end . The
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〈interStatement〉 ::= 〈statement〉
| declare { 〈declarationPart〉 }+ [ 〈interStatement〉 ]
| declare { 〈declarationPart〉 }+ in 〈interStatement〉

Table C.1: Interactive statements

〈statement〉 ::= 〈nestCon(statement)〉 | 〈nestDec(〈variable〉)〉
| skip | 〈statement〉 〈statement〉

〈expression〉 ::= 〈nestCon(expression)〉 | 〈nestDec(´ $´ )〉
| 〈expression〉 〈evalBinOp〉 〈expression〉
| ´ $´ | 〈term〉 | ´ @́ 〈expression〉 | self

〈inStatement〉 ::= [ { 〈declarationPart〉 }+ in ] 〈statement〉
〈inExpression〉 ::= [ { 〈declarationPart〉 }+ in ] [ 〈statement〉 ] 〈expression〉
〈in(statement)〉 ::= 〈inStatement〉
〈in(expression)〉 ::= 〈inExpression〉

Table C.2: Statements and expressions

statement that contains this one must declare all the free variable identifiers of
〈statement〉, possibly minus X. This is not a context-free condition.

This appendix defines the syntax of a subset of the full Oz language, as de-
fined in [77, 47]. This appendix differs from [77] in several ways: it introduces
nestable constructs, nestable declarations, and terms to factor the common parts
of statement and expression syntax, it defines interactive statements and for

loops, it leaves out the translation to the kernel language (which is given for each
linguistic abstraction in the main text of the book), and it makes other small
simplifications for clarity (but without sacrificing precision).

C.1 Interactive statements

Table C.1 gives the syntax of interactive statements. An interactive statement
is a superset of a statement; in addition to all regular statements, it can contain
a declare statement. The interactive interface must always be fed interactive
statements. All free variable identifiers in the interactive statement must exist in
the global environment, otherwise the system gives a “variable not introduced”
error.

C.2 Statements and expressions

Table C.2 gives the syntax of statements and expressions. Many language con-
structs be used in either a statement position or an expression position. We
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〈nestCon(α)〉 ::= 〈expression〉 ( ´ =´ | ´ := ´ | ´ , ´ ) 〈expression〉
| ´ { ´ 〈expression〉 { 〈expression〉 } ´ } ´

| local { 〈declarationPart〉 }+ in [ 〈statement〉 ] 〈α〉 end

| ´ ( ´ 〈in(α)〉 ´ ) ´

| if 〈expression〉 then 〈in(α)〉
{ elseif 〈expression〉 then 〈in(α)〉 }
[ else 〈in(α)〉 ] end

| case 〈expression〉 of 〈pattern〉 [ andthen 〈expression〉 ] then 〈in(α)〉
{ ´ [] ´ 〈pattern〉 [ andthen 〈expression〉 ] then 〈in(α)〉 }
[ else 〈in(α)〉 ] end

| for { 〈loopDec〉 }+ do 〈in(α)〉 end

| try 〈in(α)〉
[ catch 〈pattern〉 then 〈in(α)〉
{ ´ [] ´ 〈pattern〉 then 〈in(α)〉 } ]

[ finally 〈in(α)〉 ] end

| raise 〈inExpression〉 end

| thread 〈in(α)〉 end

| lock [ 〈expression〉 then ] 〈in(α)〉 end

Table C.3: Nestable constructs (no declarations)

〈nestDec(α)〉 ::= proc ´ { ´ α { 〈pattern〉 } ´ } ´ 〈inStatement〉 end

| fun [ lazy ] ´ { ´ α { 〈pattern〉 } ´ } ´ 〈inExpression〉 end

| functor α
[ import { 〈variable〉 [ at 〈atom〉 ]

| 〈variable〉 ´ ( ´

{ (〈atom〉 | 〈int〉) [ ´ : ´ 〈variable〉 ] }+ ´ ) ´

}+ ]
[ export { [ (〈atom〉 | 〈int〉) ´ : ´ ] 〈variable〉 }+ ]
define { 〈declarationPart〉 }+ [ in 〈statement〉 ] end

| class α { 〈classDescriptor〉 }
{ meth 〈methHead〉 [ ´ =´ 〈variable〉 ]

( 〈inExpression〉 | 〈inStatement〉 ) end }
end

Table C.4: Nestable declarations
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〈term〉 ::= [ ´ ! ´ ] 〈variable〉 | 〈int〉 | 〈float〉 | 〈character〉
| 〈atom〉 | 〈string〉 | unit | true | false

| 〈label〉 ´ ( ´ { [ 〈feature〉 ´ : ´ ] 〈expression〉 } ´ ) ´

| 〈expression〉 〈consBinOp〉 〈expression〉
| ´ [ ´ { 〈expression〉 }+ ´ ] ´

〈pattern〉 ::= [ ´ ! ´ ] 〈variable〉 | 〈int〉 | 〈float〉 | 〈character〉
| 〈atom〉 | 〈string〉 | unit | true | false

| 〈label〉 ´ ( ´ { [ 〈feature〉 ´ : ´ ] 〈pattern〉 } [ ´ ... ´ ] ´ ) ´

| 〈pattern〉 〈consBinOp〉 〈pattern〉
| ´ [ ´ { 〈pattern〉 }+ ´ ] ´

Table C.5: Terms and patterns

call such constructs nestable. We write the grammar rules to give their syn-
tax just once, in a way that works for both statement and expression positions.
Table C.3 gives the syntax for nestable constructs, not including declarations. Ta-
ble C.4 gives the syntax for nestable declarations. The grammar rules for nestable
constructs and declarations are templates with one argument. The template is
instantiated each time it is used. For example, 〈nestCon(α)〉 defines the tem-
plate for nestable constructs without declarations. This template is used twice,
as 〈nestCon(statement)〉 and 〈nestCon(expression)〉, and each corresponds to one
grammar rule.

C.3 Nonterminals for statements and expressions

Tables C.5 and C.6 defines the nonterminal symbols needed for the statement and
expression syntax of the preceding section. Table C.5 defines the syntax of terms
and patterns. Note the close relationship between terms and patterns. Both are
used to define partial values. There are just two differences: (1) patterns can
contain only variable identifiers whereas terms can contain expressions, and (2)
patterns can be partial (using ´ ... ´ ) whereas terms cannot.

Table C.6 defines nonterminals for the declaration parts of statements and
loops, for binary operators (“constructing” operators 〈consBinOp〉 and “evalu-
ating” operators 〈evalBinOp〉), for records (labels and features), and for classes
(descriptors, attributes, methods, etc.).

C.4 Operators

Table C.7 gives the precedence and associativity of all the operators used in the
book. All the operators are binary infix operators, except for three cases. The
minus sign ´ ˜ ´ is a unary prefix operator. The hash symbol ´ #´ is an n-ary
mixfix operator. The “. := ” is a ternary infix operator that is explained in the
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〈declarationPart〉 ::= 〈variable〉 | 〈pattern〉 ´ =´ 〈expression〉 | 〈statement〉
〈loopDec〉 ::= 〈variable〉 in 〈expression〉 [ ´ .. ´ 〈expression〉 ] [ ´ ; ´ 〈expression〉 ]

| 〈variable〉 in 〈expression〉 ´ ; ´ 〈expression〉 ´ ; ´ 〈expression〉
| break ´ : ´ 〈variable〉 | continue ´ : ´ 〈variable〉
| return ´ : ´ 〈variable〉 | default ´ : ´ 〈expression〉
| collect ´ : ´ 〈variable〉

〈binaryOp〉 ::= 〈evalBinOp〉 | 〈consBinOp〉
〈consBinOp〉 ::= ´ #´ | ´ | ´

〈evalBinOp〉 ::= ´ +´ | ´ - ´ | ´ * ´ | ´ / ´ | div | mod | ´ . ´ | andthen | orelse

| ´ := ´ | ´ , ´ | ´ =´ | ´ ==´ | ´ \= ´ | ´ <´ | ´ =<´ | ´ >´ | ´ >=´

〈label〉 ::= unit | true | false | 〈variable〉 | 〈atom〉
〈feature〉 ::= unit | true | false | 〈variable〉 | 〈atom〉 | 〈int〉
〈classDescriptor〉 ::= from { 〈expression〉 }+ | prop { 〈expression〉 }+

| attr { 〈attrInit〉 }+
〈attrInit〉 ::= ( [ ´ ! ´ ] 〈variable〉 | 〈atom〉 | unit | true | false )

[ ´ : ´ 〈expression〉 ]
〈methHead〉 ::= ( [ ´ ! ´ ] 〈variable〉 | 〈atom〉 | unit | true | false )

[ ´ ( ´ { 〈methArg〉 } [ ´ ... ´ ] ´ ) ´ ]
[ ´ =´ 〈variable〉 ]

〈methArg〉 ::= [ 〈feature〉 ´ : ´ ] ( 〈variable〉 | ´ _´ | ´ $´ ) [ ´ <=´ 〈expression〉 ]

Table C.6: Other nonterminals needed for statements and expressions

next section. There are no postfix operators. The operators are listed in order of
increasing precedence, i.e., tightness of binding. The operators lower in the table
bind tighter. We define the associativities as follows:

• Left. For binary operators, this means that repeated operators group to
the left. For example, 1+2+3 means the same as ((1+2)+3) .

• Right. For binary operators, this means that repeated operators group to
the right. For example, a|b|X means the same as (a|(b|X)) .

• Mixfix. Repeated operators are actually just one operator, with all expres-
sions being arguments of the operator. For example, a#b#c means the same
as ´ #´ (a b c) .

• None. For binary operators, this means that the operator cannot be repeat-
ed. For example, 1<2<3 is an error.

Parentheses can be used to override the default precedence.
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Operator Associativity
= right
:= “. := ” right
orelse right
andthen right
== \= < =< > >= none
| right
# mixfix
+ - left
* / div mod left
, right
˜ left
. left
@ !! left

Table C.7: Operators with their precedence and associativity

.

S I X

(any ref)
(index)

(dictionary)

S . I := X

X

(any ref)

(S . I) := X

(cell)

.  := :=

S I

(index)or record)
(dictionary

Figure C.1: The ternary operator “. := ”
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andthen default false lock return

at define feat (*) meth self

attr dis (*) finally mod skip

break div for not (*) then

case do from of thread

catch else fun or (*) true

choice elsecase (*) functor orelse try

class elseif if prepare (*) unit

collect elseof (*) import proc

cond (*) end in prop

continue export lazy raise

declare fail local require (*)

Table C.8: Keywords

C.4.1 Ternary operator

There is one ternary (three-argument) operator, “. := ”, which is designed for
dictionary and array updates. It has the same precedence and associativity as
:= . It can be used in an expression position like := , where it has the effect of an
exchange. The statement S.I:=X consists of a ternary operator with arguments
S, I , and X. This statement is used for updating dictionaries and arrays. This
should not be confused with (S.I):=X , which consists of the two nested binary
operators . and := . The latter statement is used for updating a cell that is
inside a dictionary. The parentheses are highly significant! Figure C.1 shows
the difference in abstract syntax between S.I:=X and (S.I):=X . In the figure,
(cell) means any cell or object attribute, and (dictionary) means any dictionary
or array.

The distinction is important because dictionaries can contain cells. To update
a dictionary D, we write D.I:=X . To update a cell in a dictionary containing cells,
we write (D.I):=X . This has the same effect as local C=D.I in C:=X end but
is more concise. The first argument of the binary operator := must be a cell or
object attribute.

C.5 Keywords

Table C.8 lists the keywords of the language in alphabetic order. Keywords
marked with (*) exist in Oz but are not used in this book. Keywords in boldface
can be used as atoms by enclosing them in quotes. For example, ´ then ´ is an
atom whereas then is a keyword. Keywords not in boldface can be used as atoms
directly, without quotes.
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〈variable〉 ::= (uppercase char) { (alphanumeric char) }
| ’‘’ { 〈variableChar〉 | 〈pseudoChar〉 } ’‘’

〈atom〉 ::= (lowercase char) { (alphanumeric char) } (except no keyword)
| ’’’ { 〈atomChar〉 | 〈pseudoChar〉 } ’’’

〈string〉 ::= ´ " ´ { 〈stringChar〉 | 〈pseudoChar〉 } ´ " ´

〈character〉 ::= (any integer in the range 0 ... 255)
| ´ &´ 〈charChar〉 | ´ &´ 〈pseudoChar〉

Table C.9: Lexical syntax of variables, atoms, strings, and characters

〈variableChar〉 ::= (any inline character except ‘ , \ , and NUL)
〈atomChar〉 ::= (any inline character except ’ , \ , and NUL)
〈stringChar〉 ::= (any inline character except " , \ , and NUL)
〈charChar〉 ::= (any inline character except \ and NUL)
〈pseudoChar〉 ::= ’\’ 〈octdigit〉 〈octdigit〉 〈octdigit〉

| (´ \x ´ | ´ \X ´ ) 〈hexdigit〉 〈hexdigit〉
| ´ \a ´ | ´ \b ´ | ´ \f ´ | ´ \n ´ | ´ \r ´ | ´ \t ´

| ´ \v ´ | ´ \\ ´ | ´ \ ´´ | ´ \" ´ | ´ \ `´ | ´ \& ´

Table C.10: Nonterminals needed for lexical syntax

〈int〉 ::= [ ´ ˜ ´ ] 〈nzdigit〉 { 〈digit〉 }
| [ ´ ˜ ´ ] 0 { 〈octdigit〉 }+
| [ ´ ˜ ´ ] (´ 0x ´ | ´ 0X´ ) { 〈hexdigit〉 }+
| [ ´ ˜ ´ ] (´ 0b´ | ´ 0B´ ) { 〈bindigit〉 }+

〈float〉 ::= [ ´ ˜ ´ ] { 〈digit〉 }+ ´ . ´ { 〈digit〉 } [ (´ e´ | ´ E´ ) [ ´ ˜ ´ ] { 〈digit〉 }+ ]
〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
〈nzdigit〉 ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
〈octdigit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
〈hexdigit〉 ::= 〈digit〉 | ´ a´ | ´ b´ | ´ c ´ | ´ d´ | ´ e´ | ´ f ´

| ´ A´ | ´ B´ | ´ Ć | ´ D́ | ´ E´ | ´ F´

〈bindigit〉 ::= 0 | 1

Table C.11: Lexical syntax of integers and floating point numbers
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C.6 Lexical syntax

This section defines the lexical syntax of Oz, i.e., how a character sequence is
transformed into a sequence of tokens.

C.6.1 Tokens

Variables, atoms, strings, and characters

Table C.9 defines the lexical syntax for variable identifiers, atoms, strings, and
characters in strings. An alphanumeric character is a letter (uppercase or low-
ercase), a digit, or an underscore character. Unlike the previous sections which
define token sequences, this section defines character sequences. It follows from
this syntax that an atom cannot have the same character sequence as a key-
word unless the atom is quoted. Table C.10 defines the nonterminals needed
for Table C.9. “Any inline character” includes control characters and accented
characters. The NUL character has character code 0 (zero).

Integers and floating point numbers

Table C.11 defines the lexical syntax of integers and floating point numbers. Note
the use of the ´ ˜ ´ (tilde) for the unary minus symbol.

C.6.2 Blank space and comments

Tokens may be separated by any amount of blank space and comments. Blank
space is one of the characters tab (character code 9), newline (code 10), vertical
tab (code 11), form feed (code 12), carriage return (code 13), and space (code
32). A comment is one of three possibilities:

• A sequence of characters starting from the character % (percent) until the
end of the line or the end of the file (whichever comes first).

• A sequence of characters starting from /* and ending with */, inclusive.
This kind of comment may be nested.

• The single character ? (question mark). This is intended to mark the
output arguments of procedures, as in:

proc {Max A B ?C} ... end

where C is an output. An output argument is an argument that gets bound
inside the procedure.
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Appendix D

General Computation Model

“The removal of much of the accidental complexity of programming
means that the intrinsic complexity of the application is what’s left.”
– Security Engineering, Ross J. Anderson (2001)

“If you want people to do something the right way, you must make
the right way the easy way.”
– Traditional saying.

This appendix brings together all the general concepts introduced in the book.1

The resulting computation model is the shared-state concurrent model of Chap-
ter 8. For convenience we call it the general computation model. While this model
is quite general, it is certainly not the final word in computation models. It is
just a snapshot that captures our current understanding of programming. Future
research will certainly change or extend it. The book mentions dynamic scoping
and transaction support as two areas which require more support from the model.

The general computation model was designed in a layered fashion, by starting
from a simple base model and successively adding new concepts. Each time we
noted a limitation in the expressiveness of a computation model, we had the
opportunity to add a new concept. There was always a choice: either to keep
the model as is and make programs more complicated, or to add a concept and
keep programs simple. The decision to add the concept or not was based on
our judgement of how complicated the model and its programs would be, when
considered together. “Complexity” in this sense covers both the expressiveness
and ease of reasoning of the combination.

There is a strong element of creativity in this approach. Each concept brings
something novel that was not there before. We therefore call it the creative
extension principle. Not all useful concepts end up in the general model. Some
concepts were added only to be superseded by later concepts. For example,
this is the case for nondeterministic choice (Section 5.7.1), which is superseded

1Except for computation spaces, which underlie the relational computation model and the
constraint-based computation model.
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by explicit state. The general model is just one among many possible models of
similar expressiveness. Your judgement in this process may be different from ours.
We would be interested to hear from any reader who has reached significantly
different conclusions.

Because earlier computation models are subsets of later ones, the later ones
can be considered as frameworks inside of which many computation models can
coexist. In this sense, the general computation model is the most complete frame-
work of the book.

D.1 Creative extension principle

We give an example to explain and motivate the creative extension principle.
Let us start with the simple declarative language of Chapter 2. In that chapter,
we added two concepts to the declarative language: functions and exceptions.
But there was something fundamentally different in how we added each concept.
Functions were added as a linguistic abstraction by defining a new syntax and
showing how to translate it into the kernel language (see Section 2.5.2). Excep-
tions were added to the kernel language itself by adding new primitive operations
and defining their semantics (see Section 2.6). Why did we choose to do it this
way? We could have added functions to the kernel language and defined excep-
tions by translation, but we did not. There is a simple but profound reason for
this: functions can be defined by a local translation but exceptions cannot. A
translation of a concept is local if it requires changes only to the parts of the
program that use the concept.

Starting with the declarative kernel language of Chapter 2, this book added
concepts one by one. For each concept we had to decide whether to add it as a
linguistic abstraction (without changing the kernel language) or to add it to the
kernel language. A linguistic abstraction is a good idea if the translation is local.
Extending the kernel language is a good idea if there is no local translation.

This choice is always a trade-off. One criterium is that the overall scheme,
including both the kernel language and the translation scheme into the kernel
language, should be as simple as possible. This is what we call the creative
extension principle. To some degree, simplicity is a subjective judgement. This
book makes one particular choice of what should be in the kernel languages and
what should be outside. Other reasonable choices are certainly possible.

An additional constraint on the kernel languages of this book is that they
are all carefully chosen to be subsets of the full Oz language. This means that
they are all implemented by the Mozart system. Users can verify that the kernel
language translation of a program behaves in exactly the same way as the pro-
gram. The only difference between the two is efficiency. This is useful both for
learning the kernel languages and for debugging programs. The Mozart system
implements certain constructs more efficiently than their representation in the
kernel language. For example, classes and objects in Oz are implemented more
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〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| thread 〈s〉 end Thread creation
| {ByNeed 〈x〉 〈y〉} Trigger creation
| {NewName〈x〉} Name creation
| 〈y〉=!! 〈x〉 Read-only view
| try 〈s〉1 catch 〈x〉 then 〈s〉2 end Exception context
| raise 〈x〉 end Raise exception
| {FailedValue 〈x〉 〈y〉} Failed value
| {NewCell 〈x〉 〈y〉} Cell creation
| {Exchange 〈x〉 〈y〉 〈z〉} Cell exchange
| {IsDet 〈x〉 〈y〉} Boundness test

Table D.1: The general kernel language

efficiently than their kernel definitions.

D.2 Kernel language

Table D.1 gives the kernel language of the general computation model. For clarity,
we divide the table into five parts:

• The first part is the descriptive declarative model. This model allows to
build complex data structures (rooted graphs whose nodes are records and
procedure values) but does not allow to calculate with them.

• The first and second parts taken together form the declarative concurrent
model. This is the most general purely declarative model of the book. All
programs written in this model are declarative.

• The third part adds security: the ability to build secure ADTs and program
with capabilities.

• The fourth part adds exceptions: the ability to handle exceptional situations
by doing non-local exits.

• The fifth part adds explicit state, which is important for building modular
programs and programs that can change over time.
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Taking all parts gives the shared-state concurrent model. This is the most general
model of the book. Chapter 13 gives the semantics of this model and all its
subsets.

D.3 Concepts

Let us now recapitulate the design methodology of the general model by starting
with a simple base model and briefly explaining what new expressiveness each
concept brings. All models are Turing complete, that is, they are equivalent in
computing power to a Turing machine. However, Turing completeness is only a
small part of the story. The ease in which programs can be written or reasoned
about differs greatly in these models. Increased expressiveness typically goes
hand in hand with increased difficulty to reason about programs.

D.3.1 Declarative models

Strict functional model The simplest practical model is strict functional pro-
gramming with values. This model is defined in Section 2.7.1. In this model there
are no unbound variables; each new variable is immediately bound to a value.
This model is close to the λ calculus, which contains just procedure definition
and application and leaves out the conditional and pattern matching. The λ cal-
culus is Turing complete but is much too cumbersome for practical programming.

Sequential declarative model The sequential declarative model is defined in
Chapter 2. It contains all concepts in Table D.1 up to and including procedure
application, conditionals, and pattern matching. It extends the strict functional
model by introducing dataflow variables. Doing this is a critical step because
it prepares the way for declarative concurrency. For binding dataflow variables,
we use a general operation called unification. This means that the sequential
declarative model does both deterministic logic programming and functional pro-
gramming.

Threads The thread concept is defined in Section 4.1. Adding threads allows
the model to express activities that execute independently. This model is still
declarative: adding threads leaves the result of a calculation unchanged. Only the
order in which the calculations are done is more flexible. Programs become more
incremental: incrementally building an input results in an incrementally-built
output. This is one form of declarative concurrency.

Triggers The trigger concept is defined in Section 4.5.1. Adding triggers allows
the model to express demand-driven computations (laziness). This model is still
declarative since the result of a calculation is unchanged. Only the amount of
calculation done to achieve the result changes (it can become smaller). Sometimes
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the demand-driven model can give results in cases where the data-driven model
would go into an infinite loop. This is a second form of declarative concurrency.

D.3.2 Security

Names The name concept is defined in Section 3.7.5. A name is an unforgeable
constant that does not exist outside of a program. A name has no data or
operations attached to it; it is a first-class “key” or “right”. Names are the basis
of programming techniques such as unbundled secure ADTs (see Section 6.4) and
encapsulation control (see Section 7.3.3).

In the declarative model, secure ADTs can be built without names by using
procedure values to hide values. The hidden value is an external reference of
the procedure. But names add a crucial additional expressiveness. They make it
possible to program with rights. For example, separating data from operations
in a secure ADT or passing keys to programs to enable secure operations.

Strictly speaking, names are not declarative since successive calls to NewName

give different results. That is, the same program can return two different results
if names are used to identify the result uniquely. But if names are used only to
enforce security properties, then the model is still declarative.

Read-only views The read-only view concept is defined in Section 3.7.5. A
read-only view is a dataflow variable that can be read but not bound. It is
always paired with another dataflow variable that is equal to it but that can
be bound. Read-only views are needed to construct secure ADTs that export
unbound variables. The ADT exports the read-only view. Since it cannot be
bound outside the ADT, this allows the ADT to maintain its invariant property.

D.3.3 Exceptions

Exception handling The exception concept is defined in Section 2.6.2. Adding
exceptions allows to exit in one step from an arbitrarily large number of nested
procedure calls. This allows to write programs that treat rare cases correctly,
without complicating the program in the common case.

Failed values The failed value concept is defined in Section 4.9.1. A failed
value is a special kind of value that encapsulates an exception. Any attempt to
use the value or to bind it to a determined value will raise the exception. While
exception handling happens within a single thread, failed values allow to pass
exceptions from the thread that detected the problem to other threads.

Failed values are useful in models that have both exceptions and triggers.
Assume that a program calculates a value by a demand-driven computation, but
the computation raises an exception instead. What should the value be? It can
be a failed value. This will cause any thread that needs the value to raise an
exception.
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D.3.4 Explicit state

Cells (explicit state) Explicit state is defined in Section 6.3. Adding state
gives a program a memory: a procedure can change its behavior over successive
calls. In the declarative model this is not possible since all knowledge is in the
procedure’s arguments.

The stateful model greatly improves program modularity when compared to
models without state. It increases the possibilities for changing a module’s im-
plementation without changing its interface (see Section 4.7).

Ports (explicit state) Another way to add explicit state is by means of ports,
which are a kind of asynchronous communication channel. As explained in Sec-
tion 7.8, ports and cells are equivalent: each can implement the other in a simple
way. Ports are useful for programming message passing with active objects. Cells
are useful for programming atomic actions with shared state.

Boundness test (weak state) The boundness test IsDet lets us use dataflow
variables as a weak form of explicit state. The test checks whether a variable is
bound or still unbound, without waiting when the variable is unbound. For many
programming techniques, knowing the binding status of a dataflow variable is
unimportant. However, it can be important when programming a time-dependent
execution, i.e., to know what the instantaneous state is of an execution (see
Section 4.7.3).

Object-oriented programming Object-oriented programming is introduced
in Chapter 7. It has the same kernel language as the stateful models. It is a rich
set of programming techniques that uses ideas from knowledge representation to
improve program structure. The two main ideas are to consider programs as
collections of interacting ADTs (which can be grouped together in associations)
and to allow building ADTs incrementally (using inheritance, delegation, and
forwarding).

D.4 Different forms of state

Adding explicit state is such a strong change to the model that it is important to
have weaker forms of state. In the above models we have introduced four forms
of state. Let us summarize these forms in terms of how many times we can assign
a variable, i.e., change its state. In order of increasing strength, they are:

• No assignment, i.e., programming with values only (monotonic execution).
This is functional programming as it is usually understood. Programs are
completely deterministic, i.e., the same program always gives the same re-
sult.
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• Single assignment, i.e., programming with dataflow variables (monotonic
execution). This is also functional programming, but more flexible since it
allows declarative concurrency (with both lazy and eager execution). Pro-
grams are completely deterministic, but the result can be given incremen-
tally.

• Single assignment with boundness test, i.e., programming with dataflow
variables and IsDet (nonmonotonic execution). Programs are no longer
deterministic.

• Multiple assignment, i.e., programming with cells or ports (nonmonotonic
execution). Programs are no longer deterministic. This is the most expres-
sive model.

We can understand these different forms of state in terms of an important prop-
erty called monotonicity. At any time, a variable can be assigned to an element of
some set S of values. Assignment is monotonic if as execution progresses, values
can be removed from S but not added. For example, binding a dataflow variable
X to a value reduces S from all possible values to just one value. A function f
is monotonic if S1 ⊂ S2 =⇒ f(S1) ⊂ f(S2). For example, IsDet is nonmono-
tonic since {IsDet X} returns false when X is unbound and true when X is
bound, and {true } is not a subset of {false }. A program’s execution is mono-
tonic if all its operations are monotonic. Monotonicity is what makes declarative
concurrency possible.

D.5 Other concepts

D.5.1 What’s next?

The general computation model of this book is just a snapshot of an ongoing
process. New concepts will continue to be discovered in the future using the
creative extension principle. What will these new concepts be? We cannot tell
for sure, since anticipating a discovery is the same as making that discovery! But
there are hints about a few of the concepts. Two concepts that we are fairly sure
about, even though we do not know their final form, are dynamic scoping and
transaction support. With dynamic scoping the behavior of a component depends
on its context. With transaction support the execution of a component can be
canceled if it cannot complete successfully. According to the creative extension
principle, both of these concepts should be added to the computation model.

D.5.2 Domain-specific concepts

This book gives many general concepts that are useful for all kinds of programs.
In addition to this, each application domain has its own set of concepts that
are useful only in that domain. These extra concepts complement the general
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concepts. For example, we can cite artificial intelligence [160, 136], algorithm
design [41], object-oriented design patterns [58], multi-agent programming [205],
databases [42], and numerical analysis [153].

D.6 Layered language design

The general computation model has a layered design. Each layer offers its own
special trade-off of expressiveness and ease of reasoning. The programmer can
choose the layer that is best-adapted to each part of the program. From the evi-
dence presented in the book, it is clear that this layered structure is beneficial for
a general-purpose programming language. It makes it easier for the programmer
to say directly what he or she wants to say, without cumbersome encodings.

The layered design of the general computation model can be found to some
degree in many languages. Object-oriented languages such as Smalltalk, Eiffel,
and Java have two layers: an object-oriented core and a second layer providing
shared-state concurrency [60, 122, 10]. The functional language Erlang has two
layers: an eager functional core and a second layer providing message-passing
concurrency between active objects [9] (see also Section 5.6). Active objects are
defined within the functional core. The logic language Prolog has three layers:
a logical core that is a simple theorem prover, a second layer modifying the
theorem prover’s operation, and a third layer providing explicit state [182] (see
also Section 9.7). The functional language Concurrent ML has three layers: an
eager functional core, a second layer providing explicit state, and a third layer
providing concurrency [158]. The multiparadigm language Oz has many layers,
which is why it was used as the basis for this book [180].
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