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Figure 2.13: A partial value with no unbound variables, i.e., a complete value
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Figure 2.14: Two variables bound together

be bound to several partial values, as long as they are compatible with each
other. We say a set of partial values is compatible if the unbound variables in
them can be bound in such a way as to make them all equal. For example,
person(age:25) and person(age: x) are compatible (because x can be bound
to 25), but person(age:25) and person(age:26) are not.

2.2.7 Variable-variable binding

Variables can be bound to variables. For example, consider two unbound variables
x1 and x2 referred to by the identifiers X and Y. After doing the bind X=Y, we get
the situation in Figure 2.14. The two variables x1 and x2 are equal to each other.
The figure shows this by letting each variable refer to the other. We say that
{x1, x2} form an equivalence set.4 We also write this as x1 = x2. Three variables
that are bound together are written as x1 = x2 = x3 or {x1, x2, x3}. Drawn in
a figure, these variables would form a circular chain. Whenever one variable in
an equivalence set is bound, then all variables see the binding. Figure 2.15 shows
the result of doing X=[1 2 3] .

4From a formal viewpoint, the two variables form an equivalence class with respect to equal-
ity.
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Figure 2.15: The store after binding one of the variables

2.2.8 Dataflow variables

In the declarative model, creating a variable and binding it are done separately.
What happens if we try to use the variable before it is bound? We call this a
variable use error. Some languages create and bind variables in one step, so that
use errors cannot occur. This is the case for functional programming languages.
Other languages allow creating and binding to be separate. Then we have the
following possibilities when there is a use error:

1. Execution continues and no error message is given. The variable’s content
is undefined, i.e. it is “garbage”: whatever is found in memory. This is
what C++ does.

2. Execution continues and no error message is given. The variable is initial-
ized to a default value when it is declared, e.g., to 0 for an integer. This is
what Java does.

3. Execution stops with an error message (or an exception is raised). This is
what Prolog does for arithmetic operations.

4. Execution waits until the variable is bound and then continues.

These cases are listed in increasing order of niceness. The first case is very bad,
since different executions of the same program can give different results. What’s
more, since the existence of the error is not signaled, the programmer is not even
aware when this happens. The second is somewhat better. If the program has a
use error, then at least it will always give the same result, even if it is a wrong
one. Again the programmer is not made aware of the error’s existence.

The third and fourth cases are reasonable in certain situations. In the third,
a program with a use error will signal this fact, instead of silently continuing.
This is reasonable in a sequential system, since there really is an error. It is
unreasonable in a concurrent system, since the result becomes nondeterministic:
depending on the timing, sometimes an error is signaled and sometimes not. In
the fourth, the program will wait until the variable is bound, and then continue.
This is unreasonable in a sequential system, since the program will wait forever.
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50 Declarative Computation Model

〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application

Table 2.1: The declarative kernel language

It is reasonable in a concurrent system, where it could be part of normal operation
that some other thread binds the variable.5 The computation models of this book
use the fourth case.

Declarative variables that cause the program to wait until they are bound are
called dataflow variables. The declarative model uses dataflow variables because
they are tremendously useful in concurrent programming, i.e., for programs with
activities that run independently. If we do two concurrent operations, say A=23

and B=A+1, then with the fourth solution this will always run correctly and give
the answer B=24. It doesn’t matter whether A=23 is tried first or whether B=A+1

is tried first. With the other solutions, there is no guarantee of this. This property
of order-independence makes possible the declarative concurrency of Chapter 4.
It is at the heart of why dataflow variables are a good idea.

2.3 Kernel language

The declarative model defines a simple kernel language. All programs in the
model can be expressed in this language. We first define the kernel language
syntax and semantics. Then we explain how to build a full language on top of
the kernel language.

2.3.1 Syntax

The kernel syntax is given in Tables 2.1 and 2.2. It is carefully designed to be a
subset of the full language syntax, i.e., all statements in the kernel language are
valid statements in the full language.

5Still, during development, a good debugger should capture undesirable suspensions if there
are no other running threads.
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〈v〉 ::= 〈number〉 | 〈record〉 | 〈procedure〉
〈number〉 ::= 〈int〉 | 〈float〉
〈record〉, 〈pattern〉 ::= 〈literal〉

| 〈literal〉(〈feature〉1: 〈x〉1 ... 〈feature〉n: 〈x〉n)
〈procedure〉 ::= proc { $ 〈x〉1 ... 〈x〉n} 〈s〉 end

〈literal〉 ::= 〈atom〉 | 〈bool〉
〈feature〉 ::= 〈atom〉 | 〈bool〉 | 〈int〉
〈bool〉 ::= true | false

Table 2.2: Value expressions in the declarative kernel language

Statement syntax

Table 2.1 defines the syntax of 〈s〉, which denotes a statement. There are eight
statements in all, which we will explain later.

Value syntax

Table 2.2 defines the syntax of 〈v〉, which denotes a value. There are three kinds
of value expressions, denoting numbers, records, and procedures. For records and
patterns, the arguments 〈x〉1, ..., 〈x〉n must all be distinct identifiers. This ensures
that all variable-variable bindings are written as explicit kernel operations.

Variable identifier syntax

Table 2.1 uses the nonterminals 〈x〉 and 〈y〉 to denote a variable identifier. We
will also use 〈z〉 to denote identifiers. There are two ways to write a variable
identifier:

• An uppercase letter followed by zero or more alphanumeric characters (let-
ters or digits or underscores), for example X, X1, or ThisIsALongVariable_IsntIt .

• Any sequence of printable characters enclosed within ‘ (back-quote) char-
acters, e.g., ` this is a 25$\variable! ` .

A precise definition of identifier syntax is given in Appendix C. All newly-declared
variables are unbound before any statement is executed. All variable identifiers
must be declared explicitly.

2.3.2 Values and types

A type or data type is a set of values together with a set of operations on those
values. A value is “of a type” if it is in the type’s set. The declarative model
is typed in the sense that it has a well-defined set of types, called basic types.
For example, programs can calculate with integers or with records, which are all
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52 Declarative Computation Model

of integer type or record type, respectively. Any attempt to use an operation
with values of the wrong type is detected by the system and will raise an error
condition (see Section 2.6). The model imposes no other restrictions on the use
of types.

Because all uses of types are checked, it is not possible for a program to behave
outside of the model, e.g., to crash because of undefined operations on its internal
data structures. It is still possible for a program to raise an error condition, for
example by dividing by zero. In the declarative model, a program that raises
an error condition will terminate immediately. There is nothing in the model to
handle errors. In Section 2.6 we extend the declarative model with a new concept,
exceptions, to handle errors. In the extended model, type errors can be handled
within the model.

In addition to basic types, programs can define their own types, which are
called abstract data types, ADT for short. Chapter 3 and later chapters show
how to define ADTs.

Basic types

The basic types of the declarative model are numbers (integers and floats), records
(including atoms, booleans, tuples, lists, and strings), and procedures. Table 2.2
gives their syntax. The nonterminal 〈v〉 denotes a partially constructed value.
Later in the book we will see other basic types, including chunks, functors, cells,
dictionaries, arrays, ports, classes, and objects. Some of these are explained in
Appendix B.

Dynamic typing

There are two basic approaches to typing, namely dynamic and static typing. In
static typing, all variable types are known at compile time. In dynamic typing,
the variable type is known only when the variable is bound. The declarative
model is dynamically typed. The compiler tries to verify that all operations use
values of the correct type. But because of dynamic typing, some type checks are
necessarily left for run time.

The type hierarchy

The basic types of the declarative model can be classified into a hierarchy. Fig-
ure 2.16 shows this hierarchy, where each node denotes a type. The hierarchy
is ordered by set inclusion, i.e., all values of a node’s type are also values of the
parent node’s type. For example, all tuples are records and all lists are tuples.
This implies that all operations of a type are also legal for a subtype, e.g., all
list operations work also for strings. Later on in the book we will extend this
hierarchy. For example, literals can be either atoms (explained below) or another
kind of constant called names (see Section 3.7.5). The parts where the hierarchy
is incomplete are given as “...”.
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Figure 2.16: The type hierarchy of the declarative model

2.3.3 Basic types

We give some examples of the basic types and how to write them. See Appendix B
for more complete information.

• Numbers. Numbers are either integers or floating point numbers. Exam-
ples of integers are 314 , 0, and ˜10 (minus 10). Note that the minus sign
is written with a tilde “˜ ”. Examples of floating point numbers are 1.0 ,
3.4 , 2.0e2 , and ˜2.0E˜2 .

• Atoms. An atom is a kind of symbolic constant that can be used as a
single element in calculations. There are several different ways to write
atoms. An atom can be written as a sequence of characters starting with
a lowercase letter followed by any number of alphanumeric characters. An
atom can also be written as any sequence of printable characters enclosed
in single quotes. Examples of atoms are a_person , donkeyKong3 , and
´ #### hello #### ´ .

• Booleans. A boolean is either the symbol true or the symbol false .

• Records. A record is a compound data structure. It consists of a label
followed by a set of pairs of features and variable identifiers. Features can
be atoms, integers, or booleans. Examples of records are person(age:X1

name:X2) (with features age and name), person(1:X1 2:X2) , ´ | ´ (1:H

2:T) , ´ #´ (1:H 2:T) , nil , and person . An atom is a record with no
features.

• Tuples. A tuple is a record whose features are consecutive integers starting
from 1. The features do not have to be written in this case. Examples of

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



54 Declarative Computation Model

tuples are person(1:X1 2:X2) and person(X1 X2) , both of which mean
the same.

• Lists. A list is either the atom nil or the tuple ´ | ´ (H T) (label is vertical
bar), where T is either unbound or bound to a list. This tuple is called a
list pair or a cons. There is syntactic sugar for lists:

– The ´ | ´ label can be written as an infix operator, so that H|T means
the same as ´ | ´ (H T) .

– The ´ | ´ operator associates to the right, so that 1|2|3|nil means
the same as 1|(2|(3|nil)) .

– Lists that end in nil can be written with brackets [ ... ] , so that [1

2 3] means the same as 1|2|3|nil . These lists are called complete
lists.

• Strings. A string is a list of character codes. Strings can be written with
double quotes, so that "E=mcˆ2" means the same as [69 61 109 99 94

50] .

• Procedures. A procedure is a value of the procedure type. The statement:

〈x〉=proc {$ 〈y〉1 ... 〈y〉n } 〈s〉 end

binds 〈x〉 to a new procedure value. That is, it simply declares a new
procedure. The $ indicates that the procedure value is anonymous, i.e.,
created without being bound to an identifier. There is a syntactic short-cut
that is more familiar:

proc { 〈x〉 〈y〉1 ... 〈y〉n } 〈s〉 end

The $ is replaced by an identifier. This creates the procedure value and
immediately tries to bind it to 〈x〉. This short-cut is perhaps easier to read,
but it blurs the distinction between creating the value and binding it to an
identifier.

2.3.4 Records and procedures

We explain why chose records and procedures as basic concepts in the kernel
language. This section is intended for readers with some programming experience
who wonder why we designed the kernel language the way we did.

The power of records

Records are the basic way to structure data. They are the building blocks of
most data structures, including lists, trees, queues, graphs, etc., as we will see in
Chapter 3. Records play this role to some degree in most programming languages.
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But we shall see that their power can go much beyond this role. The extra power
appears in greater or lesser degree depending on how well or how poorly the
language supports them. For maximum power, the language should make it easy
to create them, take them apart, and manipulate them. In the declarative model,
a record is created by simply writing it down, with a compact syntax. A record
is taken apart by simply writing down a pattern, also with a compact syntax.
Finally, there are many operations to manipulate records: to add, remove, or
select fields, to convert to a list and back, etc. In general, languages that provide
this level of support for records are called symbolic languages.

When records are strongly supported, they can be used to increase the ef-
fectiveness of many other techniques. This book focuses on three in particu-
lar: object-oriented programming, graphical user interface (GUI) design, and
component-based programming. In object-oriented programming, Chapter 7
shows how records can represent messages and method heads, which are what
objects use to communicate. In GUI design, Chapter 10 shows how records can
represent “widgets”, the basic building blocks of a user interface. In component-
based programming, Section 3.9 shows how records can represent modules, which
group together related operations.

Why procedures?

A reader with some programming experience may wonder why our kernel language
has procedures as a basic construct. Fans of object-oriented programming may
wonder why we do not use objects instead. Fans of functional programming may
wonder why we do not use functions. We could have chosen either possibility,
but we did not. The reasons are quite straightforward.

Procedures are more appropriate than objects because they are simpler. Ob-
jects are actually quite complicated, as Chapter 7 explains. Procedures are more
appropriate than functions because they do not necessarily define entities that
behave like mathematical functions.6 For example, we define both components
and objects as abstractions based on procedures. In addition, procedures are flex-
ible because they do not make any assumptions about the number of inputs and
outputs. A function always has exactly one output. A procedure can have any
number of inputs and outputs, including zero. We will see that procedures are ex-
tremely powerful building blocks, when we talk about higher-order programming
in Section 3.6.

6From a theoretical point of view, procedures are “processes” as used in concurrent calculi
such as the π calculus. The arguments are channels. In this chapter we use processes that
are composed sequentially with single-shot channels. Chapters 4 and 5 show other types of
channels (with sequences of messages) and do concurrent composition of processes.
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Operation Description Argument type
A==B Equality comparison Value
A\=B Nonequality comparison Value
{IsProcedure P} Test if procedure Value
A=<B Less than or equal comparison Number or Atom
A<B Less than comparison Number or Atom
A>=B Greater than or equal comparison Number or Atom
A>B Greater than comparison Number or Atom
A+B Addition Number
A-B Subtraction Number
A*B Multiplication Number
A div B Division Int
A mod B Modulo Int
A/B Division Float
{Arity R} Arity Record
{Label R} Label Record
R.F Field selection Record

Table 2.3: Examples of basic operations

2.3.5 Basic operations

Table 2.3 gives the basic operations that we will use in this chapter and the next.
There is syntactic sugar for many of these operations so that they can be written
concisely as expressions. For example, X=A*B is syntactic sugar for {Number. ´ * ´

A B X}, where Number. ´ * ´ is a procedure associated with the type Number.7

All operations can be denoted in some long way, e.g., Value. ´ ==´ , Value. ´ <´ ,
Int. ´ div ´ , Float. ´ / ´ . The table uses the syntactic sugar when it exists.

• Arithmetic. Floating point numbers have the four basic operations, +, - ,
* , and / , with the usual meanings. Integers have the basic operations +,
- , * , div , and mod, where div is integer division (truncate the fractional
part) and mod is the integer modulo, i.e., the remainder after a division.
For example, 10 mod 3=1.

• Record operations. Three basic operations on records are Arity , Label ,
and “. ” (dot, which means field selection). For example, given:

X=person(name:"George" age:25)

then {Arity X} =[age name] , {Label X} =person , and X.age =25 . The
call to Arity returns a list that contains first the integer features in ascend-
ing order and then the atom features in ascending lexicographic order.

7To be precise, Number is a module that groups the operations of the Number type and
Number. ´ * ´ selects the multiplication operation.
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• Comparisons. The boolean comparison functions include == and \= ,
which can compare any two values for equality, as well as the numeric
comparisons =<, <, >=, and >, which can compare two integers, two floats,
or two atoms. Atoms are compared according to the lexicographic order
of their print representations. In the following example, Z is bound to the
maximum of X and Y:

declare X Y Z T in
X=5 Y=10
T=(X>=Y)
if T then Z=X else Z=Y end

There is syntactic sugar so that an if statement accepts an expression as
its condition. The above example can be rewritten as:

declare X Y Z in
X=5 Y=10
if X>=Y then Z=X else Z=Y end

• Procedure operations. There are three basic operations on procedures:
defining them (with the proc statement), calling them (with the curly brace
notation), and testing whether a value is a procedure with the IsProcedure

function. The call {IsProcedure P} returns true if P is a procedure and
false otherwise.

Appendix B gives a more complete set of basic operations.

2.4 Kernel language semantics

The kernel language execution consists of evaluating functions over partial values.
To see this, we give the semantics of the kernel language in terms of a simple
operational model. The model is designed to let the programmer reason about
both correctness and complexity in a simple way. It is a kind of abstract machine,
but at a high level of abstraction that leaves out details such as registers and
explicit memory addresses.

2.4.1 Basic concepts

Before giving the formal semantics, let us give some examples to give intuition
on how the kernel language executes. This will motivate the semantics and make
it easier to understand.

A simple execution

During normal execution, statements are executed one by one in textual order.
Let us look at a simple execution:
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local A B C D in
A=11
B=2
C=A+B
D=C*C

end

This looks simple enough; it will bind D to 169. Let us look more closely at what
it does. The local statement creates four new variables in the store, and makes
the four identifiers A, B, C, D refer to them. (For convenience, this extends slightly
the local statement of Table 2.1.) This is followed by two bindings, A=11 and
B=2. The addition C=A+Badds the values of A and B and binds C to the result 13.
The multiplication D multiples the value of C by itself and binds D to the result
169. This is quite simple.

Variable identifiers and static scoping

We saw that the local statement does two things: it creates a new variable
and it sets up an identifier to refer to the variable. The identifier only refers to
the variable inside the local statement, i.e., between the local and the end .
We call this the scope of the identifier. Outside of the scope, the identifier does
not mean the same thing. Let us look closer at what this implies. Consider the
following fragment:

local X in
X=1
local X in

X=2
{Browse X}

end
{Browse X}

end

What does it display? It displays first 2 and then 1. There is just one identifier,
X, but at different points during the execution, it refers to different variables.

Let us summarize this idea. The meaning of an identifier like X is determined
by the innermost local statement that declares X. The area of the program
where X keeps this meaning is called the scope of X. We can find out the scope of
an identifier by simply inspecting the text of the program; we do not have to do
anything complicated like execute or analyze the program. This scoping rule is
called lexical scoping or static scoping. Later we will see another kind of scoping
rule, dynamic scoping, that is sometimes useful. But lexical scoping is by far the
most important kind of scoping rule because it is localized, i.e., the meaning of
an identifier can be determined by looking at a small part of the program.
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Procedures

Procedures are one of the most important basic building blocks of any language.
We give a simple example that shows how to define and call a procedure. Here
is a procedure that binds Z to the maximum of X and Y:

proc {Max X Y ?Z}
if X>=Y then Z=X else Z=Y end

end

To make the definition easier to read, we mark the output argument with a ques-
tion mark “?”. This has absolutely no effect on execution; it is just a comment.
Calling {Max 3 5 C} binds Cto 5. How does the procedure work, exactly? When
Max is called, the identifiers X, Y, and Z are bound to 3, 5, and the unbound vari-
able referenced by C. When Max binds Z, then it binds this variable. Since C

also references this variable, this also binds C. This way of passing parameters
is called call by reference. Procedures output results by being passed references
to unbound variables, which are bound inside the procedure. This book most-
ly uses call by reference, both for dataflow variables and for mutable variables.
Section 6.4.4 explains some other parameter passing mechanisms.

Procedures with external references

Let us examine the body of Max. It is just an if statement:

if X>=Y then Z=X else Z=Y end

This statement has one particularity, though: it cannot be executed! This is
because it does not define the identifiers X, Y, and Z. These undefined identifiers
are called free identifiers. Sometimes these are called free variables, although
strictly speaking they are not variables. When put inside the procedure Max,
the statement can be executed, because all the free identifiers are declared as
procedure arguments.

What happens if we define a procedure that only declares some of the free
identifiers as arguments? For example, let’s define the procedure LB with the
same procedure body as Max, but only two arguments:

proc {LB X ?Z}
if X>=Y then Z=X else Z=Y end

end

What does this procedure do when executed? Apparently, it takes any number
X and binds Z to X if X>=Y, but to Y otherwise. That is, Z is always at least
Y. What is the value of Y? It is not one of the procedure arguments. It has to
be the value of Y when the procedure is defined. This is a consequence of static
scoping. If Y=9 when the procedure is defined, then calling {LB 3 Z} binds Z to
9. Consider the following program fragment:

local Y LB in
Y=10

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



60 Declarative Computation Model

proc {LB X ?Z}
if X>=Y then Z=X else Z=Y end

end
local Y=15 Z in

{LB 5 Z}
end

end

What does the call {LB 5 Z} bind Z to? It will be bound to 10. The binding Y=15

when LB is called is ignored; it is the binding Y=10 at the procedure definition
that is important.

Dynamic scoping versus static scoping

Consider the following simple example:

local P Q in
proc {Q X} {Browse stat(X)} end
proc {P X} {Q X} end
local Q in

proc {Q X} {Browse dyn(X)} end
{P hello}

end
end

What should this display, stat(hello) or dyn(hello) ? Static scoping says
that it will display stat(hello) . In other words, P uses the version of Q that
exists at P’s definition. But there is another solution: P could use the version of Q

that exists at P’s call. This is called dynamic scoping. Both have been used as the
default scoping rule in programming languages. The original Lisp language was
dynamically scoped. Common Lisp and Scheme, which are descended from Lisp,
are statically scoped by default. Common Lisp still allows to declare dynamically-
scoped variables, which it calls special variables [181]. Which default is better?
The correct default is procedure values with static scoping. This is because a
procedure that works when it is defined will continue to work, independent of
the environment where it is called. This is an important software engineering
property.

Dynamic scoping remains useful in some well-defined areas. For example,
consider the case of a procedure whose code is transferred across a network from
one computer to another. Some of this procedure’s external references, for exam-
ple calls to common library operations, can use dynamic scoping. This way, the
procedure will use local code for these operations instead of remote code. This is
much more efficient.8

8However, there is no guarantee that the operation will behave in the same way on the target
machine. So even for distributed programs the default should be static scoping.
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Procedural abstraction

Let us summarize what we learned from Max and LB. Three concepts play an
important role:

• Procedural abstraction. Any statement can be made into a procedure by
putting it inside a procedure declaration. This is called procedural abstrac-
tion. We also say that the statement is abstracted into a procedure.

• Free identifiers. A free identifier in a statement is an identifier that is not
defined in that statement. It might be defined in an enclosing statement.

• Static scoping. A procedure can have external references, which are free
identifiers in the procedure body that are not declared as arguments. LB

has one external reference. Max has none. The value of an external reference
is its value when the procedure is defined. This is a consequence of static
scoping.

Procedural abstraction and static scoping together form one of the most powerful
tools presented in this book. In the semantics, we will see that they can be
implemented in a simple way.

Dataflow behavior

In the single-assignment store, variables can be unbound. On the other hand,
some statements need bound variables, otherwise they cannot execute. For ex-
ample, what happens when we execute:

local X Y Z in
X=10
if X>=Y then Z=X else Z=Y end

end

The comparison X>=Y returns true or false , if it can decide which is the case.
If Y is unbound, it cannot decide, strictly speaking. What does it do? Continu-
ing with either true or false would be incorrect. Raising an error would be a
drastic measure, since the program has done nothing wrong (it has done nothing
right either). We decide that the program will simply stop its execution, with-
out signaling any kind of error. If some other activity (to be determined later)
binds Y then the stopped execution can continue as if nothing had perturbed the
normal flow of execution. This is called dataflow behavior. Dataflow behavior
underlies a second powerful tool presented in this book, namely concurrency. In
the semantics, we will see that dataflow behavior can be implemented in a simple
way.

2.4.2 The abstract machine

We will define the kernel semantics as an operational semantics, i.e., it defines the
meaning of the kernel language through its execution on an abstract machine. We
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Figure 2.17: The declarative computation model

first define the basic concepts of the abstract machine: environments, semantic
statement, statement stack, execution state, and computation. We then show how
to execute a program. Finally, we explain how to calculate with environments,
which is a common semantic operation.

Overview of concepts

A running program is defined in terms of a computation, which is a sequence of
execution states. Let us define exactly what this means. We need the following
concepts:

• A single-assignment store σ is a set of store variables. These variables are
partitioned into (1) sets of variables that are equal but unbound and (2)
variables that are bound to a number, record, or procedure. For example,
in the store {x1, x2 = x3, x4 = a| x2}, x1 is unbound, x2 and x3 are equal
and unbound, and x4 is bound to the partial value a| x2. A store variable
bound to a value is indistinguishable from that value. This is why a store
variable is sometimes called a store entity.

• An environment E is a mapping from variable identifiers to entities in σ.
This is explained in Section 2.2. We will write E as a set of pairs, e.g.,
{X→ x, Y→ y}, where X, Y are identifiers and x, y refer to store entities.

• A semantic statement is a pair (〈s〉, E) where 〈s〉 is a statement and E
is an environment. The semantic statement relates a statement to what it
references in the store. The set of possible statements is given in Section 2.3.

• An execution state is a pair (ST, σ) where ST is a stack of semantic state-
ments and σ is a single-assignment store. Figure 2.17 gives a picture of the
execution state.
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• A computation is a sequence of execution states starting from an initial
state: (ST0, σ0)→ (ST1, σ1)→ (ST2, σ2)→ ....

A single transition in a computation is called a computation step. A computation
step is atomic, i.e., there are no visible intermediate states. It is as if the step
is done “all at once”. In this chapter, all computations are sequential, i.e., the
execution state contains exactly one statement stack, which is transformed by a
linear sequence of computation steps.

Program execution

Let us execute a program in this semantics. A program is simply a statement 〈s〉.
Here is how to execute the program:

• The initial execution state is:

([(〈s〉, φ)], φ)

That is, the initial store is empty (no variables, empty set φ) and the initial
execution state has just one semantic statement (〈s〉, φ) in the stack ST.
The semantic statement contains 〈s〉 and an empty environment (φ). We
use brackets [...] to denote the stack.

• At each step, the first element of ST is popped and execution proceeds
according to the form of the element.

• The final execution state (if there is one) is a state in which the semantic
stack is empty.

A semantic stack ST can be in one of three run-time states:

• Runnable: ST can do a computation step.

• Terminated: ST is empty.

• Suspended: ST is not empty, but it cannot do any computation step.

Calculating with environments

A program execution often does calculations with environments. An environment
E is a function that maps variable identifiers 〈x〉 to store entities (both unbound
variables and values). The notation E(〈x〉) retrieves the entity associated with the
identifier 〈x〉 from the store. To define the semantics of the abstract machine in-
structions, we need two common operations on environments, namely adjunction
and restriction.

Adjunction defines a new environment by adding a mapping to an existing
one. The notation:

E + {〈x〉 → x}
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denotes a new environment E ′ constructed from E by adding the mapping {〈x〉 →
x}. This mapping overrides any other mapping from the identifier 〈x〉. That is,
E ′(〈x〉) is equal to x, and E ′(〈y〉) is equal to E(〈y〉) for all identifiers 〈y〉 different
from 〈x〉. When we need to add more than one mapping at once, we write
E + {〈x〉1 → x1, ..., 〈x〉n → xn}.

Restriction defines a new environment whose domain is a subset of an existing
one. The notation:

E|{〈x〉1,...,〈x〉n}

denotes a new environment E ′ such that dom(E ′) = dom(E)∩{〈x〉1, ..., 〈x〉n} and
E′(〈x〉) = E(〈x〉) for all 〈x〉 ∈ dom(E ′). That is, the new environment does not
contain any identifiers other than those mentioned in the set.

2.4.3 Non-suspendable statements

We first give the semantics of the statements that can never suspend.

The skip statement

The semantic statement is:

(skip , E)

Execution is complete after this pair is popped from the semantic stack.

Sequential composition

The semantic statement is:

(〈s〉1 〈s〉2, E)

Execution consists of the following actions:

• Push (〈s〉2, E) on the stack.

• Push (〈s〉1, E) on the stack.

Variable declaration (the local statement)

The semantic statement is:

(local 〈x〉 in 〈s〉 end , E)

Execution consists of the following actions:

• Create a new variable x in the store.

• Let E ′ be E + {〈x〉 → x}, i.e., E ′ is the same as E except that it adds a
mapping from 〈x〉 to x.

• Push (〈s〉, E′) on the stack.
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Variable-variable binding

The semantic statement is:

(〈x〉1 = 〈x〉2, E)

Execution consists of the following action:

• Bind E(〈x〉1) and E(〈x〉2) in the store.

Value creation

The semantic statement is:

(〈x〉 = 〈v〉, E)

where 〈v〉 is a partially constructed value that is either a record, number, or
procedure. Execution consists of the following actions:

• Create a new variable x in the store.

• Construct the value represented by 〈v〉 in the store and let x refer to it. All
identifiers in 〈v〉 are replaced by their store contents as given by E.

• Bind E(〈x〉) and x in the store.

We have seen how to construct record and number values, but what about pro-
cedure values? In order to explain them, we have first to explain the concept of
lexical scoping.

Lexical scoping revisited

A statement 〈s〉 can contain many occurrences of variable identifiers. For each
identifier occurrence, we can ask the question: where was this identifier declared?
If the declaration is in some statement (part of 〈s〉 or not) that textually surrounds
(i.e., encloses) the occurrence, then we say that the declaration obeys lexical
scoping. Because the scope is determined by the source code text, this is also
called static scoping.

Identifier occurrences in a statement can be bound or free with respect to that
statement. An identifier occurrence X is bound with respect to a statement 〈s〉
if it is declared inside 〈s〉, i.e., in a local statement, in the pattern of a case

statement, or as argument of a procedure declaration. An identifier occurrence
that is not bound is free. Free occurrences can only exist in incomplete program
fragments, i.e., statements that cannot run. In a running program, it is always
true that every identifier occurrence is bound.
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Bound identifier occurrences and bound variables

Do not confuse a bound identifier occurrence with a
bound variable! A bound identifier occurrence does not
exist at run time; it is a textual variable name that tex-
tually occurs inside a construct that declares it (e.g., a
procedure or variable declaration). A bound variable ex-
ists at run time; it is a dataflow variable that is bound
to a partial value.

Here is an example with both free and bound occurrences:

local Arg1 Arg2 in
Arg1=111*111
Arg2=999*999
Res=Arg1+Arg2

end

In this statement, all variable identifiers are declared with lexical scoping. The
identifier occurrences Arg1 and Arg2 are bound and the occurrence Res is free.
This statement cannot be run. To make it runnable, it has to be part of a bigger
statement that declares Res. Here is an extension that can run:

local Res in
local Arg1 Arg2 in

Arg1=111*111
Arg2=999*999
Res=Arg1+Arg2

end
{Browse Res}

end

This can run since it has no free identifier occurrences.

Procedure values (closures)

Let us see how to construct a procedure value in the store. It is not as simple as
one might imagine because procedures can have external references. For example:

proc {LowerBound X ?Z}
if X>=Y then Z=X else Z=Y end

end

In this example, the if statement has three free variables, X, Y, and Z. Two
of them, X and Z, are also formal parameters. The third, Y, is not a formal
parameter. It has to be defined by the environment where the procedure is
declared. The procedure value itself must have a mapping from Y to the store.
Otherwise, we could not call the procedure since Y would be a kind of dangling
reference.

Let us see what happens in the general case. A procedure expression is written
as:
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proc { $ 〈y〉1 ... 〈y〉n} 〈s〉 end

The statement 〈s〉 can have free variable identifiers. Each free identifer is either a
formal parameter or not. The first kind are defined anew each time the procedure
is called. They form a subset of the formal parameters {〈y〉1, ..., 〈y〉n}. The second
kind are defined once and for all when the procedure is declared. We call them
the external references of the procedure. Let us write them as {〈z〉1, ..., 〈z〉k}.
Then the procedure value is a pair:

( proc { $ 〈y〉1 ... 〈y〉n} 〈s〉 end , CE )

Here CE (the contextual environment) is E|{〈z〉1,...,〈z〉n}, where E is the environ-
ment when the procedure is declared. This pair is put in the store just like any
other value.

Because it contains an environment as well as a procedure definition, a pro-
cedure value is often called a closure or a lexically-scoped closure. This is because
it “closes” (i.e., packages up) the environment at procedure definition time. This
is also called environment capture. When the procedure is called, the contextu-
al environment is used to construct the environment of the executing procedure
body.

2.4.4 Suspendable statements

There are three statements remaining in the kernel language:

〈s〉 ::= ...
| if 〈x〉 then 〈s〉1 else 〈s〉2 end

| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end

| { 〈x〉 〈y〉1 ... 〈y〉n}

What should happen with these statements if 〈x〉 is unbound? From the discussion
in Section 2.2.8, we know what should happen. The statements should simply
wait until 〈x〉 is bound. We say that they are suspendable statements. They have
an activation condition, which is a condition that must be true for execution
to continue. The condition is that E(〈x〉) must be determined, i.e., bound to a
number, record, or procedure.

In the declarative model of this chapter, once a statement suspends it will
never continue, because there is no other execution that could make the activation
condition true. The program simply stops executing. In Chapter 4, when we
introduce concurrent programming, we will have executions with more than one
semantic stack. A suspended stack ST can become runnable again if another stack
does an operation that makes ST’s activation condition true. In that chapter we
shall see that communication from one stack to another through the activation
condition is the basis of dataflow execution. For now, let us stick with just one
semantic stack.
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Conditional (the if statement)

The semantic statement is:

(if 〈x〉 then 〈s〉1 else 〈s〉2 end , E)

Execution consists of the following actions:

• If the activation condition is true (E(〈x〉) is determined), then do the fol-
lowing actions:

– If E(〈x〉) is not a boolean (true or false ) then raise an error condi-
tion.

– If E(〈x〉) is true , then push (〈s〉1, E) on the stack.

– If E(〈x〉) is false , then push (〈s〉2, E) on the stack.

• If the activation condition is false, then execution does not continue. The
execution state is kept as is. We say that execution suspends. The stop can
be temporary. If some other activity in the system makes the activation
condition true, then execution can resume.

Procedure application

The semantic statement is:

({ 〈x〉 〈y〉1 ... 〈y〉n} , E)

Execution consists of the following actions:

• If the activation condition is true (E(〈x〉) is determined), then do the fol-
lowing actions:

– If E(〈x〉) is not a procedure value or is a procedure with a number of
arguments different from n, then raise an error condition.

– If E(〈x〉) has the form (proc { $ 〈z〉1 ... 〈z〉n} 〈s〉 end , CE) then push
(〈s〉, CE + {〈z〉1 → E(〈y〉1), ..., 〈z〉n → E(〈y〉n)}) on the stack.

• If the activation condition is false, then suspend execution.

Pattern matching (the case statement)

The semantic statement is:

(case 〈x〉 of 〈lit〉(〈feat〉1: 〈x〉1 ... 〈feat〉n: 〈x〉n) then 〈s〉1 else 〈s〉2 end , E)

(Here 〈lit〉 and 〈feat〉 are synonyms for 〈literal〉 and 〈feature〉.) Execution consists
of the following actions:
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• If the activation condition is true (E(〈x〉) is determined), then do the fol-
lowing actions:

– If the label of E(〈x〉) is 〈lit〉 and its arity is [〈feat〉1 · · · 〈feat〉n], then
push (〈s〉1, E + {〈x〉1 → E(〈x〉).〈feat〉1, ..., 〈x〉n → E(〈x〉).〈feat〉n}) on
the stack.

– Otherwise push (〈s〉2, E) on the stack.

• If the activation condition is false, then suspend execution.

2.4.5 Basic concepts revisited

Now that we have seen the kernel semantics, let us look again at the examples of
Section 2.4.1 to see exactly what they are doing. We look at three examples; we
suggest you do the others as exercises.

Variable identifiers and static scoping

We saw before that the following statement 〈s〉 displays first 2 and then 1:

〈s〉 ≡




local X in

X=1

〈s〉1 ≡




local X in

X=2

{Browse X}

end

〈s〉2 ≡ {Browse X}

end

The same identifier X first refers to 2 and then refers to 1. We can understand
better what happens by executing 〈s〉 in our abstract machine.

1. The initial execution state is:

( [(〈s〉, φ)], φ )

Both the environment and the store are empty (E = φ and σ = φ).

2. After executing the outermost local statement and the binding X=1, we
get:

( [(〈s〉1〈s〉2, {X→ x})],
{x = 1} )

The identifier X refers to the store variable x, which is bound to 1. The
next statement to be executed is the sequential composition 〈s〉1〈s〉2.

3. After executing the sequential composition, we get:
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( [(〈s〉1, {X→ x}), (〈s〉2, {X→ x})],
{x = 1} )

Each of the statements 〈s〉1 and 〈s〉2 has its own environment. At this point,
the two environments have identical values.

4. Let us start executing 〈s〉1. The first statement in 〈s〉1 is a local statement.
Executing it gives:

( [(X=2 {Browse X} , {X→ x′}), (〈s〉2, {X→ x})],
{x′, x = 1} )

This creates the new variable x′ and calculates the new environment {X→
x}+ {X→ x′}, which is {X→ x′}. The second mapping of X overrides the
first.

5. After the binding X=2 we get:

( [({Browse X} , {X→ x′}), ({Browse X} , {X→ x})],
{x′ = 2, x = 1} )

(Remember that 〈s〉2 is a Browse .) Now we see why the two Browse calls
display different values. It is because they have different environments. The
inner local statement is given its own environment, in which X refers to
another variable. This does not affect the outer local statement, which
keeps its environment no matter what happens in any other instruction.

Procedure definition and call

Our next example defines and calls the procedure Max, which calculates the max-
imum of two numbers. With the semantics we can see precisely what happens
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during the definition and execution of Max. Here is the example in kernel syntax:

〈s〉 ≡




local Max in

local A in

local B in

local C in

〈s〉1 ≡




Max=proc {$ X Y Z}

〈s〉3 ≡




local T in

T=(X>=Y)

〈s〉4 ≡ if T then Z=X else Z=Y end

end

end

A=3

B=5

〈s〉2 ≡ {Max A B C}

end

end

end

end

This statement is in the kernel language syntax. We can see it as the expanded
form of:

local Max C in
proc {Max X Y ?Z}

if X>=Y then Z=X else Z=Y end
end
{Max 3 5 C}

end

This is much more readable but it means exactly the same as the verbose version.
We have added the following three short-cuts:

• Declaring more than one variable in a local declaration. This is translated
into nested local declarations.

• Using “in-line” values instead of variables, e.g., {P 3} is a short-cut for
local X in X=3 {P X} end .

• Using nested operations, e.g., putting the operation X>=Y in place of the
boolean in the if statement.

We will use these short-cuts in all examples from now on.
Let us now execute statement 〈s〉. For clarity, we omit some of the interme-

diate steps.

1. The initial execution state is:

( [(〈s〉, φ)], φ )
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Both the environment and the store are empty (E = φ and σ = φ).

2. After executing the four local declarations, we get:

( [(〈s〉1, {Max→ m, A→ a, B→ b, C→ c})],
{m, a, b, c} )

The store contains the four variables m, a, b, and c. The environment of
〈s〉1 has mappings to these variables.

3. After executing the bindings of Max, A, and B, we get:

( [({Max A B C} , {Max→ m, A→ a, B→ b, C→ c})],
{m = (proc {$ X Y Z} 〈s〉3 end , φ), a = 3, b = 5, c} )

The variables m, a, and b are now bound to values. The procedure is
ready to be called. Notice that the contextual environment of Max is empty
because it has no free identifiers.

4. After executing the procedure application, we get:

( [(〈s〉3, {X→ a, Y→ b, Z→ c})],
{m = (proc {$ X Y Z} 〈s〉3 end , φ), a = 3, b = 5, c} )

The environment of 〈s〉3 now has mappings from the new identifiers X, Y,
and Z.

5. After executing the comparison X>=Y, we get:

( [(〈s〉4, {X→ a, Y→ b, Z→ c, T→ t})],
{m = (proc {$ X Y Z} 〈s〉3 end , φ), a = 3, b = 5, c, t = false } )

This adds the new identifier T and its variable t bound to false .

6. Execution is complete after statement 〈s〉4 (the conditional):

( [], {m = (proc {$ X Y Z} 〈s〉3 end , φ), a = 3, b = 5, c = 5, t = false } )

The statement stack is empty and c is bound to 5.

Procedure with external references (part 1)

The second example defines and calls the procedure LowerBound , which ensures
that a number will never go below a given lower bound. The example is interesting
because LowerBound has an external reference. Let us see how the following code
executes:
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local LowerBound Y C in
Y=5
proc {LowerBound X ?Z}

if X>=Y then Z=X else Z=Y end
end
{LowerBound 3 C}

end

This is very close to the Max example. The body of LowerBound is identical
to the body of Max. The only difference is that LowerBound has an external
reference. The procedure value is:

( proc {$ X Z} if X>=Y then Z=X else Z=Y end end , {Y→ y} )

where the store contains:

y = 5

When the procedure is defined, i.e., when the procedure value is created, the
environment has to contain a mapping of Y. Now let us apply this procedure. We
assume that the procedure is called as {LowerBound A C} , where A is bound to
3. Before the application we have:

( [({LowerBound A C} , {Y→ y, LowerBound → lb, A→ a, C→ c})],
{ lb = (proc {$ X Z} if X>=Y then Z=X else Z=Y end end , {Y→ y}),

y = 5, a = 3, c} )

After the application we get:

( [(if X>=Y then Z=X else Z=Y end , {Y→ y, X→ a, Z→ c})],
{ lb = (proc {$ X Z} if X>=Y then Z=X else Z=Y end end , {Y→ y}),

y = 5, a = 3, c} )

The new environment is calculated by starting with the contextual environment
({Y → y} in the procedure value) and adding mappings from the formal argu-
ments X and Z to the actual arguments a and c.

Procedure with external references (part 2)

In the above execution, the identifier Y refers to y in both the calling environment
as well as the contextual environment of LowerBound . How would the execution
change if the following statement were executed instead of {LowerBound 3 C} :

local Y in
Y=10
{LowerBound 3 C}

end

Here Y no longer refers to y in the calling environment. Before looking at the
answer, please put down the book, take a piece of paper, and work it out. Just
before the application we have almost the same situation as before:
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( [({LowerBound A C} , {Y→ y′, LowerBound → lb, A→ a, C→ c})],
{ lb = (proc {$ X Z} if X>=Y then Z=X else Z=Y end end , {Y→ y}),

y′ = 10, y = 5, a = 3, c} )

The calling environment has changed slightly: Y refers to a new variable y′, which
is bound to 10. When doing the application, the new environment is calculated
in exactly the same way as before, starting from the contextual environment and
adding the formal arguments. This means that the y′ is ignored! We get exactly
the same situation as before in the semantic stack:

( [(if X>=Y then Z=X else Z=Y end , {Y→ y, X→ a, Z→ c})],
{ lb = (proc {$ X Z} if X>=Y then Z=X else Z=Y end end , {Y→ y}),

y′ = 10, y = 5, a = 3, c} )

The store still has the binding y′ = 10. But y′ is not referenced by the semantic
stack, so this binding makes no difference to the execution.

2.4.6 Last call optimization

Consider a recursive procedure with just one recursive call which happens to
be the last call in the procedure body. We call such a procedure tail-recursive.
Our abstract machine executes a tail-recursive procedure with a constant stack
size. This is because our abstract machine does last call optimization. This is
sometimes called tail recursion optimization, but the latter terminology is less
precise since the optimization works for any last call, not just tail-recursive calls
(see Exercises). Consider the following procedure:

proc {Loop10 I}
if I==10 then skip
else

{Browse I}
{Loop10 I+1}

end
end

Calling {Loop10 0} displays successive integers from 0 up to 9. Let us see how
this procedure executes.

• The initial execution state is:

( [({Loop10 0} , E0)],
σ )

where E0 is the environment at the call.

• After executing the if statement, this becomes:

( [({Browse I} , {I → i0}) ({Loop10 I+1} , {I → i0})],
{i0 = 0} ∪ σ )
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• After executing the Browse , we get to the first recursive call:

( [({Loop10 I+1} , {I → i0})],
{i0 = 0} ∪ σ )

• After executing the if statement in the recursive call, this becomes:

( [({Browse I} , {I → i1}) ({Loop10 I+1} , {I → i1})],
{i0 = 0, i1 = 1} ∪ σ )

• After executing the Browse again, we get to the second recursive call:

( [({Loop10 I+1} , {I → i1})],
{i0 = 0, i1 = 1} ∪ σ )

It is clear that the stack at the kth recursive call is always of the form:

[({Loop10 I+1} , {I → ik−1})]

There is just one semantic statement and its environment is of constant size. This
is the last call optimization. This shows the efficient way to program loops in the
declarative model: the loop should be invoked through a last call.

2.4.7 Active memory and memory management

In the Loop10 example, the semantic stack and the store have very different
behaviors. The semantic stack is bounded by a constant size. On the other hand,
the store grows bigger at each call. At the kth recursive call, the store has the
form:

{i0 = 0, i1 = 1, ..., ik−1 = k − 1} ∪ σ

Let us see why this growth is not a problem in practice. Look carefully at the
semantic stack. The variables {i0, i1, ..., ik−2} are not needed for executing this
call. The only variable needed is ik−1. Removing the not-needed variables gives
a smaller store:

{ik−1 = k − 1} ∪ σ

Executing with this smaller store gives exactly the same results as before!
From the semantics it follows that a running program needs only the infor-

mation in the semantic stack and in the part of the store reachable from the
semantic stack. A partial value is reachable if it is referenced by a statement on
the semantic stack or by another reachable partial value. The semantic stack and
the reachable part of the store are together called the active memory. The rest
of the store can safely be reclaimed, i.e., the memory it uses can be reused for
other purposes. Since the active memory size of the Loop10 example is bounded
by a small constant, it can loop indefinitely without exhausting system memory.
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Figure 2.18: Lifecycle of a memory block

Memory use cycle

Memory consists of a sequence of words. This sequence is divided up into blocks,
where a block consists of a sequence of one or more words used to store a lan-
guage entity or part of a language entity. Blocks are the basic unit of memory
allocation. Figure 2.18 shows the lifecycle of a memory block. Each block of mem-
ory continuously cycles through three states: active, inactive, and free. Memory
management is the task of making sure that memory circulates correctly along
this cycle. A running program that needs a block of memory will allocate it from
a pool of free memory blocks. During its execution, a running program may no
longer need some of the memory it allocated:

• If it can determine this directly, then it deallocates this memory. This
makes it immediately become free again. This is what happens with the
semantic stack in the Loop10 example.

• If it cannot determine this directly, then the memory becomes inactive. It is
simply no longer reachable by the running program. This is what happens
with the store in the Loop10 example.

Usually, memory used for managing control flow (the semantic stack) can be
deallocated and memory used for data structures (the store) becomes inactive.

Inactive memory must eventually be reclaimed, i.e., the system must recognize
that it is inactive and put it back in the pool of free memory. Otherwise, the
system has a memory leak and will soon run out of memory. Reclaiming inactive
memory is the hardest part of memory management, because recognizing that
memory is unreachable is a global condition. It depends on the whole execution
state of the running program. Low-level languages like C or C++ often leave
reclaiming to the programmer, which is a major source of program errors. There
are two kinds of program error that can occur:

• Dangling reference. This happens when a block is reclaimed even though it
is still reachable. The system will eventually reuse this block. This means
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that data structures will be corrupted in unpredictable ways, causing the
program to crash. This error is especially pernicious since the effect (the
crash) is usually very far away from the cause (the incorrect reclaiming).
This makes dangling references hard to debug.

• Memory leak. This happens when an unreachable block is considered as still
reachable, and so is not reclaimed. The effect is that active memory size
keeps growing indefinitely until eventually the system’s memory resources
are exhausted. Memory leaks are less dangerous than dangling references
because programs can continue running for some time before the error forces
them to stop. Long-lived programs, such as operating systems and servers,
must not have any memory leaks.

Garbage collection

Many high-level languages, such as Erlang, Haskell, Java, Lisp, Prolog, Smalltalk,
and so forth, do automatic reclaiming. That is, reclaiming is done by the sys-
tem independently of the running program. This completely eliminates dangling
references and greatly reduces memory leaks. This relieves the programmer of
most of the difficulties of manual memory management. Automatic reclaiming
is called garbage collection. Garbage collection is a well-known technique that
has been used for a long time. It was used in the 1960’s for early Lisp systems.
Until the 1990’s, mainstream languages did not use it because it was incorrectly
judged as being too inefficient. It has finally become acceptable in mainstream
programming because of the popularity of the Java language.

A typical garbage collector has two phases. In the first phase, it determines
what the active memory is. It does this finding all data structures that are
reachable starting from an initial set of pointers called the root set. The root set
is the set of pointers that are always needed by the program. In the abstract
machine defined so far, the root set is simply the semantic stack. In general, the
root set includes all pointers in ready threads and all pointers in operating system
data structures. We will see this when we extend the machine to implement
the new concepts introduced in later chapters. The root set also includes some
pointers related to distributed programming (namely references from remote sites;
see Chapter 11).

In the second phase, the garbage collector compacts the memory. That is, it
collects all the active memory blocks into one contiguous block (a block without
holes) and the free memory blocks into one contiguous block.

Modern garbage collection algorithms are efficient enough that most applica-
tions can use them with only small memory and time penalties [95]. The most
widely-used garbage collectors run in a “batch” mode, i.e., they are dormant most
of the time and run only when the total amount of active and inactive memory
reaches a predefined threshold. While the garbage collector runs, the program
does not fulfill its task. This is perceived as an occasional pause in program
execution. Usually this pause is small enough not to be disruptive.
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