
108 Declarative Computation Model

hard data exists to quantify these differences. In our experience, the differences
are not great. Programming with static typing is like word processing with a
spelling checker: a good writer can get along without it, but it can improve the
quality of a text.

Each approach has a role in practical application development. Static typ-
ing is recommended when the programming techniques are well-understood and
when efficiency and correctness are paramount. Dynamic typing is recommended
for rapid development and when programs must be as flexible as possible, such
as application prototypes, operating systems, and some artificial intelligence ap-
plications.

The choice between static or dynamic typing does not have to be all or noth-
ing. In each approach, a bit of the other can be added, gaining some of its ad-
vantages. For example, different kinds of polymorphism (where a variable might
have values of several different types) add flexibility to statically-typed function-
al and object-oriented languages. It is an active research area to design static
type systems that capture as much as possible of the flexibility of dynamic type
systems, while encouraging good programming style and still permitting compile
time verification.

The computation models given in this book are all subsets of the Oz lan-
guage, which is dynamically typed. One research goal of the Oz project is to
explore what programming techniques are possible in a computation model that
integrates several programming paradigms. The only way to achieve this goal is
with dynamic typing.

When the programming techniques are known, then a possible next step is to
design a static type system. While research in increasing the functionality and
expressiveness of Oz is still ongoing in the Mozart Consortium, the Alice project
at Saarland University in Saarbrücken, Germany, has chosen to add a static type
system. Alice is a statically-typed language that has much of the expressiveness
of Oz. At the time of writing, Alice is interoperable with Oz (programs can
be written partly in Alice and partly in Oz) since it is based on the Mozart
implementation.

2.8 Exercises

1. Consider the following statement:

proc {P X}
if X>0 then {P X-1} end

end

Is the identifier occurrence of P in the procedure body free or bound? Justify
your answer. Hint: this is easy to answer if you first translate to kernel
syntax.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.8 Exercises 109

2. Section 2.4 explains how a procedure call is executed. Consider the following
procedure MulByN :

declare MulByN N in
N=3
proc {MulByN X ?Y}

Y=N*X
end

together with the call {MulByN A B} . Assume that the environment at the
call contains {A→ 10, B→ x1}. When the procedure body is executed, the
mapping N→ 3 is added to the environment. Why is this a necessary step?
In particular, would not N→ 3 already exist somewhere in the environment
at the call? Would not this be enough to ensure that the identifier Nalready
maps to 3? Give an example where N does not exist in the environment
at the call. Then give a second example where N does exist there, but is
bound to a different value than 3.

3. If a function body has an if statement with a missing else case, then an
exception is raised if the if condition is false. Explain why this behavior
is correct. This situation does not occur for procedures. Explain why not.

4. This exercise explores the relationship between the if statement and the
case statement.

(a) Define the if statement in terms of the case statement. This shows
that the conditional does not add any expressiveness over pattern
matching. It could have been added as a linguistic abstraction.

(b) Define the case statement in terms of the if statement, using the
operations Label , Arity , and ´ . ´ (feature selection).

This shows that the if statement is essentially a more primitive version of
the case statement.

5. This exercise tests your understanding of the full case statement. Given
the following procedure:

proc {Test X}
case X
of a|Z then {Browse ´ case ´ (1)}
[] f(a) then {Browse ´ case ´ (2)}
[] Y|Z andthen Y==Z then {Browse ´ case ´ (3)}
[] Y|Z then {Browse ´ case ´ (4)}
[] f(Y) then {Browse ´ case ´ (5)}
else {Browse ´ case ´ (6)} end

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

110 Declarative Computation Model

Without executing any code, predict what will happen when you feed {Test

[b c a]} , {Test f(b(3))} , {Test f(a)} , {Test f(a(3))} , {Test f(d)} ,
{Test [a b c]} , {Test [c a b]} , {Test a|a} , and {Test ´ | ´ (a b

c)} . Use the kernel translation and the semantics if necessary to make the
predictions. After making the predictions, check your understanding by
running the examples in Mozart.

6. Given the following procedure:

proc {Test X}
case X of f(a Y c) then {Browse ´ case ´ (1)}
else {Browse ´ case ´ (2)} end

end

Without executing any code, predict what will happen when you feed:

declare X Y {Test f(X b Y)}

Same for:

declare X Y {Test f(a Y d)}

Same for:

declare X Y {Test f(X Y d)}

Use the kernel translation and the semantics if necessary to make the predic-
tions. After making the predictions, check your understanding by running
the examples in Mozart. Now run the following example:

declare X Y
if f(X Y d)==f(a Y c) then {Browse ´ case ´ (1)}
else {Browse ´ case ´ (2)} end

Does this give the same result or a different result than the previous exam-
ple? Explain the result.

7. Given the following code:

declare Max3 Max5
proc {SpecialMax Value ?SMax}

fun {SMax X}
if X>Value then X else Value end

end
end
{SpecialMax 3 Max3}
{SpecialMax 5 Max5}

Without executing any code, predict what will happen when you feed:

{Browse [{Max3 4} {Max5 4}]}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.8 Exercises 111

Check your understanding by running this example in Mozart.

8. This exercise explores the relationship between linguistic abstractions and
higher-order programming.

(a) Define the function AndThen as follows:

fun {AndThen BP1 BP2}
if {BP1} then {BP2} else false end

end

Does the following call:

{AndThen fun {$} 〈expression〉1 end
fun {$} 〈expression〉2 end }

give the same result as 〈expression〉1 andthen 〈expression〉2? Does it
avoid the evaluation of 〈expression〉2 in the same situations?

(b) Write a function OrElse that is to orelse as AndThen is to andthen .
Explain its behavior.

9. This exercise examines the importance of tail recursion, in the light of the
semantics given in the chapter. Consider the following two functions:

fun {Sum1 N}
if N==0 then 0 else N+{Sum1 N-1} end

end

fun {Sum2 N S}
if N==0 then S else {Sum2 N-1 N+S} end

end

(a) Expand the two definitions into kernel syntax. It should be clear that
Sum2 is tail recursive and Sum1 is not.

(b) Execute the two calls {Sum1 10} and {Sum2 10 0} by hand, using
the semantics of this chapter to follow what happens to the stack and
the store. How large does the stack become in either case?

(c) What would happen in the Mozart system if you would call {Sum1

100000000} or {Sum2 100000000 0} ? Which one is likely to work?
Which one is not? Try both on Mozart to verify your reasoning.

10. Consider the following function SMerge that merges two sorted lists:

fun {SMerge Xs Ys}
case Xs#Ys
of nil#Ys then Ys
[] Xs#nil then Xs
[] (X|Xr)#(Y|Yr) then

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

112 Declarative Computation Model

if X=<Y then
X|{SMerge Xr Ys}

else
Y|{SMerge Xs Yr}

end
end

end

Expand SMerge into the kernel syntax. Note that X#Y is a tuple of two
arguments that can also be written ´ #´ (X Y) . The resulting procedure
should be tail recursive, if the rules of Section 2.5.2 are followed correctly.

11. Last call optimization is important for much more than just recursive calls.
Consider the following mutually recursive definition of the functions IsOdd

and IsEven :

fun {IsEven X}
if X==0 then true else {IsOdd X-1} end

end

fun {IsOdd X}
if X==0 then false else {IsEven X-1} end

end

We say that these functions are mutually recursive since each function calls
the other. Mutual recursion can be generalized to any number of functions.
A set of functions is mutually recursive if they can be put in a sequence
such that each function calls the next and the last calls the first. For this
exercise, show that the calls {IsOdd N} and {IsEven N} execute with
constant stack size for all nonnegative N. In general, if each function in
a mutually-recursive set has just one function call in its body, and this
function call is a last call, then all functions in the set will execute with
their stack size bounded by a constant.

12. Section 2.7.2 explains that the bind operation is actually much more gen-
eral than just binding variables: it makes two partial values equal (if they
are compatible). This operation is called unification. The purpose of this
exercise is to explore why unification is interesting. Consider the three uni-
fications X=[a Z] , Y=[W b] , and X=Y. Show that the variables X, Y, Z, and
Ware bound to the same values, no matter in which order the three unifi-
cations are done. In Chapter 4 we will see that this order-independence is
important for declarative concurrency.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Chapter 3

Declarative Programming
Techniques

“S’il vous plâıt... dessine-moi un arbre!”
“If you please – draw me a tree!”
– Freely adapted from Le Petit Prince, Antoine de Saint-Exupéry
(1900–1944)

“The nice thing about declarative programming is that you can write
a specification and run it as a program. The nasty thing about declar-
ative programming is that some clear specifications make incredibly
bad programs. The hope of declarative programming is that you can
move from a specification to a reasonable program without leaving
the language.”
– The Craft of Prolog, Richard O’Keefe (?–)

Consider any computational operation, i.e., a program fragment with inputs and
outputs. We say the operation is declarative if, whenever called with the same
arguments, it returns the same results independent of any other computation
state. Figure 3.1 illustrates the concept. A declarative operation is independent
(does not depend on any execution state outside of itself), stateless1 (has no
internal execution state that is remembered between calls), and deterministic
(always gives the same results when given the same arguments). We will show
that all programs written using the computation model of the last chapter are
declarative.

Why declarative programming is important

Declarative programming is important because of two properties:

• Declarative programs are compositional. A declarative program con-
sists of components that can each be written, tested, and proved correct

1The concept of “stateless” is sometimes called “immutable”.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

114 Declarative Programming Techniques

Rest of computation

operation
Declarative

Results

Arguments

Figure 3.1: A declarative operation inside a general computation

independently of other components and of its own past history (previous
calls).

• Reasoning about declarative programs is simple. Programs written
in the declarative model are easier to reason about than programs written in
more expressive models. Since declarative programs compute only values,
simple algebraic and logical reasoning techniques can be used.

These two properties are important both for programming in the large and in the
small, respectively. It would be nice if all programs could easily be written in the
declarative model. Unfortunately, this is not the case. The declarative model is
a good fit for certain kinds of programs and a bad fit for others. This chapter
and the next examine the programming techniques of the declarative model and
explain what kinds of programs can and cannot be easily written in it.

We start by looking more closely at the first property. Let us define a com-
ponent as a precisely delimited program fragment with well-defined inputs and
outputs. A component can be defined in terms of a set of simpler components. For
example, in the declarative model a procedure is one kind of component. The
application program is the topmost component in a hierarchy of components.
The hierarchy bottoms out in primitive components which are provided by the
system.

In a declarative program, the interaction between components is determined
solely by each component’s inputs and outputs. Consider a program with a
declarative component. This component can be understood on its own, without
having to understand the rest of the program. The effort needed to understand
the whole program is the sum of the efforts needed for the declarative component
and for the rest.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

115

Large−scale program structure
Time and space efficiency

Nondeclarative needs

Limitations and extensions
Relation to other declarative models

What is declarativeness?

Iterative and recursive computation
Programming with lists and trees

Definition

The model

with recursion
Programming

Higher−order programming
Control abstractions Abstract data types

Secure abstract data types

Procedural Data

The real world

Abstraction

Figure 3.2: Structure of the chapter

If there would be a more intimate interaction between the component and
the rest of the program, then they could not be understood independently. They
would have to be understood together, and the effort needed would be much big-
ger. For example, it might be (roughly) proportional to the product of the efforts
needed for each part. For a program with many components that interact inti-
mately, this very quickly explodes, making understanding difficult or impossible.
An example of such an intimate interaction is a concurrent program with shared
state, as explained in Chapter 8.

Intimate interactions are often necessary. They cannot be “legislated away”
by programming in a model that does not directly support them (as Section 4.7
clearly explains). But an important principle is that they should only be used
when necessary and not otherwise. To support this principle, as many components
as possible should be declarative.

Writing declarative programs

The simplest way to write a declarative program is to use the declarative mod-
el of the last chapter. The basic operations on data types are declarative, e.g.,
the arithmetic, list, and record operations. It is possible to combine declara-
tive operations to make new declarative operations, if certain rules are followed.
Combining declarative operations according to the operations of the declarative
model will result in a declarative operation. This is explained in Section 3.1.3.

The standard rule in algebra that “equals can be replaced by equals” is another
example of a declarative combination. In programming languages, this property

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

116 Declarative Programming Techniques

Declarative
programming

Descriptive

Programmable

Definitional

Observational

Declarative model

Functional programming

Logic programming

Figure 3.3: A classification of declarative programming

is called referential transparency. It greatly simplifies reasoning about programs.
For example, if we know that f(a) = a2, then we can replace f(a) by a2 in any
other place where it occurs. The equation b = 7f(a)2 then becomes b = 7a4. This
is possible because f(a) is declarative: it depends only on its arguments and not
on any other computation state.

The basic technique for writing declarative programs is to consider the pro-
gram as a set of recursive function definitions, using higher-orderness to simplify
the program structure. A recursive function is one whose definition body refers
to the function itself, either directly or indirectly. Direct recursion means that
the function itself is used in the body. Indirect recursion means that the function
refers to another function that directly or indirectly refers to the original function.
Higher-orderness means that functions can have other functions as arguments and
results. This ability underlies all the techniques for building abstractions that we
will show in the book. Higher-orderness can compensate somewhat for the lack
of expressiveness of the declarative model, i.e., it makes it easy to code limited
forms of concurrency and state in the declarative model.

Structure of the chapter

This chapter explains how to write practical declarative programs. The chap-
ter is roughly organized into the six parts shown in Figure 3.2. The first part
defines “declarativeness”. The second part gives an overview of programming
techniques. The third and fourth parts explain procedural and data abstraction.
The fifth part shows how declarative programming interacts with the rest of the
computing environment. The sixth part steps back to reflect on the usefulness of
the declarative model and situate it with respect to other models.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.1 What is declarativeness? 117

〈s〉 ::=
skip Empty statement

| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation

Table 3.1: The descriptive declarative kernel language

3.1 What is declarativeness?

The declarative model of Chapter 2 is an especially powerful way of writing declar-
ative programs, since all programs written in it will be declarative by this fact
alone. But it is still only one way out of many for doing declarative programming.
Before explaining how to program in the declarative model, let us situate it with
respect to the other ways of being declarative. Let us also explain why programs
written in it are always declarative.

3.1.1 A classification of declarative programming

We have defined declarativeness in one particular way, so that reasoning about
programs is simplified. But this is not the only way to make precise what declar-
ative programming is. Intuitively, it is programming by defining the what (the
results we want to achieve) without explaining the how (the algorithms, etc., need-
ed to achieve the results). This vague intuition covers many different ideas. Let
us try to explain them. Figure 3.3 classifies the most important ones. The first
level of classification is based on the expressiveness. There are two possibilities:

• A descriptive declarativeness. This is the least expressive. The declarative
“program” just defines a data structure. Table 3.1 defines a language at
this level. This language can only define records! It contains just the first
five statements of the kernel language in Table 2.1. Section 3.8.2 shows how
to use this language to define graphical user interfaces. Other examples are
a formatting language like HTML, which gives the structure of a document
without telling how to do the formatting, or an information exchange lan-
guage like XML, which is used to exchange information in an open format
that is easily readable by all. The descriptive level is too weak to write
general programs. So why is it interesting? Because it consists of data
structures that are easy to calculate with. The records of Table 3.1, HTML
and XML documents, and the declarative user interfaces of Section 3.8.2
can all be created and transformed easily by a program.

• A programmable declarativeness. This is as expressive as a Turing machine.2

2A Turing machine is a simple formal model of computation that is as powerful as any

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

118 Declarative Programming Techniques

For example, Table 2.1 defines a language at this level. See the introduc-
tion to Chapter 6 for more on the relationship between the descriptive and
programmable levels.

There are two fundamentally different ways to view programmable declarative-
ness:

• A definitional view, where declarativeness is a property of the component
implementation. For example, programs written in the declarative model
are guaranteed to be declarative, because of properties of the model.

• An observational view, where declarativeness is a property of the component
interface. The observational view follows the principle of abstraction: that
to use a component it is enough to know its specification without knowing
its implementation. The component just has to behave declaratively, i.e.,
as if it were independent, stateless, and deterministic, without necessarily
being written in a declarative computation model.

This book uses both the definitional and observational views. When we are
interested in looking inside a component, we will use the definitional view. When
we are interested in how a component behaves, we will use the observational view.

Two styles of definitional declarative programming have become particularly
popular: the functional and the logical. In the functional style, we say that a
component defined as a mathematical function is declarative. Functional lan-
guages such as Haskell and Standard ML follow this approach. In the logical
style, we say that a component defined as a logical relation is declarative. Log-
ic languages such as Prolog and Mercury follow this approach. It is harder to
formally manipulate functional or logical programs than descriptive programs,
but they still follow simple algebraic laws.3 The declarative model used in this
chapter encompasses both functional and logic styles.

The observational view lets us use declarative components in a declarative
program even if they are written in a nondeclarative model. For example, a
database interface can be a valuable addition to a declarative language. Yet,
the implementation of this interface is almost certainly not going to be logical
or functional. It suffices that it could have been defined declaratively. Some-
times a declarative component will be written in a functional or logical style, and
sometimes it will not be. In later chapters we will build declarative components
in nondeclarative models. We will not be dogmatic about the matter; we will
consider the component to be declarative if it behaves declaratively.

computer that can be built, as far as is known in the current state of computer science. That
is, any computation that can be programmed on any computer can also be programmed on a
Turing machine.

3For programs that do not use the nondeclarative abilities of these languages.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.1 What is declarativeness? 119

3.1.2 Specification languages

Proponents of declarative programming sometimes claim that it allows to dispense
with the implementation, since the specification is all there is. That is, the
specification is the program. This is true in a formal sense, but not in a practical
sense. Practically, declarative programs are very much like other programs: they
require algorithms, data structures, structuring, and reasoning about the order of
operations. This is because declarative languages can only use mathematics that
can be implemented efficiently. There is a trade-off between expressiveness and
efficiency. Declarative programs are usually a lot longer than what a specification
could be. So the distinction between specification and implementation still makes
sense, even for declarative programs.

It is possible to define a declarative language that is much more expressive
than what we use in this book. Such a language is called a specification language.
It is usually impossible to implement specification languages efficiently. This does
not mean that they are impractical; on the contrary. They are an important tool
for thinking about programs. They can be used together with a theorem prover,
i.e., a program that can do certain kinds of mathematical reasoning. Practical
theorem provers are not completely automatic; they need human help. But they
can take over much of the drudgery of reasoning about programs, i.e., the tedious
manipulation of mathematical formulas. With the aid of the theorem prover,
a developer can often prove very strong properties about his or her program.
Using a theorem prover in this way is called proof engineering. Up to now, proof
engineering is only practical for small programs. But this is enough for it to be
used successfully when safety is of critical importance, e.g., when lives are at
stake, such as in medical apparatus or public transportation.

Specification languages are outside the scope of this book.

3.1.3 Implementing components in the declarative model

Combining declarative operations according to the operations of the declarative
model always results in a declarative operation. This section explains why this
is so. We first define more precisely what it means for a statement to be declar-
ative. Given any statement in the declarative model. Partition the free variable
identifiers in the statement into inputs and outputs. Then, given any binding
of the input identifiers to partial values and the output identifiers to unbound
variables, executing the statement will give one of three results: (1) some binding
of the output variables, (2) suspension, or (3) an exception. If the statement is
declarative, then for the same bindings of the inputs, the result is always the
same.

For example, consider the statement Z=X. Assume that X is the input and Z

is the output. For any binding of X to a partial value, executing this statement
will bind Z to the same partial value. Therefore the statement is declarative.

We can use this result to prove that the statement

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

120 Declarative Programming Techniques

if X>Y then Z=X else Z=Y end

is declarative. Partition the statement’s three free identifiers, X, Y, Z, into two
input identifiers X and Y and one output identifier Z. Then, if X and Y are bound
to any partial values, the statement’s execution will either block or bind Z to the
same partial value. Therefore the statement is declarative.

We can do this reasoning for all operations in the declarative model:

• First, all basic operations in the declarative model are declarative. This
includes all operations on basic types, which are explained in Chapter 2.

• Second, combining declarative operations with the constructs of the declar-
ative model gives a declarative operation. The following five compound
statements exist in the declarative model:

– The statement sequence.

– The local statement.

– The if statement.

– The case statement.

– Procedure declaration, i.e., the statement 〈x〉=〈v〉 where 〈v〉 is a pro-
cedure value.

They allow building statements out of other statements. All these ways of
combining statements are deterministic (if their component statements are
deterministic, then so are they) and they do not depend on any context.

3.2 Iterative computation

We will now look at how to program in the declarative model. We start by
looking at a very simple kind of program, the iterative computation. An iterative
computation is a loop whose stack size is bounded by a constant, independent
of the number of iterations. This kind of computation is a basic programming
tool. There are many ways to write iterative programs. It is not always obvious
when a program is iterative. Therefore, we start by giving a general schema that
shows how to construct many interesting iterative computations in the declarative
model.

3.2.1 A general schema

An important class of iterative computations starts with an initial state S0 and
transforms the state in successive steps until reaching a final state Sfinal:

S0 → S1 → · · · → Sfinal

An iterative computation of this class can be written as a general schema:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.2 Iterative computation 121

fun {Sqrt X}
Guess=1.0

in
{SqrtIter Guess X}

end
fun {SqrtIter Guess X}

if {GoodEnough Guess X} then Guess
else

{SqrtIter {Improve Guess X} X}
end

end
fun {Improve Guess X}

(Guess + X/Guess) / 2.0
end
fun {GoodEnough Guess X}

{Abs X-Guess*Guess}/X < 0.00001
end
fun {Abs X} if X<0.0 then ˜X else X end end

Figure 3.4: Finding roots using Newton’s method (first version)

fun {Iterate Si}
if { IsDone Si} then Si

else Si+1 in
Si+1={ Transform Si}
{Iterate Si+1}

end
end

In this schema, the functions IsDone and Transform are problem dependent.
Let us prove that any program that follows this schema is iterative. We will show
that the stack size does not grow when executing Iterate . For clarity, we give
just the statements on the semantic stack, leaving out the environments and the
store:

• Assume the initial semantic stack is [R={Iterate S0}].

• Assume that { IsDone S0} returns false . Just after executing the if , the
semantic stack is [S1={ Transform S0} , R={Iterate S1}].

• After executing { Transform S1} , the semantic stack is [R={Iterate S1}].

We see that the semantic stack has just one element at every recursive call, namely
[R={Iterate Si+1}].

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

122 Declarative Programming Techniques

3.2.2 Iteration with numbers

A good example of iterative computation is Newton’s method for calculating the
square root of a positive real number x. The idea is to start with a guess g of
the square root, and to improve this guess iteratively until it is accurate enough.
The improved guess g′ is the average of g and x/g:

g′ = (g + x/g)/2.

To see that the improved guess is beter, let us study the difference between the
guess and

√
x:

ε = g −
√

x

Then the difference between g′ and
√

x is:

ε′ = g′ −
√

x = (g + x/g)/2−
√

x = ε2/2g

For convergence, ε′ should be smaller than ε. Let us see what conditions that this
imposes on x and g. The condition ε′ < ε is the same as ε2/2g < ε, which is the
same as ε < 2g. (Assuming that ε > 0, since if it is not, we start with ε′, which
is always greater than 0.) Substituting the definition of ε, we get the condition√

x + g > 0. If x > 0 and the initial guess g > 0, then this is always true. The
algorithm therefore always converges.

Figure 3.4 shows one way of defining Newton’s method as an iterative compu-
tation. The function {SqrtIter Guess X} calls {SqrtIter {Improve Guess

X} X} until Guess satisfies the condition {GoodEnough Guess X} . It is clear
that this is an instance of the general schema, so it is an iterative computation.
The improved guess is calculated according to the formula given above. The
“good enough” check is |x − g2|/x < 0.00001, i.e., the square root has to be
accurate to five decimal places. This check is relative, i.e., the error is divided by
x. We could also use an absolute check, e.g., something like |x − g2| < 0.00001,
where the magnitude of the error has to be less than some constant. Why is using
a relative check better when calculating square roots?

3.2.3 Using local procedures

In the Newton’s method program of Figure 3.4, several “helper” routines are
defined: SqrtIter , Improve , GoodEnough , and Abs. These routines are used as
building blocks for the main function Sqrt . In this section, we will discuss where
to define helper routines. The basic principle is that a helper routine defined only
as an aid to define another routine should not be visible elsewhere. (We use the
word “routine” for both functions and procedures.)

In the Newton example, SqrtIter is only needed inside Sqrt , Improve and
GoodEnough are only needed inside SqrtIter , and Abs is a utility function that
could be used elsewhere. There are two basic ways to express this visibility, with
somewhat different semantics. The first way is shown in Figure 3.5: the helper

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.2 Iterative computation 123

local
fun {Improve Guess X}

(Guess + X/Guess) / 2.0
end
fun {GoodEnough Guess X}

{Abs X-Guess*Guess}/X < 0.00001
end
fun {SqrtIter Guess X}

if {GoodEnough Guess X} then Guess
else

{SqrtIter {Improve Guess X} X}
end

end
in

fun {Sqrt X}
Guess=1.0

in
{SqrtIter Guess X}

end
end

Figure 3.5: Finding roots using Newton’s method (second version)

routines are defined outside of Sqrt in a local statement. The second way is
shown in Figure 3.6: each helper routine is defined inside of the routine that
needs it.4

In Figure 3.5, there is a trade-off between readability and visibility: Improve

and GoodEnough could be defined local to SqrtIter only. This would result in
two levels of local declarations, which is harder to read. We have decided to put
all three helper routines in the same local declaration.

In Figure 3.6, each helper routine sees the arguments of its enclosing routine
as external references. These arguments are precisely those with which the helper
routines are called. This means we could simplify the definition by removing these
arguments from the helper routines. This gives Figure 3.7.

There is a trade-off between putting the helper definitions outside the routine
that needs them or putting them inside:

• Putting them inside (Figures 3.6 and 3.7) lets them see the arguments of
the main routines as external references, according to the lexical scoping
rule (see Section 2.4.3). Therefore, they need fewer arguments. But each
time the main routine is invoked, new helper routines are created. This
means that new procedure values are created.

• Putting them outside (Figures 3.4 and 3.5) means that the procedure values
are created once and for all, for all calls to the main routine. But then the

4We leave out the definition of Abs to avoid needless repetition.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

124 Declarative Programming Techniques

fun {Sqrt X}
fun {SqrtIter Guess X}

fun {Improve Guess X}
(Guess + X/Guess) / 2.0

end
fun {GoodEnough Guess X}

{Abs X-Guess*Guess}/X < 0.00001
end

in
if {GoodEnough Guess X} then Guess
else

{SqrtIter {Improve Guess X} X}
end

end
Guess=1.0

in
{SqrtIter Guess X}

end

Figure 3.6: Finding roots using Newton’s method (third version)

fun {Sqrt X}
fun {SqrtIter Guess}

fun {Improve}
(Guess + X/Guess) / 2.0

end
fun {GoodEnough}

{Abs X-Guess*Guess}/X < 0.00001
end

in
if {GoodEnough} then Guess
else

{SqrtIter {Improve}}
end

end
Guess=1.0

in
{SqrtIter Guess}

end

Figure 3.7: Finding roots using Newton’s method (fourth version)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.2 Iterative computation 125

fun {Sqrt X}
fun {Improve Guess}

(Guess + X/Guess) / 2.0
end
fun {GoodEnough Guess}

{Abs X-Guess*Guess}/X < 0.00001
end
fun {SqrtIter Guess}

if {GoodEnough Guess} then Guess
else

{SqrtIter {Improve Guess}}
end

end
Guess=1.0

in
{SqrtIter Guess}

end

Figure 3.8: Finding roots using Newton’s method (fifth version)

helper routines need more arguments so that the main routine can pass
information to them.

In Figure 3.7, new definitions of Improve and GoodEnough are created on each
iteration of SqrtIter , whereas SqrtIter itself is only created once. This sug-
gests a good trade-off, where SqrtIter is local to Sqrt and both Improve and
GoodEnough are outside SqrtIter . This gives the final definition of Figure 3.8,
which we consider the best in terms of both efficiency and visibility.

3.2.4 From general schema to control abstraction

The general schema of Section 3.2.1 is a programmer aid. It helps the programmer
design efficient programs but it is not seen by the computation model. Let us go
one step further and provide the general schema as a program component that
can be used by other components. We say that the schema becomes a control
abstraction, i.e., an abstraction that can be used to provide a desired control flow.
Here is the general schema:

fun {Iterate Si}
if { IsDone Si} then Si

else Si+1 in
Si+1={ Transform Si}
{Iterate Si+1}

end
end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

126 Declarative Programming Techniques

This schema implements a general while loop with a calculated result. To make
the schema into a control abstraction, we have to parameterize it by extracting
the parts that vary from one use to another. There are two such parts: the
functions IsDone and Transform . We make these two parts into parameters of
Iterate :

fun {Iterate S IsDone Transform}
if {IsDone S} then S
else S1 in

S1={Transform S}
{Iterate S1 IsDone Transform}

end
end

To use this control abstraction, the arguments IsDone and Transform are given
one-argument functions. Passing functions as arguments to functions is part
of a range of programming techniques called higher-order programming. These
techniques are further explained in Section 3.6. We can make Iterate behave
exactly like SqrtIter by passing it the functions GoodEnough and Improve .
This can be written as follows:

fun {Sqrt X}
{Iterate

1.0
fun {$ G} {Abs X-G*G}/X<0.00001 end
fun {$ G} (G+X/G)/2.0 end }

end

This uses two function values as arguments to the control abstraction. This is
a powerful way to structure a program because it separates the general control
flow from this particular use. Higher-order programming is especially helpful for
structuring programs in this way. If this control abstraction is used often, the
next step could be to provide it as a linguistic abstraction.

3.3 Recursive computation

Iterative computations are a special case of a more general kind of computation,
called recursive computation. Let us see the difference between the two. Recall
that an iterative computation can be considered as simply a loop in which a
certain action is repeated some number of times. Section 3.2 implements this in
the declarative model by introducing a control abstraction, the function Iterate .
The function first tests a condition. If the condition is false, it does an action
and then calls itself.

Recursion is more general than this. A recursive function can call itself any-
where in the body and can call itself more than once. In programming, recursion
occurs in two major ways: in functions and in data types. A function is recur-
sive if its definition has at least one call to itself. The iteration abstraction of

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.3 Recursive computation 127

Section 3.2 is a simple case. A data type is recursive if it is defined in terms of
itself. For example, a list is defined in terms of a smaller list. The two forms of
recursion are strongly related since recursive functions can be used to calculate
with recursive data types.

We saw that an iterative computation has a constant stack size. This is not
always the case for a recursive computation. Its stack size may grow as the input
grows. Sometimes this is unavoidable, e.g., when doing calculations with trees,
as we will see later. In other cases, it can be avoided. An important part of
declarative programming is to avoid a growing stack size whenever possible. This
section gives an example of how this is done. We start with a typical case of
a recursive computation that is not iterative, namely the naive definition of the
factorial function. The mathematical definition is:

0! = 1
n! = n · (n− 1)! if n > 0

This is a recurrence equation, i.e., the factorial n! is defined in terms of a factorial
with a smaller argument, namely (n−1)!. The naive program follows this mathe-
matical definition. To calculate {Fact N} there are two possibilities, namely N=0

or N>0. In the first case, return 1. In the second case, calculate {Fact N-1} ,
multiply by N, and return the result. This gives the following program:

fun {Fact N}
if N==0 then 1
elseif N>0 then N*{Fact N-1}
else raise domainError end
end

end

This defines the factorial of a big number in terms of the factorial of a smaller
number. Since all numbers are nonnegative, they will bottom out at zero and the
execution will finish.

Note that factorial is a partial function. It is not defined for negative N. The
program reflects this by raising an exception for negative N. The definition in
Chapter 1 has an error since for negative N it goes into an infinite loop.

We have done two things when writing Fact . First, we followed the mathe-
matical definition to get a correct implementation. Second, we reasoned about
termination, i.e., we showed that the program terminates for all legal arguments,
i.e., arguments inside the function’s domain.

3.3.1 Growing stack size

This definition of factorial gives a computation whose maximum stack size is
proportional to the function argument N. We can see this by using the semantics.
First translate Fact into the kernel language:

proc {Fact N ?R}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

128 Declarative Programming Techniques

if N==0 then R=1
elseif N>0 then N1 R1 in

N1=N-1
{Fact N1 R1}
R=N*R1

else raise domainError end
end

end

Already we can guess that the stack size might grow, since the multiplication
comes after the recursive call. That is, during the recursive call the stack has to
keep information about the multiplication for when the recursive call returns. Let
us follow the semantics and calculate by hand what happens when executing the
call {Fact 5 R} . For clarity, we simplify slightly the presentation of the abstract
machine by substituting the value of a store variable into the environment. That
is, the environment {..., N → n, ...} is written as {..., N → 5, ...} if the store is
{..., n = 5, ...}.

• The initial semantic stack is [({Fact N R} , {N→ 5, R→ r0})].

• At the first call:

[({Fact N1 R1} , {N1→ 4, R1→ r1, ...}),
(R=N*R1, {R→ r0, R1→ r1N→ 5, ...})]

• At the second call:

[({Fact N1 R1} , {N1→ 3, R1→ r2, ...}),
(R=N*R1, {R→ r1, R1→ r2, N→ 4, ...}),
(R=N*R1, {R→ r0, R1→ r1, N→ 5, ...})]

• At the third call:

[({Fact N1 R1} , {N1→ 2, R1→ r3, ...}),
(R=N*R1, {R→ r2, R1→ r3, N→ 3, ...}),
(R=N*R1, {R→ r1, R1→ r2, N→ 4, ...}),
(R=N*R1, {R→ r0, R1→ r1, N→ 5, ...})]

It is clear that the stack grows bigger by one statement per call. The last recursive
call is the fifth, which returns immediately with r5 = 1. Then five multiplications
are done to get the final result r0 = 120.

3.3.2 Substitution-based abstract machine

This example shows that the abstract machine of Chapter 2 can be rather cum-
bersome for hand calculation. This is because it keeps both variable identifiers
and store variables, using environments to map from one to the other. This is

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.3 Recursive computation 129

realistic; it is how the abstract machine is implemented on a real computer. But
it is not so nice for hand calculation.

We can make a simple change to the abstract machine that makes it much
easier to use for hand calculation. The idea is to replace the identifiers in the
statements by the store entities that they refer to. This is called doing a substi-
tution. For example, the statement R=N*R1 becomes r2 = 3∗ r3 when substituted
according to {R→ r2, N→ 3, R1→ r3}.

The substitution-based abstract machine has no environments. It directly
substitutes identifiers by store entities in statements. For the recursive factorial
example, this gives the following:

• The initial semantic stack is [{Fact 5 r0}].

• At the first call: [{Fact 4 r1} , r0=5* r1].

• At the second call: [{Fact 3 r2} , r1=4* r2, r0=5* r1].

• At the third call: [{Fact 2 r3} , r2=3* r3, r1=4* r2, r0=5* r1].

As before, we see that the stack grows by one statement per call. We summarize
the differences between the two versions of the abstract machine:

• The environment-based abstract machine, defined in Chapter 2, is faithful
to the implementation on a real computer, which uses environments. How-
ever, environments introduce an extra level of indirection, so they are hard
to use for hand calculation.

• The substitution-based abstract machine is easier to use for hand calcu-
lation, because there are many fewer symbols to manipulate. However,
substitutions are costly to implement, so they are generally not used in a
real implementation.

Both versions do the same store bindings and the same manipulations of the
semantic stack.

3.3.3 Converting a recursive to an iterative computation

Factorial is simple enough that is can be rearranged to become iterative. Let us
see how this is done. Later on, we will give a systematic way of making iterative
computations. For now, we just give a hint. In the previous calculation:

R=(5*(4*(3*(2*(1*1)))))

it is enough to rearrange the numbers:

R=(((((1*5)*4)*3)*2)*1)

Then the calculation can be done incrementally, starting with 1*5 . This gives 5,
then 20 , then 60 , then 120 , and finally 120 . The iterative definition of factorial
that does things this way is:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

130 Declarative Programming Techniques

fun {Fact N}
fun {FactIter N A}

if N==0 then A
elseif N>0 then {FactIter N-1 A*N}
else raise domainError end
end

end
in

{FactIter N 1}
end

The function that does the iteration, FactIter , has a second argument A. This
argument is crucial; without it an iterative factorial is impossible. The second
argument is not apparent in the simple mathematical definition of factorial we
used first. We had to do some reasoning to bring it in.

3.4 Programming with recursion

Recursive computations are at the heart of declarative programming. This section
shows how to write in this style. We show the basic techniques for programming
with lists, trees, and other recursive data types. We show how to make the
computation iterative when possible. The section is organized as follows:

• The first step is defining recursive data types. Section 3.4.1 gives a simple
notation that lets us define the most important recursive data types.

• The most important recursive data type is the list. Section 3.4.2 presents
the basic programming techniques for lists.

• Efficient declarative programs have to define iterative computations. Sec-
tion 3.4.3 presents accumulators, a systematic technique to achieve this.

• Computations often build data structures incrementally. Section 3.4.4 presents
difference lists, an efficient technique to achieve this while keeping the
computation iterative.

• An important data type related to the list is the queue. Section 3.4.5
shows how to implement queues efficiently. It also introduces the basic idea
of amortized efficiency.

• The second most important recursive data type, next to linear structures
such as lists and queues, is the tree. Section 3.4.6 gives the basic program-
ming techniques for trees.

• Sections 3.4.7 and 3.4.8 give two realistic case studies, a tree drawing
algorithm and a parser, that between them use many of the techniques of
this section.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 131

3.4.1 Type notation

The list type is a subset of the record type. There are other useful subsets of
the record type, e.g., binary trees. Before going into writing programs, let us
introduce a simple notation to define lists, trees, and other subtypes of records.
This will help us to write functions on these types.

A list Xs is either nil or X|Xr where Xr is a list. Other subsets of the record
type are also useful. For example, a binary tree can be defined as leaf(key:K

value:V) or tree(key:K value:V left:LT right:RT) where LT and RTare
both binary trees. How can we write these types in a concise way? Let us create
a notation based on the context-free grammar notation for defining the syntax of
the kernel language. The nonterminals represent either types or values. Let us
use the type hierarchy of Figure 2.16 as a basis: all the types in this hierarchy
will be available as predefined nonterminals. So 〈Value〉 and 〈Record〉 both exist,
and since they are sets of values, we can say 〈Record〉 ⊂ 〈Value〉. Now we can
define lists:

〈List〉 ::= 〈Value〉 ´ | ´ 〈List〉
| nil

This means that a value is in 〈List〉 if it has one of two forms. Either it is X|Xr

where X is in 〈Value〉 and Xr is in 〈List〉. Or it is the atom nil . This is a recursive
definition of 〈List〉. It can be proved that there is just one set 〈List〉 that is the
smallest set that satisfies this definition. The proof is beyond the scope of this
book, but can be found in any introductory book on semantics, e.g., [208]. We
take this smallest set as the value of 〈List〉. Intuitively, 〈List〉 can be constructed
by starting with nil and repeatedly applying the grammar rule to build bigger
and bigger lists.

We can also define lists whose elements are of a given type:

〈List T〉 ::= T ´ | ´ 〈List T〉
| nil

Here T is a type variable and 〈List T〉 is a type function. Applying the type func-
tion to any type returns the type of a list of that type. For example, 〈List 〈Int〉〉
is the list of integer type. Observe that 〈List 〈Value〉〉 is equal to 〈List〉 (since they
have identical definitions).

Let us define a binary tree whose keys are literals and whose elements are of
type T:

〈BTree T〉 ::= tree(key: 〈Literal〉 value: T
left: 〈BTree T〉 right: 〈BTree T〉)

| leaf(key: 〈Literal〉 value: T)

The type of a procedure is 〈proc {$ T1, ...,Tn} 〉, where T1, ..., Tn are the types
of its arguments. The procedure’s type is sometimes called the signature of the
procedure, because it gives some key information about the procedure in a concise

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

132 Declarative Programming Techniques

form. The type of a function is 〈fun {$ T1, ...,Tn}: T〉, which is equivalent to
〈proc {$ T1, ...,Tn, T} 〉. For example, the type 〈fun {$ 〈List〉 〈List〉}: 〈List〉 〉
is a function with two list arguments that returns a list.

Limits of the notation

This type notation can define many useful sets of values, but its expressiveness
is definitely limited. Here are some cases where the notation is not good enough:

• The notation cannot define the positive integers, i.e., the subset of 〈Int〉
whose elements are all greater than zero.

• The notation cannot define sets of partial values. For example, difference
lists cannot be defined.

We can extend the notation to handle the first case, e.g., by adding boolean
conditions.5 In the examples that follow, we will add these conditions in the
text when they are needed. This means that the type notation is descriptive: it
gives logical assertions about the set of values that a variable may take. There
is no claim that the types could be checkable by a compiler. On the contrary,
they often cannot be checked. Even types that are simple to specify, such as the
positive integers, cannot in general be checked by a compiler.

3.4.2 Programming with lists

List values are very concise to create and to take apart, yet they are powerful
enough to encode any kind of complex data structure. The original Lisp language
got much of its power from this idea [120]. Because of lists’ simple structure,
declarative programming with them is easy and powerful. This section gives the
basic techniques of programming with lists:

• Thinking recursively: the basic approach is to solve a problem in terms of
smaller versions of the problem.

• Converting recursive to iterative computations: naive list programs are often
wasteful because their stack size grows with the input size. We show how
to use state transformations to make them practical.

• Correctness of iterative computations: a simple and powerful way to reason
about iterative computations is by using state invariants.

• Constructing programs by following the type: a function that calculates with
a given type almost always has a recursive structure that closely mirrors
the type definition.

5This is similar to the way we define language syntax in Section 2.1.1: a context-free notation
with extra conditions when they are needed.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 133

We end up this section with a bigger example, the mergesort algorithm. Later
sections show how to make the writing of iterative functions more systematic
by introducing accumulators and difference lists. This lets us write iterative
functions from the start. We find that these techniques “scale up”, i.e., they
work well even for large declarative programs.

Thinking recursively

A list is a recursive data structure: it is defined in terms of a smaller version of
itself. To write a function that calculates on lists we have to follow this recursive
structure. The function consists of two parts:

• A base case. For small lists (say, of zero, one, or two elements), the function
computes the answer directly.

• A recursive case. For bigger lists, the function computes the result in terms
of the results of one or more smaller lists.

As our first example, we take a simple recursive function that calculates the length
of a list according to this technique:

fun {Length Ls}
case Ls
of nil then 0
[] _|Lr then 1+{Length Lr}
end

end
{Browse {Length [a b c]}}

Its type signature is 〈fun {$ 〈List〉}: 〈Int〉〉, a function of one list that returns
an integer. The base case is the empty list nil , for which the function returns 0.
The recursive case is any other list. If the list has length n, then its tail has length
n− 1. The tail is smaller than the original list, so the program will terminate.

Our second example is a function that appends two lists Ls and Ms together
to make a third list. The question is, on which list do we use induction? Is it the
first or the second? We claim that the induction has to be done on the first list.
Here is the function:

fun {Append Ls Ms}
case Ls
of nil then Ms
[] X|Lr then X|{Append Lr Ms}
end

end

Its type signature is 〈fun {$ 〈List〉 〈List〉}: 〈List〉〉. This function follows exactly
the following two properties of append:

• append(nil , m) = m

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

134 Declarative Programming Techniques

• append(x| l, m) = x | append(l, m)

The recursive case always calls Append with a smaller first argument, so the
program terminates.

Recursive functions and their domains

Let us define the function Nth to get the nth element of a list.

fun {Nth Xs N}
if N==1 then Xs.1
elseif N>1 then {Nth Xs.2 N-1}
end

end

Its type is 〈fun {$ 〈List〉 〈Int〉}: 〈Value〉〉. Remember that a list Xs is either
nil or a tuple X|Y with two arguments. Xs.1 gives X and Xs.2 gives Y. What
happens when we feed the following:

{Browse {Nth [a b c d] 5}}

The list has only four elements. Trying to ask for the fifth element means trying
to do Xs.1 or Xs.2 when Xs=nil . This will raise an exception. An exception is
also raised if N is not a positive integer, e.g., when N=0. This is because there is
no else clause in the if statement.

This is an example of a general technique to define functions: always use
statements that raise exceptions when values are given outside their domains.
This will maximize the chances that the function as a whole will raise an exception
when called with an input outside its domain. We cannot guarantee that an
exception will always be raised in this case, e.g., {Nth 1|2|3 2} returns 2 while
1|2|3 is not a list. Such guarantees are hard to come by. They can sometimes
be obtained in statically-typed languages.

The case statement also behaves correctly in this regard. Using a case

statement to recurse over a list will raise an exception when its argument is not
a list. For example, let us define a function that sums all the elements of a list
of integers:

fun {SumList Xs}
case Xs
of nil then 0
[] X|Xr then X+{SumList Xr}
end

end

Its type is 〈fun {$ 〈List 〈Int〉〉}: 〈Int〉〉. The input must be a list of integers
because SumList internally uses the integer 0. The following call:

{Browse {SumList [1 2 3]}}

displays 6. Since Xs can be one of two values, namely nil or X|Xr , it is natural
to use a case statement. As in the Nth example, not using an else in the case

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 135

will raise an exception if the argument is outside the domain of the function. For
example:

{Browse {SumList 1|foo}}

raises an exception because 1|foo is not a list, and the definition of SumList

assumes that its input is a list.

Naive definitions are often slow

Let us define a function to reverse the elements of a list. Start with a recursive
definition of list reversal:

• Reverse of nil is nil .

• Reverse of X|Xs is Z, where
reverse of Xs is Ys, and
append Ys and [X] to get Z.

This works because X is moved from the front to the back. Following this recursive
definition, we can immediately write a function:

fun {Reverse Xs}
case Xs
of nil then nil
[] X|Xr then

{Append {Reverse Xr} [X]}
end

end

Its type is 〈fun {$ 〈List〉}: 〈List〉〉. Is this function efficient? To find out, we
have to calculate its execution time given an input list of length n. We can do this
rigorously with the techniques of Section 3.5. But even without these techniques,
we can see intuitively what happens. There will be n recursive calls followed by
n calls to Append . Each Append call will have a list of length n/2 on average.
The total execution time is therefore proportional to n · n/2, namely n2. This
is rather slow. We would expect that reversing a list, which is not exactly a
complex calculation, would take time proportional to the input length and not
to its square.

This program has a second defect: the stack size grows with the input list
length, i.e., it defines a recursive computation that is not iterative. Naively
following the recursive definition of reverse has given us a rather inefficient result!
Luckily, there are simple techniques for getting around both these inefficiencies.
They will let us define linear-time iterative computations whenever possible. We
will see two useful techniques: state transformations and difference lists.

Converting recursive to iterative computations

Let us see how to convert recursive computations into iterative ones. Instead of
using Reverse , we take a simpler function that calculates the length of a list:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

136 Declarative Programming Techniques

fun {Length Xs}
case Xs of nil then 0
[] _|Xr then 1+{Length Xr}
end

end

Note that the SumList function has the same structure. This function is linear-
time but the stack size is proportional to the recursion depth, which is equal
to the length of Xs. Why does this problem occur? It is because the addition
1+{Length Xr} happens after the recursive call. The recursive call is not last,
so the function’s environment cannot be recovered before it.

How can we calculate the list length with an iterative computation, which has
bounded stack size? To do this, we have to formulate the problem as a sequence
of state transformations. That is, we start with a state S0 and we transform it
successively, giving S1, S2, ..., until we reach the final state Sfinal, which contains
the answer. To calculate the list length, we can take the length i of the part of
the list already seen as the state. Actually, this is only part of the state. The rest
of the state is the part Ys of the list not yet seen. The complete state Si is then
the pair (i, Ys). The general intermediate case is as follows for state Si (where
the full list Xs is [e1 e2 · · · en]):

Xs︷ ︸︸ ︷
e1 e2 · · · ei ei+1 · · · en︸ ︷︷ ︸

Ys

At each recursive call, i will be incremented by 1 and Ys reduced by one element.
This gives us the function:

fun {IterLength I Ys}
case Ys
of nil then I
[] _|Yr then {IterLength I+1 Yr}
end

end

Its type is 〈fun {$ 〈Int〉 〈List〉}: 〈Int〉〉. Note the difference with the previous
definition. Here the addition I+1 is done before the recursive call to IterLength ,
which is the last call. We have defined an iterative computation.

In the call {IterLength I Ys} , the initial value of I is 0. We can hide this
initialization by defining IterLength as a local procedure. The final definition
of Length is therefore:

local
fun {IterLength I Ys}

case Ys
of nil then I
[] _|Yr then {IterLength I+1 Yr}
end

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 137

in
fun {Length Xs}

{IterLength 0 Xs}
end

end

This defines an iterative computation to calculate the list length. Note that we
define IterLength outside of Length . This avoids creating a new procedure
value each time Length is called. There is no advantage to defining IterLength

inside Length , since it does not use Length ’s argument Xs.
We can use the same technique on Reverse as we used for Length . In the

case of Reverse , the state uses the reverse of the part of the list already seen
instead of its length. Updating the state is easy: we just put a new list element
in front. The initial state is nil . This gives the following version of Reverse :

local
fun {IterReverse Rs Ys}

case Ys
of nil then Rs
[] Y|Yr then {IterReverse Y|Rs Yr}
end

end
in

fun {Reverse Xs}
{IterReverse nil Xs}

end
end

This version of Reverse is both a linear-time and an iterative computation.

Correctness with state invariants

Let us prove that IterLength is correct. We will use a general technique that
works well for IterReverse and other iterative computations. The idea is to
define a property P (Si) of the state that we can prove is always true, i.e., it is
a state invariant. If P is chosen well, then the correctness of the computation
follows from P (Sfinal). For IterLength we define P as follows:

P ((i, Ys)) ≡ (length(Xs) = i + length(Ys))

where length(L) gives the length of the list L. This combines i and Ys in such a
way that we suspect it is a state invariant. We use induction to prove this:

• First prove P (S0). This follows directly from S0 = (0, Xs).

• Assuming P (Si) and Si is not the final state, prove P (Si+1). This follows
from the semantics of the case statement and the function call. Write
Si = (i, Ys). We are not in the final state, so Ys is of nonzero length. From
the semantics, I+1 adds 1 to i and the case statement removes one element
from Ys. Therefore P (Si+1) holds.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

