
78 Declarative Computation Model

There exist garbage collection algorithms, called real-time garbage collectors,
that can run continuously, interleaved with the program execution. They can be
used in cases, such as hard real-time programming, in which there must not be
any pauses.

Garbage collection is not magic

Having garbage collection lightens the burden of memory management for the
developer, but it does not eliminate it completely. There are two cases that remain
the developer’s responsibility: avoiding memory leaks and managing external
resources.

Avoiding memory leaks It is the programmer’s responsibility to avoid mem-
ory leaks. If the program continues to reference a data structure that it no longer
needs, then that data structure’s memory will never be recovered. The program
should be careful to lose all references to data structures no longer needed.

For example, take a recursive function that traverses a list. If the list’s head
is passed to the recursive call, then list memory will not be recovered during the
function’s execution. Here is an example:

L=[1 2 3 ... 1000000]

fun {Sum X L1 L}
case L1 of Y|L2 then {Sum X+Y L2 L}
else X end

end

{Browse {Sum 0 L L}}

Sumsums the elements of a list. But it also keeps a reference to L, the original
list, even though it does not need L. This means L will stay in memory during
the whole execution of Sum. A better definition is as follows:

fun {Sum X L1}
case L1 of Y|L2 then {Sum X+Y L2}
else X end

end

{Browse {Sum 0 L}}

Here the reference to L is lost immediately. This example is trivial. But things can
be more subtle. For example, consider an active data structure S that contains
a list of other data structures D1, D2, ..., Dn. If one of these, say Di , is no longer
needed by the program, then it should be removed from the list. Otherwise its
memory will never be recovered.

A well-written program therefore has to do some “cleanup” after itself: making
sure that it no longer references data structures that it no longer needs. The

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.4 Kernel language semantics 79

cleanup can be done in the declarative model, but it is cumbersome.9

Managing external resources A Mozart program often needs data structures
that are external to its operating system process. We call such a data structure
an external resource. External resources affect memory management in two ways.
An internal Mozart data structure can refer to an external resource and vice versa.
Both possibilities need some programmer intervention. Let us consider each case
separately.

The first case is when a Mozart data structure refers to an external resource.
For example, a record can correspond to a graphic entity in a graphics display or
to an open file in a file system. If the record is no longer needed, then the graphic
entity has to be removed or the file has to be closed. Otherwise, the graphics
display or the file system will have a memory leak. This is done with a technique
called finalization, which defines actions to be taken when data structures become
unreachable. Finalization is explained in Section 6.9.2.

The second case is when an external resource needs a Mozart data structure.
This is often straightforward to handle. For example, consider a scenario where
the Mozart program implements a database server that is accessed by external
clients. This scenario has a simple solution: never do automatic reclaiming of
the database storage. Other scenarios may not be so simple. A general solution
is to set aside a part of the Mozart program to represent the external resource.
This part should be active (i.e., have its own thread) so that it is not reclaimed
haphazardly. It can be seen as a “proxy” for the resource. The proxy keeps a ref-
erence to the Mozart data structure as long as the resource needs it. The resource
informs the proxy when it no longer needs the data structure. Section 6.9.2 gives
another technique.

The Mozart garbage collector

The Mozart system does automatic memory management. It has both a local
garbage collector and a distributed garbage collector. The latter is used for
distributed programming and is explained in Chapter 11. The local garbage
collector uses a copying dual-space algorithm.

The garbage collector divides memory into two spaces, which each takes up
half of available memory space. At any instant, the running program sits com-
pletely in one half. Garbage collection is done when there is no more free memory
in that half. The garbage collector finds all data structures that are reachable
from the root set and copies them to the other half of memory. Since they are
copied to one contiguous memory block this also does compaction.

The advantage of a copying garbage collector is that its execution time is
proportional to the active memory size, not to the total memory size. Small
programs will garbage collect quickly, even if they are running in a large memory
space. The two disadvantages of a copying garbage collector are that half the

9It is more efficiently done with explicit state (see Chapter 6).

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

80 Declarative Computation Model

memory is unusable at any given time and that long-lived data structures (like
system tables) have to be copied at each garbage collection. Let us see how
to remove these two disadvantages. Copying long-lived data can be avoided by
using a modified algorithm called a generational garbage collector. This partitions
active memory into generations. Long-lived data structures are put in older
generations, which are collected less often.

The memory disadvantage is only important if the active memory size ap-
proaches the maximum addressable memory size of the underlying architecture.
Mainstream computer technology is currently in a transition period from 32-bit
to 64-bit addressing. In a computer with 32-bit addresses, the limit is reached
when active memory size is 1000 MB or more. (The limit is usually not 4000
MB due to limitations in the operating system.) At the time of writing, this
limit is reached by large programs in high-end personal computers. For such
programs, we recommend to use a computer with 64-bit addresses, which has no
such problem.

2.5 From kernel language to practical language

The kernel language has all the concepts needed for declarative programming.
But trying to use it for practical declarative programming shows that it is too
minimal. Kernel programs are just too verbose. It turns out that most of this
verbosity can be eliminated by judiciously adding syntactic sugar and linguistic
abstractions. This section does just that:

• It defines a set of syntactic conveniences that give a more concise and read-
able full syntax.

• It defines an important linguistic abstraction, namely functions, that is
useful for concise and readable programming.

• It explains the interactive interface of the Mozart system and shows how
it relates to the declarative model. This brings in the declare statement,
which is a variant of the local statement designed for interactive use.

The resulting language is used in Chapter 3 to explain the programming tech-
niques of the declarative model.

2.5.1 Syntactic conveniences

The kernel language defines a simple syntax for all its constructs and types. The
full language has the following conveniences to make this syntax more usable:

• Nested partial values can be written in a concise way.

• Variables can be both declared and initialized in one step.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.5 From kernel language to practical language 81

• Expressions can be written in a concise way.

• The if and case statements can be nested in a concise way.

• The new operators andthen and orelse are defined as conveniences for
nested if statements.

• Statements can be converted into expressions by using a nesting marker.

The nonterminal symbols used in the kernel syntax and semantics correspond as
follows to those in the full syntax:

Kernel syntax Full syntax
〈x〉, 〈y〉, 〈z〉 〈variable〉
〈s〉 〈statement〉, 〈stmt〉

Nested partial values

In Table 2.2, the syntax of records and patterns implies that their arguments are
variables. In practice, many partial values are nested deeper than this. Because
nested values are so often used, we give syntactic sugar for them. For example,
we extend the syntax to let us write person(name:"George" age:25) instead
of the more cumbersome version:

local A B in A="George" B=25 X=person(name:A age:B) end

where X is bound to the nested record.

Implicit variable initialization

To make programs shorter and easier to read, there is syntactic sugar to bind a
variable immediately when it is declared. The idea is to put a bind operation
between local and in . Instead of local X in X=10 {Browse X} end , in
which X is mentioned three times, the short-cut lets one write local X=10 in

{Browse X} end , which mentions X only twice. A simple case is the following:

local X=〈expression〉 in 〈statement〉 end

This declares X and binds it to the result of 〈expression〉. The general case is:

local 〈pattern〉=〈expression〉 in 〈statement〉 end

where 〈pattern〉 is any partial value. This declares all the variables in 〈pattern〉
and then binds 〈pattern〉 to the result of 〈expression〉. In both cases, the variables
occurring on the left-hand side of the equality, i.e., X or the variables in 〈pattern〉,
are the ones declared.

Implicit variable initialization is convenient for taking apart a complex da-
ta structure. For example, if T is bound to the record tree(key:a left:L

right:R value:1) , then just one equality is enough to extract all four fields:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

82 Declarative Computation Model

〈expression〉 ::= 〈variable〉 | 〈int〉 | 〈float〉 |
| 〈expression〉 〈evalBinOp〉 〈expression〉
| ´ (´ 〈expression〉 〈evalBinOp〉 〈expression〉 ´) ´

| ´ { ´ 〈expression〉 { 〈expression〉 } ´ } ´

| ...
〈evalBinOp〉 ::= ´ +´ | ´ - ´ | ´ * ´ | ´ / ´ | div | mod |

| ´ ==´ | ´ \= ´ | ´ <´ | ´ =<´ | ´ >´ | ´ >=´ | ...

Table 2.4: Expressions for calculating with numbers

local
tree(key:A left:B right:C value:D)=T

in
〈statement〉

end

This is a kind of pattern matching. T must have the right structure, otherwise
an exception is raised. This does part of the work of the case statement, which
generalizes this so that the programmer decides what to do if the pattern is not
matched. Without the short-cut, the following is needed:

local A B C D in
{Label T}=tree
A=T.key
B=T.left
C=T.right
D=T.value
〈statement〉

end

which is both longer and harder to read. What if T has more than four fields,
but we want to extract just four? Then we can use the following notation:

local
tree(key:A left:B right:C value:D ...)=T

in
〈statement〉

end

The “... ” means that there may be other fields in T.

Expressions

An expression is syntactic sugar for a sequence of operations that returns a value.
It is different from a statement, which is also a sequence of operations but does
not return a value. An expression can be used inside a statement whenever a
value is needed. For example, 11*11 is an expression and X=11*11 is a statement.
Semantically, an expression is defined by a straightforward translation into kernel

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.5 From kernel language to practical language 83

〈statement〉 ::= if 〈expression〉 then 〈inStatement〉
{ elseif 〈expression〉 then 〈inStatement〉 }
[else 〈inStatement〉] end

| ...
〈inStatement〉 ::= [{ 〈declarationPart〉 }+ in] 〈statement〉

Table 2.5: The if statement

〈statement〉 ::= case 〈expression〉
of 〈pattern〉 [andthen 〈expression〉] then 〈inStatement〉
{ ´ [] ´ 〈pattern〉 [andthen 〈expression〉] then 〈inStatement〉 }
[else 〈inStatement〉] end

| ...
〈pattern〉 ::= 〈variable〉 | 〈atom〉 | 〈int〉 | 〈float〉

| 〈string〉 | unit | true | false

| 〈label〉 ´ (´ { [〈feature〉 ´ : ´] 〈pattern〉 } [´ ... ´] ´) ´

| 〈pattern〉 〈consBinOp〉 〈pattern〉
| ´ [´ { 〈pattern〉 }+ ´] ´

〈consBinOp〉 ::= ´ #´ | ´ | ´

Table 2.6: The case statement

syntax. So X=11*11 is translated into {Mul 11 11 X} , where Mul is a three-
argument procedure that does multiplication.10

Table 2.4 shows the syntax of expressions that calculate with numbers. Later
on we will see expressions for calculating with other data types. Expressions are
built hierarchically, starting from basic expressions (e.g., variables and numbers)
and combining them together. There are two ways to combine them: using
operators (e.g., the addition 1+2+3+4) or using function calls (e.g., the square
root {Sqrt 5.0}).

Nested if and case statements

We add syntactic sugar to make it easy to write if and case statements with
multiple alternatives and complicated conditions. Table 2.5 gives the syntax of
the full if statement. Table 2.6 gives the syntax of the full case statement and its
patterns. (Some of the nonterminals in these tables are defined in Appendix C.)
These statements are translated into the primitive if and case statements of
the kernel language. Here is an example of a full case statement:

case Xs#Ys
of nil#Ys then 〈s〉1

10Its real name is Number. ´ * ´ , since it is part of the Number module.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

84 Declarative Computation Model

[] Xs#nil then 〈s〉2
[] (X|Xr)#(Y|Yr) andthen X=<Y then 〈s〉3
else 〈s〉4 end

It consists of a sequence of alternative cases delimited with the “[] ” symbol. The
alternatives are often called clauses. This statement translates into the following
kernel syntax:

case Xs of nil then 〈s〉1
else

case Ys of nil then 〈s〉2
else

case Xs of X|Xr then
case Ys of Y|Yr then

if X=<Y then 〈s〉3 else 〈s〉4 end
else 〈s〉4 end

else 〈s〉4 end
end

end

The translation illustrates an important property of the full case statement:
clauses are tested sequentially starting with the first clause. Execution continues
past a clause only if the clause’s pattern is inconsistent with the input argument.

Nested patterns are handled by looking first at the outermost pattern and then
working inwards. The nested pattern (X|Xr)#(Y|Yr) has one outer pattern of
the form A#B and two inner patterns of the form A|B . All three patterns are tuples
that are written with infix syntax, using the infix operators ´ #´ and ´ | ´ . They
could have been written with the usual syntax as ´ #´ (A B) and ´ | ´ (A B) . Each
inner pattern (X|Xr) and (Y|Yr) is put in its own primitive case statement.
The outer pattern using ´ #´ disappears from the translation because it occurs
also in the case ’s input argument. The matching with ´ #´ can therefore be done
at translation time.

The operators andthen and orelse

The operators andthen and orelse are used in calculations with boolean values.
The expression:

〈expression〉1 andthen 〈expression〉2
translates into:

if 〈expression〉1 then 〈expression〉2 else false end

The advantage of using andthen is that 〈expression〉2 is not evaluated if 〈expression〉1
is false . There is an analogous operator orelse . The expression:

〈expression〉1 orelse 〈expression〉2
translates into:

if 〈expression〉1 then true else 〈expression〉2 end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.5 From kernel language to practical language 85

〈statement〉 ::= fun ´ { ´ 〈variable〉 { 〈pattern〉 } ´ } ´ 〈inExpression〉 end

| ...
〈expression〉 ::= fun ´ { ´ ´ $´ { 〈pattern〉 } ´ } ´ 〈inExpression〉 end

| proc ´ { ´ ´ $´ { 〈pattern〉 } ´ } ´ 〈inStatement〉 end

| ´ { ´ 〈expression〉 { 〈expression〉 } ´ } ´

| local { 〈declarationPart〉 }+ in 〈expression〉 end

| if 〈expression〉 then 〈inExpression〉
{ elseif 〈expression〉 then 〈inExpression〉 }
[else 〈inExpression〉] end

| case 〈expression〉
of 〈pattern〉 [andthen 〈expression〉] then 〈inExpression〉
{ ´ [] ´ 〈pattern〉 [andthen 〈expression〉] then 〈inExpression〉 }
[else 〈inExpression〉] end

| ...
〈inStatement〉 ::= [{ 〈declarationPart〉 }+ in] 〈statement〉
〈inExpression〉 ::= [{ 〈declarationPart〉 }+ in] [〈statement〉] 〈expression〉

Table 2.7: Function syntax

That is, 〈expression〉2 is not evaluated if 〈expression〉1 is true .

Nesting markers

The nesting marker “$” turns any statement into an expression. The expression’s
value is what is at the position indicated by the nesting marker. For example, the
statement {P X1 X2 X3} can be written as {P X1 $ X3} , which is an expression
whose value is X2. This makes the source code more concise, since it avoids having
to declare and use the identifier X2. The variable corresponding to X2 is hidden
from the source code.

Nesting markers can make source code more readable to a proficient program-
mer, while making it harder for a beginner to see how the code translates to the
kernel language. We will use them only when they greatly increase readability.
For example, instead of writing:

local X in {Obj get(X)} {Browse X} end

we will instead write {Browse {Obj get($)}} . Once you get used to nesting
markers, they are both concise and clear. Note that the syntax of procedure
values as explained in Section 2.3.3 is consistent with the nesting marker syntax.

2.5.2 Functions (the fun statement)

The declarative model provides a linguistic abstraction for programming with
functions. This is our first example of a linguistic abstraction, as defined in

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

86 Declarative Computation Model

Section 2.1.2. We define the new syntax for function definitions and function
calls and show how they are translated into the kernel language.

Function definitions

A function definition differs from a procedure definition in two ways: it is intro-
duced with the keyword fun and the body must end with an expression. For
example, a simple definition is:

fun {F X1 ... XN} 〈statement〉 〈expression〉 end

This translates to the following procedure definition:

proc {F X1 ... XN ?R} 〈statement〉 R=〈expression〉 end

The extra argument R is bound to the expression in the procedure body. If the
function body is an if statement, then each alternative of the if can end in an
expression:

fun {Max X Y}
if X>=Y then X else Y end

end

This translates to:

proc {Max X Y ?R}
R = if X>=Y then X else Y end

end

We can further translate this by transforming the if from an expression to a
statement. This gives the final result:

proc {Max X Y ?R}
if X>=Y then R=X else R=Y end

end

Similar rules apply for the local and case statements, and for other statements
we will see later. Each statement can be used as an expression. Roughly speak-
ing, whenever an execution sequence in a procedure ends in a statement, the
corresponding sequence in a function ends in an expression. Table 2.7 gives the
complete syntax of expressions. This table takes all the statements we have seen
so far and shows how to use them as expressions. In particular, there are also
function values, which are simply procedure values written in functional syntax.

Function calls

A function call {F X1 ... XN} translates to the procedure call {F X1 ... XN

R} , where R replaces the function call where it is used. For example, the following
nested call of F:

{Q {F X1 ... XN} ... }

is translated to:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.5 From kernel language to practical language 87

local R in
{F X1 ... XN R}
{Q R ... }

end

In general, nested functions are evaluated before the function in which they are
nested. If there are several, then they are evaluated in the order they appear in
the program.

Function calls in data structures

There is one more rule to remember for function calls. It has to do with a call
inside a data structure (record, tuple, or list). Here is an example:

Ys={F X}|{Map Xr F}

In this case, the translation puts the nested calls after the bind operation:

local Y Yr in
Ys=Y|Yr
{F X Y}
{Map Xr F Yr}

end

This ensures that the recursive call is last. Section 2.4.6 explains why this is
important for execution efficiency. The full Map function is defined as follows:

fun {Map Xs F}
case Xs
of nil then nil
[] X|Xr then {F X}|{Map Xr F}
end

end

Map applies the function F to all elements of a list and returns the result. Here
is an example call:

{Browse {Map [1 2 3 4] fun {$ X} X*X end }}

This displays [1 4 9 16] . The definition of Map translates as follows to the
kernel language:

proc {Map Xs F ?Ys}
case Xs of nil then Ys=nil
else case Xs of X|Xr then

local Y Yr in
Ys=Y|Yr
{F X Y}
{Map Xr F Yr}

end
end end

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

88 Declarative Computation Model

〈interStatement〉 ::= 〈statement〉
| declare { 〈declarationPart〉 }+ [〈interStatement〉]
| declare { 〈declarationPart〉 }+ in 〈interStatement〉

〈declarationPart〉 ::= 〈variable〉 | 〈pattern〉 ´ =´ 〈expression〉 | 〈statement〉

Table 2.8: Interactive statement syntax

"Browse" procedure value

x
1

"Browse" procedure value

x
1

unbound

unboundx
2

unboundx
4

unboundx
3

"X"

"Y"

unbound"X"

"Y" x
2

unbound

Result of second declare X YResult of first declare X Y

Figure 2.19: Declaring global variables

The dataflow variable Yr is used as a “placeholder” for the result in the recursive
call {Map Xr F Yr} . This lets the recursive call be the last call. In our model,
this means that the recursion executes with the same space and time efficiency
as an iterative construct like a while loop.

2.5.3 Interactive interface (the declare statement)

The Mozart system has an interactive interface that allows to introduce program
fragments incrementally and execute them as they are introduced. The fragments
have to respect the syntax of interactive statements, which is given in Table 2.8.
An interactive statement is either any legal statement or a new form, the declare

statement. We assume that the user feeds interactive statements to the system
one by one. (In the examples given throughout this book, the declare statement
is often left out. It should be added if the example declares new variables.)

The interactive interface allows to do much more than just feed statements.
It has all the functionality needed for software development. Appendix A gives
a summary of some of this functionality. For now, we assume that the user just
knows how to feed statements.

The interactive interface has a single, global environment. The declare

statement adds new mappings to this environment. It follows that declare can

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.5 From kernel language to practical language 89

only be used interactively, not in standalone programs. Feeding the following
declaration:

declare X Y

creates two new variables in the store, x1 and x2. and adds mappings from X and
Y to them. Because the mappings are in the global environment we say that X

and Y are global variables or interactive variables. Feeding the same declaration
a second time will cause X and Y to map to two other new variables, x3 and x4.
Figure 2.19 shows what happens. The original variables, x1 and x2, are still in the
store, but they are no longer referred to by X and Y. In the figure, Browse maps
to a procedure value that implements the browser. The declare statement adds
new variables and mappings, but leaves existing variables in the store unchanged.

Adding a new mapping to an identifier that already maps to a variable may
cause the variable to become inaccessible, if there are no other references to it.
If the variable is part of a calculation, then it is still accessible from within the
calculation. For example:

declare X Y
X=25
declare A
A=person(age:X)
declare X Y

Just after the binding X=25, X maps to 25, but after the second declare X

Y it maps to a new unbound variable. The 25 is still accessible through the
global variable A, which is bound to the record person(age:25) . The record
contains 25 because X mapped to 25 when the binding A=person(age:X) was
executed. The second declare X Ychanges the mapping of X, but not the record
person(age:25) since the record already exists in the store. This behavior of
declare is designed to support a modular programming style. Executing a
program fragment will not cause the results of any previously-executed fragment
to change.

There is a second form of declare :

declare X Y in 〈stmt〉
which declares two global variables, as before, and then executes 〈stmt〉. The
difference with the first form is that 〈stmt〉 declares no variables (unless it contains
a declare).

The Browser

The interactive interface has a tool, called the Browser, which allows to look into
the store. This tool is available to the programmer as a procedure called Browse .
The procedure Browse has one argument. It is called as {Browse 〈expr〉} , where
〈expr〉 is any expression. It can display partial values and it will update the
display whenever the partial values are bound more. Feeding the following:

{Browse 1}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

90 Declarative Computation Model

Figure 2.20: The Browser

displays the integer 1. Feeding:

declare Y in
{Browse Y}

displays just the name of the variable, namely Y. No value is displayed. This
means that Y is currently unbound. Figure 2.20 shows the browser window after
these two operations. If Y is bound, e.g., by doing Y=2, then the browser will
update its display to show this binding.

Dataflow execution

We saw earlier that declarative variables support dataflow execution, i.e., an
operation waits until all arguments are bound before executing. For sequential
programs this is not very useful, since the program will wait forever. On the
other hand, it is useful for concurrent programs, in which more than one instruc-
tion sequence can be executing at the same time. An independently-executing
instruction sequence is called a thread. Programming with more than one thread
is called concurrent programming; it is introduced in Chapter 4.

All examples in this chapter execute in a single thread. To be precise, each
program fragment fed into the interactive interface executes in its own thread.
This lets us give simple examples of dataflow execution in this chapter. For
example, feed the following statement:

declare A B C in
C=A+B
{Browse C}

This will display nothing, since the instruction C=A+B blocks (both of its argu-
ments are unbound). Now, feed the following statement:

A=10

This will bind A, but the instruction C=A+B still blocks since B is still unbound.
Finally, feed the following:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.6 Exceptions 91

B=200

This displays 210 in the browser. Any operation, not just addition, will block
if it does not get enough input information to calculate its result. For example,
comparisons can block. The equality comparison X==Y will block if it cannot
decide whether or not X is equal to or different from Y. This happens, e.g., if one
or both of the variables are unbound.

Programming errors often result in dataflow suspensions. If you feed a state-
ment that should display a result and nothing is displayed, then the probable
cause of the problem is a blocked operation. Carefully check all operations to
make sure that their arguments are bound. Ideally, the system’s debugger should
detect when a program has blocked operations that cannot continue.

2.6 Exceptions

How do we handle exceptional situations within a program? For example, dividing
by zero, opening a nonexistent file, or selecting a nonexistent field of a record?
These errors do not occur in a correct program, so they should not encumber
normal programming style. On the other hand, they do occur sometimes. It
should be possible for programs to manage these errors in a simple way. The
declarative model cannot do this without adding cumbersome checks throughout
the program. A more elegant way is to extend the model with an exception-
handling mechanism. This section does exactly that. We give the syntax and
semantics of the extended model and explain what exceptions look like in the full
language.

2.6.1 Motivation and basic concepts

In the semantics of Section 2.4, we speak of “raising an error” when a statement
cannot continue correctly. For example, a conditional raises an error when its
argument is a non-boolean value. Up to now, we have been deliberately vague
about exactly what happens next. Let us now be more precise. We would like to
be able to detect these errors and handle them from within a running program.
The program should not stop when they occur. Rather, it should in a controlled
way transfer execution to another part, called the exception handler, and pass
the exception handler a value that describes the error.

What should the exception-handling mechanism look like? We can make two
observations. First, it should be able to confine the error, i.e., quarantine it so that
it does not contaminate the whole program. We call this the error confinement
principle:

Assume that the program is made up of interacting “components”
organized in hierarchical fashion. Each component is built of smaller
components. We put “component” in quotes because the language
does not need to have a component concept. It just needs to be

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

92 Declarative Computation Model

= raise exception

= exception-catching
execution context

execution context=jump

Figure 2.21: Exception handling

compositional, i.e., programs are built in layered fasion. Then the
error confinement principle states that an error in a component should
be catchable at the component boundary. Outside the component, the
error is either invisible or reported in a nice way.

Therefore, the mechanism causes a “jump” from inside the component to its
boundary. The second observation is that this jump should be a single operation.
The mechanism should be able, in a single operation, to exit from arbitrarily
many levels of nested context. Figure 2.21 illustrates this. In our semantics, a
context is simply an entry on the semantic stack, i.e., an instruction that has to
be executed later. Nested contexts are created by procedure calls and sequential
compositions.

The declarative model cannot jump out in a single operation. The jump has
to be coded explicitly as little hops, one per context, using boolean variables and
conditionals. This makes programs more cumbersome, especially since the extra
coding has to be added everywhere that an error can possibly occur. It can be
shown theoretically that the only way to keep programs simple is to extend the
model [103, 105].

We propose a simple extension to the model that satisfies these conditions. We
add two statements: the try statement and the raise statement. The try state-
ment creates an exception-catching context together with an exception handler.
The raise statement jumps to the boundary of the innermost exception-catching
context and invokes the exception handler there. Nested try statements create
nested contexts. Executing try 〈s〉 catch 〈x〉 then 〈s〉1 end is equivalent to ex-
ecuting 〈s〉, if 〈s〉 does not raise an exception. On the other hand, if 〈s〉 raises an
exception, i.e., by executing a raise statement, then the (still ongoing) execu-
tion of 〈s〉 is aborted. All information related to 〈s〉 is popped from the semantic
stack. Control is transferred to 〈s〉1, passing it a reference to the exception in 〈x〉.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.6 Exceptions 93

Any partial value can be an exception. This means that the exception-
handling mechanism is extensible by the programmer, i.e., new exceptions can be
defined as they are needed by the program. This lets the programmer foresee new
exceptional situations. Because an exception can be an unbound variable, raising
an exception and determining what the exception is can be done concurrently. In
other words, an exception can be raised (and caught) before it is known which
exception it is! This is quite reasonable in a language with dataflow variables:
we may at some point know that there exists a problem but not know yet which
problem.

An example

Let us give a simple example of exception handling. Consider the following func-
tion, which evaluates simple arithmetic expressions and returns the result:

fun {Eval E}
if {IsNumber E} then E
else

case E
of plus(X Y) then {Eval X}+{Eval Y}
[] times(X Y) then {Eval X}*{Eval Y}
else raise illFormedExpr(E) end
end

end
end

For this example, we say an expression is ill-formed if it is not recognized by
Eval , i.e., if it contains other values than numbers, plus , and times . Trying
to evaluate an ill-formed expression E will raise an exception. The exception is
a tuple, illFormedExpr(E) , that contains the ill-formed expression. Here is an
example of using Eval :

try
{Browse {Eval plus(plus(5 5) 10)}}
{Browse {Eval times(6 11)}}
{Browse {Eval minus(7 10)}}

catch illFormedExpr(E) then
{Browse ´ *** Illegal expression ´ #E#´ *** ´ }

end

If any call to Eval raises an exception, then control transfers to the catch clause,
which displays an error message.

2.6.2 The declarative model with exceptions

We extend the declarative computation model with exceptions. Table 2.9 gives
the syntax of the extended kernel language. Programs can use two new state-
ments, try and raise . In addition, there is a third statement, catch 〈x〉 then

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

94 Declarative Computation Model

〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| try 〈s〉1 catch 〈x〉 then 〈s〉2 end Exception context
| raise 〈x〉 end Raise exception

Table 2.9: The declarative kernel language with exceptions

〈s〉 end , that is needed internally for the semantics and is not allowed in pro-
grams. The catch statement is a “marker” on the semantic stack that defines
the boundary of the exception-catching context. We now give the semantics of
these statements.

The try statement

The semantic statement is:

(try 〈s〉1 catch 〈x〉 then 〈s〉2 end , E)

Execution consists of the following actions:

• Push the semantic statement (catch 〈x〉 then 〈s〉2 end , E) on the stack.

• Push (〈s〉1, E) on the stack.

The raise statement

The semantic statement is:

(raise 〈x〉 end , E)

Execution consists of the following actions:

• Pop elements off the stack looking for a catch statement.

– If a catch statement is found, pop it from the stack.

– If the stack is emptied and no catch is found, then stop execution
with the error message “Uncaught exception”.

• Let (catch 〈y〉 then 〈s〉 end , Ec) be the catch statement that is found.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.6 Exceptions 95

〈statement〉 ::= try 〈inStatement〉
[catch 〈pattern〉 then 〈inStatement〉
{ ´ [] ´ 〈pattern〉 then 〈inStatement〉 }]

[finally 〈inStatement〉] end

| raise 〈inExpression〉 end

| ...
〈inStatement〉 ::= [{ 〈declarationPart〉 }+ in] 〈statement〉
〈inExpression〉 ::= [{ 〈declarationPart〉 }+ in] [〈statement〉] 〈expression〉

Table 2.10: Exception syntax

• Push (〈s〉, Ec + {〈y〉 → E(〈x〉)}) on the stack.

Let us see how an uncaught exception is handled by the Mozart system. For
interactive execution, an error message is printed in the Oz emulator window.
For standalone applications, the application terminates and an error message is
sent on the standard error output of the process. It is possible to change this
behavior to something else that is more desirable for particular applications, by
using the System module Property .

The catch statement

The semantic statement is:

(catch 〈x〉 then 〈s〉 end , E)

Execution is complete after this pair is popped from the semantic stack. I.e., the
catch statement does nothing, just like skip .

2.6.3 Full syntax

Table 2.10 gives the syntax of the try statement in the full language. It has an
optional finally clause. The catch clause has an optional series of patterns.
Let us see how these extensions are defined.

The finally clause

A try statement can specify a finally clause which is always executed, whether
or not the statement raises an exception. The new syntax:

try 〈s〉1 finally 〈s〉2 end

is translated to the kernel language as:

try 〈s〉1
catch X then
〈s〉2

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

96 Declarative Computation Model

raise X end
end
〈s〉2

(where an identifier X is chosen that is not free in 〈s〉2). It is possible to define a
translation in which 〈s〉2 only occurs once; we leave this to the reader.

The finally clause is useful when dealing with entities that are external to
the computation model. With finally , we can guarantee that some “cleanup”
action gets performed on the entity, whether or not an exception occurs. A typical
example is reading a file. Assume F is an open file11, the procedure ProcessFile

manipulates the file in some way, and the procedure CloseFile closes the file.
Then the following program ensures that F is always closed after ProcessFile

completes, whether or not an exception was raised:

try
{ProcessFile F}

finally {CloseFile F} end

Note that this try statement does not catch the exception; it just executes
CloseFile whenever ProcessFile completes. We can combine both catching
the exception and executing a final statement:

try
{ProcessFile F}

catch X then
{Browse ´ *** Exception ´ #X#´ when processing file *** ´ }

finally {CloseFile F} end

This behaves like two nested try statements: the innermost with just a catch

clause and the outermost with just a finally clause.

Pattern matching

A try statement can use pattern matching to catch only exceptions that match a
given pattern. Other exceptions are passed to the next enclosing try statement.
The new syntax:

try 〈s〉
catch 〈p〉1 then 〈s〉1

[] 〈p〉2 then 〈s〉2
...
[] 〈p〉n then 〈s〉n

end

is translated to the kernel language as:

try 〈s〉
catch X then

case X

11We will see later how file input/output is handled.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.6 Exceptions 97

of 〈p〉1 then 〈s〉1
[] 〈p〉2 then 〈s〉2
...
[] 〈p〉n then 〈s〉n
else raise X end
end

end

If the exception does not match any of the patterns, then it is simply raised again.

2.6.4 System exceptions

The Mozart system itself raises a few exceptions. They are called system ex-
ceptions. They are all records with one of the three labels failure , error , or
system :

• failure : indicates an attempt to perform an inconsistent bind operation
(e.g., 1=2) in the store (see Section 2.7.2).

• error : indicates a runtime error in the program, i.e., a situation that should
not occur during normal operation. These errors are either type or domain
errors. A type error occurs when invoking an operation with an argument of
incorrect type, e.g., applying a nonprocedure to some argument ({foo 1} ,
where foo is an atom), or adding an integer to an atom (e.g., X=1+a). A
domain error occurs when invoking an operation with an argument that is
outside of its domain (even if it has the right type), e.g., taking the square
root of a negative number, dividing by zero, or selecting a nonexistent field
of a record.

• system : indicates a runtime condition occurring in the environment of the
Mozart operating system process, e.g., an unforeseeable situation like a
closed file or window or a failure to open a connection between two Mozart
processes in distributed programming (see Chapter 11).

What is stored inside the exception record depends on the Mozart system version.
Therefore programmers should rely only on the label. For example:

fun {One} 1 end
fun {Two} 2 end
try {One}={Two}
catch

failure(...) then {Browse caughtFailure}
end

The pattern failure(...) catches any record whose label is failure .

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

98 Declarative Computation Model

2.7 Advanced topics

This section gives additional information for deeper understanding of the declar-
ative model, its trade-offs, and possible variations.

2.7.1 Functional programming languages

Functional programming consists of defining functions on complete values, where
the functions are true functions in the mathematical sense. A language in which
this is the only possible way to calculate is called a pure functional language.
Let us examine how the declarative model relates to pure functional program-
ming. For further reading on the history, formal foundations, and motivations
for functional programming we recommend the survey article by Hudak [85].

The λ calculus

Pure functional languages are based on a formalism called the λ calculus. There
are many variants of the λ calculus. All of these variants have in common two
basic operations, namely defining and evaluating functions. For example, the
function value fun {$ X} X*X end is identical to the λ expression λx. x ∗ x.
This expression consists of two parts: the x before the dot, which is the function’s
argument, and the expression x ∗ x, which is the function’s result. The Append

function, which appends two lists together, can be defined as a function value:

Append= fun {$ Xs Ys}
if {IsNil Xs} then Xs
else {Cons {Car Xs} {Append {Cdr Xs} Ys}}
end

end

This is equivalent to the following λ expression:

append = λxs, ys . if isNil(xs) then ys
else cons(car(xs), append(cdr(xs), ys))

The definition of Append uses the following helper functions:

fun {IsNil X} X==nil end
fun {IsCons X} case X of _|_ then true else false end end
fun {Car H|T} H end
fun {Cdr H|T} T end
fun {Cons H T} H|T end

Restricting the declarative model

The declarative model is more general than the λ calculus in two ways. First,
it defines functions on partial values, i.e., with unbound variables. Second, it
uses a procedural syntax. We can define a pure functional language by putting

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.7 Advanced topics 99

two syntactic restrictions on the declarative model so that it always calculates
functions on complete values:

• Always bind a variable to a value immediately when it is declared. That is,
the local statement always has one of the following two forms:

local 〈x〉=〈v〉 in 〈s〉 end
local 〈x〉={ 〈y〉 〈y〉1 ... 〈y〉n} in 〈s〉 end

• Use only the function syntax, not the procedure syntax. For function calls
inside data structures, do the nested call before creating the data structure
(instead of after, as in Section 2.5.2). This avoids putting unbound variables
in data structures.

With these restrictions, the model no longer needs unbound variables. The declar-
ative model with these restrictions is called the (strict) functional model. This
model is close to well-known functional programming languages such as Scheme
and Standard ML. The full range of higher-order programming techniques is pos-
sible. Pattern matching is possible using the case statement.

Varieties of functional programming

Let us explore some variations on the theme of functional programming:12

• The functional model of this chapter is dynamically typed like Scheme.
Many functional languages are statically typed. Section 2.7.3 explains the
differences between the two approaches. Furthermore, many statically-
typed languages, e.g., Haskell and Standard ML, do type inferencing, which
allows the compiler to infer the types of all functions.

• Thanks to dataflow variables and the single-assignment store, the declar-
ative model allows programming techniques that are not found in most
functional languages, including Scheme, Standard ML, Haskell, and Er-
lang. This includes certain forms of last call optimization and techniques
to compute with partial values as shown in Chapter 3.

• The declarative concurrent model of Chapter 4 adds concurrency while still
keeping all the good properties of functional programming. This is possible
because of dataflow variables and the single-assignment store.

• In the declarative model, functions are eager by default, i.e., function argu-
ments are evaluated before the function body is executed. This is also called
strict evaluation. The functional languages Scheme and Standard ML are
strict. There is another useful execution order, lazy evaluation, in which

12In addition to what is listed here, the functional model does not have any special syntactic
or implementation support for currying. Currying is a higher-order programming technique
that is explained in Section 3.6.6.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

100 Declarative Computation Model

〈statement〉 ::= 〈expression〉 ´ =´ 〈expression〉 | ...
〈expression〉 ::= 〈expression〉 ´ ==´ 〈expression〉

| 〈expression〉 ´ \= ´ 〈expression〉 | ...
〈binaryOp〉 ::= ´ =´ | ´ ==´ | ´ \= ´ | ...

Table 2.11: Equality (unification) and equality test (entailment check)

function arguments are evaluated only if their result is needed. Haskell is
a lazy functional language.13 Lazy evaluation is a powerful flow control
technique in functional programming [87]. It allows to program with po-
tentially infinite data structures without giving explicit bounds. Section 4.5
explains this in detail. An eager declarative program can evaluate functions
and then never use them, thus doing superfluous work. A lazy declarative
program, on the other hand, does the absolute minimum amount of work
to get its result.

2.7.2 Unification and entailment

In Section 2.2 we have seen how to bind dataflow variables to partial values
and to each other, using the equality (´ =´) operation as shown in Table 2.11.
In Section 2.3.5 we have seen how to compare values, using the equality test
(´ ==´ and ´ \= ´) operations. So far, we have seen only the simple cases of these
operations. Let us now examine the general cases.

Binding a variable to a value is a special case of an operation called unification.
The unification 〈Term1〉=〈Term2〉 makes the partial values 〈Term1〉 and 〈Term2〉
equal, if possible, by adding zero or more bindings to the store. For example, f(X

Y)=f(1 2) does two bindings: X=1 and Y=2. If the two terms cannot be made
equal, then an exception is raised. Unification exists because of partial values; if
there would be only complete values then it would have no meaning.

Testing whether a variable is equal to a value is a special case of the entailment
check and disentailment check operations. The entailment check 〈Term1〉==〈Term2〉
(and its opposite, the disentailment check 〈Term1〉\= 〈Term2〉) is a two-argument
boolean function that blocks until it is known whether 〈Term1〉 and 〈Term2〉 are
equal or not equal.14 Entailment and disentailment checks never do any binding.

13To be precise, Haskell is a non-strict language. This is identical to laziness for most practical
purposes. The difference is explained in Section 4.9.2.

14The word “entailment” comes from logic. It is a form of logical implication. This is because
the equality 〈Term1〉==〈Term2〉 is true if the store, considered as a conjunction of equalities,
“logically implies” 〈Term1〉==〈Term2〉.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.7 Advanced topics 101

Unification (the = operation)

A good way to conceptualize unification is as an operation that adds information
to the single-assignment store. The store is a set of dataflow variables, where
each variable is either unbound or bound to some other store entity. The store’s
information is just the set of all its bindings. Doing a new binding, for example
X=Y, will add the information that X and Y are equal. If X and Y are already
bound when doing X=Y, then some other bindings may be added to the store. For
example, if the store already has X=foo(A) and Y=foo(25) , then doing X=Y will
bind A to 25. Unification is a kind of “compiler” that is given new information
and “compiles it into the store”, taking account the bindings that are already
there. To understand how this works, let us look at some possibilities.

• The simplest cases are bindings to values, e.g., X=person(name:X1 age:X2) ,
and variable-variable bindings, e.g., X=Y. If X and Y are unbound, then these
operations each add one binding to the store.

• Unification is symmetric. For example, person(name:X1 age:X2)=X means
the same as X=person(name:X1 age:X2) .

• Any two partial values can be unified. For example, unifying the two
records:

person(name:X1 age:X2)
person(name:"George" age:25)

This binds X1 to "George" and X2 to 25.

• If the partial values are already equal, then unification does nothing. For
example, unifying X and Y where the store contains the two records:

X=person(name:"George" age:25)
Y=person(name:"George" age:25)

This does nothing.

• If the partial values are incompatible then they cannot be unified. For
example, unifying the two records:

person(name:X1 age:26)
person(name:"George" age:25)

The records have different values for their age fields, namely 25 and 26,
so they cannot be unified. This unification will raise a failure exception,
which can be caught by a try statement. The unification might or might
not bind X1 to "George" ; it depends on exactly when it finds out that
there is an incompatibility. Another way to get a unification failure is by
executing the statement fail .

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

102 Declarative Computation Model

f a b

f a b

Y=f(a:_ b:Y)

X=f(a:X b:X)

X=f(a:X b:_)

Y

X

f a bXX=Y

Figure 2.22: Unification of cyclic structures

• Unification is symmetric in the arguments. For example, unifying the two
records:

person(name:"George" age:X2)
person(name:X1 age:25)

This binds X1 to "George" and X2 to 25, just like before.

• Unification can create cyclic structures, i.e., structures that refer to them-
selves. For example, the unification X=person(grandfather:X) . This
creates a record whose grandfather field refers to itself. This situation
happens in some crazy time-travel stories.

• Unification can bind cyclic structures. For example, let’s create two cyclic
structures, in X and Y, by doing X=f(a:X b:_) and Y=f(a:_ b:Y) . Now,
doing the unification X=Y creates a structure with two cycles, which we can
write as X=f(a:X b:X) . This example is illustrated in Figure 2.22.

The unification algorithm

Let us give a precise definition of unification. We will define the operation
unify(x, y) that unifies two partial values x and y in the store σ. Unification
is a basic operation of logic programming. When used in the context of unifica-
tion, store variables are called logic variables. Logic programming, which is also
called relational programming, is discussed in Chapter 9.

The store The store consists of a set of k variables, x1, ..., xk, that are parti-
tioned as follows:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.7 Advanced topics 103

• Sets of unbound variables that are equal (also called equivalence sets of
variables). The variables in each set are equal to each other but not to any
other variables.

• Variables bound to a number, record, or procedure (also called determined
variables).

An example is the store {x1 = foo(a: x2) , x2 = 25, x3 = x4 = x5, x6, x7 = x8}
that has eight variables. It has three equivalence sets, namely {x3, x4, x5}, {x6},
and {x7, x8}. It has two determined variables, namely x1 and x2.

The primitive bind operation We define unification in terms of a primitive
bind operation on the store σ. The operation binds all variables in an equivalence
set:

• bind(ES, 〈v〉) binds all variables in the equivalence set ES to the number or
record 〈v〉. For example, the operation bind({x7, x8}, foo(a: x2)) modifies
the example store so that x7 and x8 are no longer in an equivalence set but
both become bound to foo(a: x2) .

• bind(ES1, ES2) merges the equivalence set ES1 with the equivalence set
ES2. For example, the operation bind({x3, x4, x5}, {x6}) modifies the ex-
ample store so that x3, x4, x5, and x6 are in a single equivalence set, namely
{x3, x4, x5, x6}.

The algorithm We now define the operation unify(x, y) as follows:

1. If x is in the equivalence set ESx and y is in the equivalence set ESy, then
do bind(ESx, ESy). If x and y are in the same equivalence set, this is the
same as doing nothing.

2. If x is in the equivalence set ESx and y is determined, then do bind(ESx, y).

3. If y is in the equivalence set ESy and x is determined, then do bind(ESy, x).

4. If x is bound to l(l1 : x1, ..., ln : xn) and y is bound to l′(l′1 : y1, ..., l
′
m : ym)

with l 6= l′ or {l1, ..., ln} 6= {l′1, ..., l′m}, then raise a failure exception.

5. If x is bound to l(l1 : x1, ..., ln : xn) and y is bound to l(l1 : y1, ..., ln : yn),
then for i from 1 to n do unify(xi, yi).

Handling cycles The above algorithm does not handle unification of partial
values with cycles. For example, assume the store contains x = f(a: x) and
y = f(a: y) . Calling unify(x, y) results in the recursive call unify(x, y), which
is identical to the original call. The algorithm loops forever! Yet it is clear
that x and y have exactly the same structure: what the unification should do is

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

104 Declarative Computation Model

add exactly zero bindings to the store and then terminate. How can we fix this
problem?

A simple fix is to make sure that unify(x, y) is called at most once for each
possible pair of two variables (x, y). Since any attempt to call it again will not
do anything new, it can return immediately. With k variables in the store, this
means at most k2 unify calls, so the algorithm is guaranteed to terminate. In
practice, the number of unify calls is much less than this. We can implement
the fix with a table that stores all called pairs. This gives the new algorithm
unify′(x, y):

• Let M be a new, empty table.

• Call unify′′(x, y).

This needs the definition of unify′′(x, y):

• If (x, y) ∈M then we are done.

• Otherwise, insert (x, y) in M and then do the original algorithm for unify(x, y),
in which the recursive calls to unify are replaced by calls to unify′′.

This algorithm can be written in the declarative model by passing M as two extra
arguments to unify′′. A table that remembers previous calls so that they can be
avoided in the future is called a memoization table.

Displaying cyclic structures

We have seen that unification can create cyclic structures. To display these in
the browser, it has to be configured right. In the browser’s Options menu, pick
the Representation entry and choose the Graph mode. There are three display
modes, namely Tree (the default), Graph, and Minimal Graph. Tree does not
take sharing or cycles into account. Graph correctly handles sharing and cycles by
displaying a graph. Minimal Graph shows the smallest graph that is consistent
with the data. We give some examples. Consider the following two unifications:

local X Y Z in
f(X b)=f(a Y)
f(Z a)=Z
{Browse [X Y Z]}

end

This shows the list [a b R14=f(R14 a)] in the browser, if the browser is set
up to show the Graph representation. The term R14=f(R14 a) is the textual
representation of a cyclic graph. The variable name R14 is introduced by the
browser; different versions of Mozart might introduce different variable names.
As a second example, feed the following unification when the browser is set up
for Graph, as before:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.7 Advanced topics 105

declare X Y Z in
a(X c(Z) Z)=a(b(Y) Y d(X))
{Browse X#Y#Z}

Now set up the browser for the Minimal Graph mode and display the term again.
How do you explain the difference?

Entailment and disentailment checks (the == and \= operations)

The entailment check X==Y is a boolean function that tests whether X and Y are
equal or not. The opposite check, X\=Y , is called a disentailment check. Both
checks use essentially the same algorithm.15 The entailment check returns true

if the store implies the information X=Y in a way that is verifiable (the store
“entails” X=Y) and false if the store will never imply X=Y, again in a way that
is verifiable (the store “disentails” X=Y). The check blocks if it cannot determine
whether X and Y are equal or will never be equal. It is defined as follows:

• It returns the value true if the graphs starting from the nodes of X and Y

have the same structure, i.e., all pairwise corresponding nodes have identical
values or are the same node. We call this structure equality.

• It returns the value false if the graphs have different structure, or some
pairwise corresponding nodes have different values.

• It blocks when it arrives at pairwise corresponding nodes that are different,
but at least one of them is unbound.

Here is an example:

declare L1 L2 L3 Head Tail in
L1=Head|Tail
Head=1
Tail=2|nil

L2=[1 2]
{Browse L1==L2}

L3= ´ | ´ (1:1 2: ´ | ´ (2 nil))
{Browse L1==L3}

All three lists L1 , L2 , and L3 are identical. Here is an example where the entail-
ment check cannot decide:

declare L1 L2 X in
L1=[1]
L2=[X]
{Browse L1==L2}

15Strictly speaking, there is a single algorithm that does both the entailment and disen-
tailment checks simultaneously. It returns true or false depending on which check calls
it.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

106 Declarative Computation Model

Feeding this example will not display anything, since the entailment check cannot
decide whether L1 and L2 are equal or not. In fact, both are possible: if X is
bound to 1 then they are equal and if X is bound to 2 then they are not. Try
feeding X=1 or X=2 to see what happens. What about the following example:

declare L1 L2 X in
L1=[X]
L2=[X]
{Browse L1==L2}

Both lists contain the same unbound variable X. What will happen? Think about
it before reading the answer in the footnote.16 Here is a final example:

declare L1 L2 X in
L1=[1 a]
L2=[X b]
{Browse L1==L2}

This will display false . While the comparison 1==X blocks, further inspection of
the two graphs shows that there is a definite difference, so the full check returns
false .

2.7.3 Dynamic and static typing

“The only way of discovering the limits of the possible is to venture
a little way past them into the impossible.”
– Clarke’s Second Law, Arthur C. Clarke (1917–)

It is important for a language to be strongly-typed, i.e., to have a type system
that is enforced by the language. (This is contrast to a weakly-typed language,
in which the internal representation of a type can be manipulated by a program.
We will not speak further of weakly-typed languages in this book.) There are
two major families of strong typing: dynamic typing and static typing. We have
introduced the declarative model as being dynamically typed, but we have not
yet explained the motivation for this design decision, nor the differences between
static and dynamic typing that underlie it. In a dynamically-typed language,
variables can be bound to entities of any type, so in general their type is known
only at run time. In a statically-typed language, on the other hand, all variable
types are known at compile time. The type can be declared by the programmer or
inferred by the compiler. When designing a language, one of the major decisions
to make is whether the language is to be dynamically typed, statically typed, or
some mixture of both. What are the advantages and disadvantages of dynamic
and static typing? The basic principle is that static typing puts restrictions on
what programs one can write, reducing expressiveness of the language in return
for giving advantages such as improved error catching ability, efficiency, security,
and partial program verification. Let us examine this closer:

16The browser will display true , since L1 and L2 are equal no matter what X might be
bound to.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.7 Advanced topics 107

• Dynamic typing puts no restrictions on what programs one can write. To be
precise, all syntactically-legal programs can be run. Some of these programs
will raise exceptions, possibly due to type errors, which can be caught by
an exception handler. Dynamic typing gives the widest possible variety of
programming techniques. The increased flexibility is felt quite strongly in
practice. The programmer spends much less time adjusting the program to
fit the type system.

• Dynamic typing makes it a trivial matter to do separate compilation, i.e.,
modules can be compiled without knowing anything about each other. This
allows truly open programming, in which independently-written modules
can come together at run time and interact with each other. It also makes
program development scalable, i.e., extremely large programs can be divided
into modules that can be compiled individually without recompiling other
modules. This is harder to do with static typing because the type discipline
must be enforced across module boundaries.

• Dynamic typing shortens the turnaround time between an idea and its
implementation. It enables an incremental development environment that
is part of the run-time system. It allows to test programs or program
fragments even when they are in an incomplete or inconsistent state.

• Static typing allows to catch more program errors at compile time. The
static type declarations are a partial specification of the program, i.e., they
specify part of the program’s behavior. The compiler’s type checker veri-
fies that the program satisfies this partial specification. This can be quite
powerful. Modern static type systems can catch a surprising number of
semantic errors.

• Static typing allows a more efficient implementation. Since the compiler has
more information about what values a variable can contain, it can choose a
more efficient representation. For example, if a variable is of boolean type,
the compile can implement it with a single bit. In a dynamically-typed
language, the compiler cannot always deduce the type of a variable. When
it cannot, then it usually has to allocate a full memory word, so that any
possible value (or a pointer to a value) can be accommodated.

• Static typing can improve the security of a program. Secure ADTs can be
constructed based solely on the protection offered by the type system.

Unfortunately, the choice between dynamic and static typing is most often based
on emotional (“gut”) reactions, not on rational argument. Adherents of dynamic
typing relish the expressive freedom and rapid turnaround it gives them and
criticize the reduced expressiveness of static typing. On the other hand, adherents
of static typing emphasize the aid it gives them for writing correct and efficient
programs and point out that it finds many program errors at compile time. Little

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

